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The mechanical behavior of SWCNTs is characterized using an atomistic-based continuum method. At nanoscale, interatomic
energy among carbon atoms and the corresponding force constants are defined. Subsequently, we used an atomistic finite element
analysis to calculate the energy stored in the SWCNT model, which forms a basis for calculating effective elastic moduli. In the
finite element model, the force interaction among carbon atoms in a SWCNT is modeled using load-carrying structural beams.
At macroscale, the SWCNT is taken as cylindrical continuum solid with transversely isotropic mechanical properties. Equivalence
of energies of both models establishes a framework to calculate effective elastic moduli of armchair and zigzag nanotubes. This
is achieved by solving five boundary value problems under distinct essential-controlled boundary conditions, which generates a
prescribed uniform strain field in both models. Elastic constants are extracted from the calculated elastic moduli. While results
of Young’s modulus obtained in this study generally concur with the published theoretical and numerical predictions, values of
Poisson’s ratio are on the high side.

1. Introduction

Extensive research work done by researchers from science
and engineering background in composite materials opens
new prospects for future short and long term technologies,
which will reshape the practical application of modern
composites. Currently, the research themes on nanocom-
posites and/or composites with nanoreinforcements face the
challenges of characterization, fabrication, and application.
Significant amount of experimental and numerical research
work is done to characterize the nanoreinforcement. But fur-
ther research is needed to bring these to the level of practical
application. These nanocomposites are becoming favorable
candidates for materials with a bright future in a wide variety
of industries such as transport, defense, electronics, and
biomedicine, to name a few. Hence, it is important that
the mechanical properties of these composite constituents,
particularly the carbon nanotubes (CNTs), be predicted accu-
rately. Further, the potential use of carbon nanotubes (CNTs)
as a reinforcing material in nanocomposites and light weight

composite structures has triggered a need to explore their
mechanical properties and assess their deformation under
mechanical loading. The unique structure and geometric
configuration of CNTs along with their high stiffness, low
density, and large aspect ratio have propelled an increasing
demand in furthering the research to quantify their elastic
properties as well as to explore possible applications in
different fields.

Various experimental and theoretical approaches have
been developed or used to characterize the elastic behavior of
SWCNTs. Several investigators [1, 2] have conducted exper-
imental studies to investigate the mechanical properties of
carbon nanotubes. These experiments were mainly based on
atomic force microscopy (AFM) and transmission electron
microscopy (TEM) and were able to confirm that CNTs
possess superior mechanical properties. However, the exper-
imental error bars are too large to state exact characteristics
of CNTs of different configurations, sizes, and structures.
The wide scatter in the experimentally reported values of the
elastic constants of the CNT can be attributed to the lack
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of proper direct measuring techniques at nanometer scale,
difficulties in test specimen preparation, and the dissimi-
larities in the method of nanotubes manufacture [3]. Such
high complexity in the experimental characterization has
prompted many researches to pursue a variety of theoretical
studies on determining the effective mechanical properties of
nanotubes.

The theoretical approaches found in literature can be
divided into three main categories: the atomistic methods,
the continuummechanics modeling, and the equivalent con-
tinuummodeling using finite element method.The atomistic
approaches include classical molecular dynamics (MD) [4],
tight-binding molecular dynamics, and density functional
theory (DFT) [5]. Phenomenological interatomic potential
energy functions are used in these approaches to model the
nanoscale systems in order to determine the force applied
by the carbon atoms. Therefore, the more realistic and
accurate these potentials are, the more closely the results
match the experimental data and the better they reflect the
actual properties of real system. Although these atomistic
methods can simulate any problem associatedwithmolecular
or atomic motions, their huge computational tasks bound
their application to problemswith small number ofmolecules
or atoms.

The continuum mechanics based approaches employ
theories of shells, trusses, and beams [6] to model CNTs.
One advantage of the continuum shell modeling is that it can
efficiently calculate both static and dynamics properties of
CNTs. However, traditional continuummodels cannot accu-
rately describe the mechanical properties of CNT structures
because they lack the atomistic representation and appro-
priate constitutive relations that govern material behavior at
nanoscale. Hence, there is a need for the development of
new modeling techniques to accurately capture the mechan-
ical behavior of CNTs. Thus, nanomechanics continuum
theories that integrate continuum mechanics theories with
interatomic potentials of atomic and molecular structure
were developed. Equivalent continuum modeling (ECM)
approach is one of the major developments of continuum
method. It has been regarded as a very efficient method,
especially with nanostructures modeled at large scale. Molec-
ular mechanics combined with finite element method (FEM)
involving shell, beam, spring, rod, and combination of these
models form the framework of ECM approach. Over the
past years, many ECM models were presented in literature.
Atomistic-based continuum multiscale modeling techniques
were used to predict the mechanical behavior of CNTs
considering the interatomic interactions at nanoscale [7].
Li and Guo [8] proposed an equivalent continuum beam
model that is capable of modeling interatomic forces between
carbon atoms to compute effective elastic constant of CNTs.
The elastic constants of beam elements in a finite element
model were determined using a linkage between molecular
and structuralmechanics. An improved beam element, which
includes the bond inversion energy, is proposed by Lu and
Hu [9] to evaluate mechanical properties of graphene and
SWCNTs based on molecular mechanics. A finite element
approach based on molecular mechanics was proposed by
Sun and Zhao [10]. The chemical bond was simulated with

a two-node elastic rod element and an elastic joint at each
end. A tensile modulus of 0.4 TPa was found. Shokrieh
and Rafiee [11] investigated Young’s modulus of CNTs based
on a nanoscale continuum modeling by employing frame
elements to simulate C-C bonds. Another continuum model
that allows calculation of Young’s and shears moduli based
on structural mechanics combined with FEA was developed
by Muc [12]. Young’s moduli are derived from the natural
frequencies of CNT structures.These models assume that the
material is transversally isotropic.

Moreover, different kinds of atomistic finite elements
including rods, trusses, beams, and springs have been used to
model carbon-carbon (C-C) link in CNTs [6]. Giannopoulos
et al. [13] constructed a computational FE model to sim-
ulate the SWCNT using linear interatomic potentials for
C-C bonds. Meo and Rossi [14] developed a finite model
including both nonlinear elastic and linear torsional spring
elements to represent the modified Morse potential when
simulating SWCNTs. A full nonlinear finite element model
was developed using spring elements accounting for both
C-C bond stretching and C-C-C bond angle variations to
investigate the effect of chirality and the diameter on Young’s
modulus of SWCNT [15]. The elastic constants, Young’s and
shear modulus, of SWCNTs were numerically computed via
finite element method incorporating Poisson’s effect in the
estimation of Young’s and shearmodulus of SWCNT [16].The
numerically calculated values of Young’s and shear modulus
were approximately 1.046 TPa and 0.424 TPa, respectively, for
a SWCNT having a thickness of 0.34 nm.

In spite of the variety of theoretical studies, there still
remain differences in approaches and calculated values
regarding the effect of geometric structure of CNTs on
elastic constants, as evident by the wide scatter among elastic
constants reported in the literature. The objective of this
paper is to study the elastic behavior of single-walled carbon
nanotubes (SWCNTs) using amultiscale modeling approach.
At nanoscale, interatomic interactions among carbon atoms
are modeled by a structural beam in atomistic finite ele-
ment approach in conjunction with molecular structural
mechanics. At macroscale, an equivalent continuum mod-
eling method is proposed to compute directly the effective
elastic moduli of SWCNTs having different chirality and
configuration. The elastic constants, that is, Young’s modulus
and Poisson’s ratio, are calculated from the elastic moduli.

2. Atomic Structure of SWCNTs

Several methods to construct CNTs are reported in literature.
In a common procedure, CNT is built by rolling a graphene
sheet in two directions: a specific rolling direction and the
circumference of the tube cross section, as shown in Figure 1.
In general, two chiral indexes (𝑛,𝑚) are used to define the
configuration of carbon nanotubes, where (𝑛) normally is
greater than (𝑚). The nanotubes with (𝑛, 𝑛) are typically
labeled as armchair, while the structure with (𝑛, 0) is usually
labeled as zigzag. The translation vector, T, is parallel to the
tube axis and perpendicular to the tube chiral vector Ch. The
unit vectors of graphene sheet lie along two sequent “zigzag”
lines and are represented by a1 and a2. The vector a2 has
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Figure 1: Chiral vector defining the configurations and geometric
parameters of carbon nanotubes [3].

a different magnitude than a1 and when added together, they
equal the chiral vector Ch. A complete graphical description
of the variables and the relations governing the geometry of
SWCNT can be found in [17]. The following formulae are
used to define the diameter, 𝑑CNT, and the coordinate of 3-
D SWCNT:

𝑑CNT =

𝑎c-c√3 (𝑛
2
+ 𝑛𝑚 + 𝑚

2
)

𝜋

,
(1a)

(𝑋, 𝑌, 𝑍) = [𝑅 cos(𝑥
𝑅

) , 𝑅 sin(𝑥
𝑅

) , 𝑦] , (1b)

where 𝑎c-c is the bond length between carbon atoms, 𝑋, 𝑌,
𝑍 are the generalized coordinates of an arbitrary point in
nanotube, 𝑅 is the radius of nanotube (i.e., 𝑅 = 𝑑CNT/2),
and 𝑥, 𝑦 are the coordinates of graphene sheet.The properties
of CNTs are dependent on its structural configurations, the
number of the concentric layers, and their structural defect
and impurities. The present paper focuses on characterizing
the effect of geometric configuration on mechanical proper-
ties of SWCNTs.

3. Molecular Mechanics Theory

Molecular mechanics forms the basis for the developed
method to characterize the effective mechanical properties of
SWCNTs at macroscale. In a molecular structure of CNT, the
nuclei of carbon atoms in hexagonal arrangement are treated
as material points. The mechanics of the nuclei motion are
controlled via the force field generated by electron-nucleus
interactions and nucleus-nucleus interactions.This force field
is derived from the steric potential energy, which is a function
of the relative position of the nuclei in themolecule. However,
due to a very large difference in mass between electron
and nucleus of the carbon atom, the electronic-nucleus
interactions are neglected in atomistic analysis according to
Born-Oppenheimer approximation. Moreover, all thermal,
electromagnetic, and quantum effects are also neglected. The
interatomic potential depends on the relative positions of the
carbon nuclei in a deformed state and is defined as the sum

of all energies due to the interatomic interactions [18]. It can
be expressed as

𝑈
𝑡
= 𝑈
𝑠
+ 𝑈
𝑏
+ 𝑈
𝜙
+ 𝑈
𝜔
+ 𝑈VDW + 𝑈EL, (2)

where 𝑈
𝑠
is energy due to bond stretching, 𝑈

𝑏
is energy due

to the bond angle variation, 𝑈
𝜙
is energy due to dihedral

torsion, and 𝑈
𝜔
is energy for an improper torsion (out-of-

plane). The first four terms of (2) are known as bonded
energies. The last two terms are associated with van der
Waals and electrostatic interactions, respectively, and are
known as nonbond energies. Generally, for a covalent system,
bonded interactions have a dominant contribution in the
steric potential energy, while the effect of nonbonded terms
are negligible, which is also the case considered in current
study. Assuming small deformation of SWCNT, the motion
of material points can be approximated as a simple harmonic
motion. This is used to identify the component of energy
needed to define total steric potential energy in order to
develop atomistic-based continuum mechanics model for
determining elastic moduli of SWCNT. Accordingly, the
bond stretching and bending energies are defined as

𝑈
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, (3a)
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while the sum of the torsion related energies,𝑈
𝜏
, is defined as

𝑈
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𝜔
=
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𝑘
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𝜏
)
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, (4)

where 𝑘
𝑟
, 𝑘
𝜃
, and 𝑘

𝜏
are the bond stretching, bond angle

variation, and bond-torsional force constants, respectively,
and Δ

𝑠
, Δ
𝑏
, and Δ

𝜏
represent the change in the bond

length, bond angle, and twisting bond angle, respectively. It
is important to note that force constants are a direct measure
of the resistant forces that are obtained either from MD
simulation or from atomistic computation [18]. The total
atomistic energy in a SWCNT is found by summing the total
energies of individual bonds among all carbon atoms in the
deformed state and expressed as

𝑈atomistic =

𝑛𝑏

∑

𝑖=1

�̂�

𝑖

𝑡
;

�̂�

𝑖

𝑡
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𝑖

𝑠
+ 𝑈
𝑖

𝑏
+ 𝑈
𝑖

𝜏
,

(5)

where superscript “𝑖” refers to 𝑖th bond between C-C atoms
and 𝑛
𝑏
is the total number of bonds in the SWCNT. Each bond

is represented by a structural beam element as explained in
the following section.

4. Atomistic Finite Element
Modeling of SWCNTs

In this study, each carbon atom is considered as a material
point, which is modeled as a node in finite element model.
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Figure 2: Atomistic finite element model of SWCNT.

Hence, all carbon atoms are represented as nodes and all
C-C bonds are represented as beam elements, which form
the basic building blocks, as shown in Figure 2. The classical
structural 3D beam finite element, BEAM188, in ANSYS©,
a commercial finite element software, is used to model the
interatomic forces of the covalent bonds present between
carbon atoms.This element is defined by two end nodes with
each node having six degrees of freedom (i.e., 3 translations
and 3 rotations).

4.1. Geometrical and Material Properties. The coordinate of
all nodes in the atomistic finite element model is calculated
using (1b). The beam length, 𝑎c-c, is equal to the bond
length between carbon atoms in the hexagonal lattice in their
lowest energy state. The diameter of the beam is assumed
to be equal to the wall thickness of the nanotube. However,
different values of the wall thickness have been assumed in
the literature in order to find out the nearest values of the
elastic properties computed by other simulation methods.
In the present study, the material properties of the beam
with circular cross section are calculated using the force
field constants that are obtained for molecular dynamic
simulations, as will be explained later. A MATLAB© code
is developed to generate different configurations of SWCNT
that are used in this study. The generated script output files
are then imported to ANSYS© to construct a working finite
element model.

It is important to note that the required geometrical and
material properties of the beam element are determined by
equating themolecular potential energies, described by (5), to
strain energies of equivalent structural beam in the proposed
finite element model. No coupling is assumed among the
distinct types of stored energies due to stretching, bending,
and torsional deformations. As a result, equivalency of the
corresponding terms in two systems can be established. For
pure bending, the total strain energy in a uniform beam of
length 𝑎c-c subjected to a uniaxial force 𝑃 is given by

𝑈
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𝑠
=

1

2
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0
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2
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1
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(Δ
𝑠
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2

, (6)

where 𝑈𝑖
𝑠
is the strain energy of the 𝑖th beam element due to

axial stretch and 𝐸, 𝐴, and 𝑎c-c are Young’s modulus, cross-
sectional area, and length of the beam.This energy represents
the oscillation between two carbon atoms at atomistic scale.
Comparing (6) with (3a) gives

𝑘
𝑟
=

𝐸𝐴

𝑎c-c
(7)

equating the strain energy stored in the 𝑖th beam due to pure
bending deformation, which is the energy generated from an
angle change between two connected beams to atomistic level
energy (see (3b)). This can be expressed as
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,
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(8)

Following similar procedure for pure torsional deformation
yields

𝑘
𝜏
=

𝐺𝐽

𝑎c-c
. (9)

Algebraic manipulation of (7), (8), and (9) yields geometrical
and material properties of beam in terms of resistive force
constants as given below:

𝑑 = 4√

𝑘
𝜃

𝑘
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,
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𝑘
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2
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4𝜋𝑘
𝜃

,

(10)

where 𝑑, 𝐸, and 𝐺 are the diameter, Young’s modulus, and
shear modulus of the beam element. The typical values of the
bond length and the force constants used in current study
are 𝑎c-c = 0.1421 nm, 𝑘

𝑟
= 6.52 × 10−7N⋅nm−1, 𝑘

𝜃
= 8.76 ×

10−7N⋅nm⋅rad−2, and 𝑘
𝜏
= 2.78 × 10−7N⋅nm−1 [19, 20].

4.2. Loading and Boundary Conditions. Once the finite ele-
ment is developed with complete details of geometry and
material, a set of boundary conditions are needed to obtain
the solution. The solution in this case will depend on the
type of continuummodel considered at macroscale, which is
discussed in Section 5.Due to the hexagonal symmetry on the
cylindrical surface of the SWCNT, it is treated as transversely
isotropic material, with the plane of isotropy perpendicular
to the axial axis of the nanotube. A transversely isotropic
material requires five independent material parameters to
determine the entire set of elastic constants. Each one of
these material parameters is determined from a single set
of boundary conditions applied to SWCNT such that they
yield unique value of independent elastic constants. This
requires determination of atomistic energy in SWCNT under
single boundary conditions relevant to elastic constant under
consideration.

Five sets of boundary conditions considered in this
study are summarized in Figure 10. The steps used for finite
element analysis of SWCNT to calculate the total energy
are summarized in Table 1. The finite element model is run
separately for each set of boundary conditions. The SENE
label on the ETABLE command, in ANSYS©, is used to
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Table 1: Steps involved in the development of atomistic finite element of SWCNT.

Steps Task description

(1) Construct an atomistic finite element model of a SWCNT by rolling the graphene sheet of size (𝑛,𝑚) considering all required
parameters (e.g., physical and geometrical parameters).

(2) Represent carbon atom as a node and C-C bond as beam element in finite element model.

(3) MATLAB� software is used to generate the nodal coordinates with appropriate element connectivity for armchair and zigzag
SWCNT finite element model using (1a) and (1b).

(4) Import the generated script files to ANSYS software to construct the finite element model.
(5) Determine geometrical and material properties of beam finite element using (10) and then feed them to the FE model.
(6) Apply loading and boundary conditions for each loading case described in Figure 10. For every simulation run:
(6.1) Set the total energy to zero 𝑈

𝑖
= 0.

(6.2) Solve the FE model for the selected loadings and boundary conditions.
(6.3) Calculate the energy for every 𝑖th bond (i.e., 𝑈𝑖

𝑡
).

(6.4) Add this energy to the total energy for the selected loading case.
(7) Use the total strain energy, 𝑈atomistic, to calculate the elastic constants, 𝐶𝑖𝑗𝑘𝑙, for each SWCNT configuration.

z

Atomistic Continuum 
t

r

x

y
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Figure 3: Equivalent continuum solid models.

determine the energy of each individual C-C bond (beam
element). The summation of the energies of all bonds gives
the total energy stored in the SWCNT under prescribed
boundary condition. The total energy calculated from the
atomistic finite element model is then used to determine the
elastic constant based on energy equivalence as given by

𝑈continuum = 𝑈atomistic. (11)

5. Equivalent Continuum
Modeling of SWCNTs

As described in the previous section, the SWCNT is modeled
at atomistic level to determine the total strain energy in the
system subjected to prescribed loading/boundary conditions.
In this section we focus on developing an equivalent con-
tinuum model of SWCNT under the same prescribed load-
ing/boundary conditions. We assume that, at macroscale, the
SWCNT can be modeled as a hollow cylinder with unknown
effective elastic material moduli 𝐶

𝑖𝑗𝑘𝑙
, where 𝐶

𝑖𝑗𝑘𝑙
depends

upon type ofmaterial symmetry.The hollow cylinder is taken
as an equivalent continuummodel of SWCNT at macroscale
having an inner diameter of “𝑑CNT,” thickness “𝑡,” and length
“𝐿CNT,” in cylindrical coordinate system (𝑟, 𝜃, 𝑧), as shown in
Figure 3. A similar approachwas adopted to evaluate effective
mechanical properties of graphene sheets [30].

Assuming transverse isotropic material behavior, linear
elastic deformation, the generalized state of stress, 𝜎

𝑖𝑗
, in the

equivalent continuum model under given generalized strain,
𝜀
𝑘𝑙
, can be characterized using the following constitutive law:

𝜎
𝑖𝑗
= 𝐶
𝑖𝑗𝑘𝑙

𝜀
𝑘𝑙
, (12)

where 𝜎
𝑖𝑗
and 𝜀
𝑘𝑙
are second-order tensors of the stress and

strain, respectively, and 𝐶
𝑖𝑗𝑘𝑙

is the fourth-order elasticity
tensor. Incorporating the transversely isotropic symmetry,
the stress-strain relationship which involves five independent
moduli is reduced to

{
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of equivalent continuum model and 𝐺
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). It

can be also expressed in terms of the engineering constant as
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where 𝐸
𝑟
, 𝐸
𝑧
are Young’s moduli in the radial and axial

directions of the carbon nanotube, respectively, ]
𝑧𝑟

and ]
𝜃𝑧

are Poisson’s ratio in 𝑟-𝑧 and 𝜃-𝑧 plane, respectively, and 𝐺
𝑟𝜃

is the transverse shear modulus. The axial shear modulus,
𝐺
𝜃𝑧
, is derived from the elastic relation 𝐺
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𝑧
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The values of the elastic constants are derived by inversion of
𝐶
𝑖𝑗𝑘𝑙

, which can be deduced to
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)

(𝐶
2

13
+ 𝐶
11
𝐶
33
)

,

]
𝜃𝑧

=

𝐶
2

13
+ 𝐶
11
𝐶
23

(𝐶
2

13
+ 𝐶
11
𝐶
33
)

,

𝐺
𝑟𝜃
= 𝐶
66
.

(15)

The strain energy for the continuum is given by

𝑈continuum =

1

2

∫

𝑉

𝜎 ⋅ 𝜀 ⋅ 𝑑𝑉. (16)

Substituting (13a) and (13b) in (16) and integrating over
volume give

𝑈continuum =

1

2

𝑉
𝑜
𝐶
𝑖𝑗𝑘𝑙

𝜀
𝑖𝑗
𝜀
𝑘𝑙
=

𝑉
𝑜

2

[𝐶
11
𝜀
2

𝑟𝑟

+ 𝐶
33
(𝜀
2

𝜃𝜃
+ 𝜀
2

𝑧𝑧
) + 2𝐶

13
(𝜀
𝑟𝑟
) (𝜀
𝜃𝜃
)

+ 2𝐶
13
(𝜀
𝑟𝑟
) (𝜀
𝑧𝑧
) + 2𝐶

23
(𝜀
𝜃𝜃
) (𝜀
𝑧𝑧
)

+

1

2

(𝐶
33
− 𝐶
23
) 𝛾
2

𝜃𝑧
+ 𝐶
66
(𝛾
2

𝑟𝑧
+ 𝛾
2

𝑟𝜃
)] ,

(17)

where 𝑈continuum is the strain energy and 𝑉
𝑜
is the initial

volume of the equivalent continuum nanotube shown in
Figure 3. The calculation of elastic moduli (𝐶

11
, 𝐶
33
, 𝐶
13
,

𝐶
23
, and 𝐶

66
) requires solving five boundary value prob-

lems under a prescribed uniform (constant) infinitesimal
strain filed inside the SWCNT, which corresponds to prede-
fined essential-controlled boundary conditions on SWCNT
boundaries according to

𝑢
𝑖
= 𝜀
𝑜

𝑖𝑗
𝑥
𝑗
, 𝑖, 𝑗 = 𝑟, 𝜃, 𝑧, (18)

in which 𝜀𝑜
𝑖𝑗
is a prescribed uniform strain filed in the interior

domain, 𝑢
𝑖
is the corresponding displacement on boundaries,

and 𝑥
𝑗
is the coordinate of the boundaries.

Accordingly, five different distinct sets of loading cases are
required to solve the boundary value problems and each load
case is used to determine a corresponding elastic modulus at
a time. These loadings can be classified based on the type of
the deformation to uniaxial, biaxial, and pure shear loading.
Thus, each load casewill lead to a special formof strain energy
given in (17). In the first run (loading case # 1), 𝜀

𝑟𝑟
= 0.001

is specified and all other strains are assigned a zero value.
This translates a uniaxial deformation in the radial direction
prescribed on the tube boundaries, as shown in Figure 10,
while both tube ends are restricted from deforming in

the axial direction. According to (17), the stored energy in the
continuum model is reduced to

𝑈continuum =

𝑉
𝑜

2

(𝐶
11
𝜀
2

𝑟𝑟
) , (19)

from which 𝐶
11
is calculated directly. Similarly, in the second

run (loading case # 2), 𝜀
𝑧𝑧

= 0.001 is specified and all other
strains are assigned a zero value fromwhich𝐶

33
is calculated.

In the third run (loading case # 3), a uniform biaxial
displacement in the radial and circumferential direction is
applied to the tube.The values of 𝜀

𝑟𝑟
and 𝜀
𝜃𝜃
are fixed to 0.001,

while all other strains are assigned a zero value. The stored
energy in the continuum model for this case is reduced to

𝑈continuum =

𝑉
𝑜

2

(𝐶
11
𝜀
2

𝑟𝑟
+ 𝐶
33
𝜀
2

𝜃𝜃
+ 2𝐶
13
𝜀
𝑟𝑟
𝜀
𝜃𝜃
) , (20)

from which 𝐶
13

is calculated directly after substituting
obtained values of 𝐶

11
and 𝐶

33
. Likewise, in the fourth run

(loading case # 4), a uniform biaxial displacement in the
circumferential and axial direction is applied to the tube and
all other strains are assigned to a zero value from which 𝐶

23

is calculated.
In the fifth run (loading case # 5), a pure shear deforma-

tion is applied to the tube using 𝛾
𝑟𝜃
= 0.002. All other strains

are set to zero. In other words, an angular displacement is
prescribed on the tube circumference at one end, as shown
in Figure 10, while the other end is restricted from deforming
in the axial direction. The stored energy is then reduced to

𝑈continuum =

𝑉
𝑜

2

(𝐶
66
𝛾
2

𝑟𝜃
) , (21)

from which𝐶
66
is calculated directly. In summary the energy

of atomistic structure, for every run, is obtained by the
atomistic finite element analysis, as described in the previous
section, and equated to the corresponding strain energy of the
continuum solid as given by the special forms. Once the five
components of the elastic moduli are determined, the elastic
constants of the SWCNT can be calculated using (15).

6. Results and Discussion

The aforementioned methodology is applied to characterize
the elastic deformation of various configurations of armchair
and zigzag single-walled carbon nanotubes with a diameter
that varies from 0.8 nm to 3.1 nm and an aspect ratio ranging
from 5 to 30. Figure 4 shows atomistic FE models of (10,
10) armchair SWCNTs with different aspect ratios. Essential
boundary conditions as given in (18) are prescribed on
exterior edges of the carbon nanotubes to determine the
corresponding elastic modulus. Five sets of loading cases are
used to calculate the effective elastic moduli (𝐶

11
, 𝐶
33
, 𝐶
13
,

𝐶
23
, and 𝐶

66
), from which all elastic constants (𝐸

𝑟
, 𝐸
𝑧
, ]
𝑧𝑟
,

]
𝜃𝑧
, and𝐺

𝑟𝜃
) are determined. Table 2 shows elasticmoduli for

both armchair and zigzag nanotubes having an aspect ratio
equal to 20. The values of the axial shear modulus, 𝐺

𝜃𝑧
, are

also derived from the elastic relation 𝐺
𝜃𝑧

= 𝐸
𝑧
/2(1 + ]

𝜃𝑧
),

as is also shown in Table 2. It can be observed that, at low
aspect ratio, the elastic properties are strongly dependent on
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Table 2: Elastic properties of single-walled carbon nanotubes (AR = 20).

(𝑛, 𝑛) 𝑑CNT 𝐶
11

𝐶
33

𝐶
12

𝐶
23

𝐺
𝜃𝑧

Armchair
(6, 6) 0.814 2.124 2.124 1.184 1.137 0.493
(7, 7) 0.950 2.125 2.123 1.183 1.148 0.487
(8, 8) 1.086 2.126 2.123 1.182 1.156 0.484
(9, 9) 1.221 2.126 2.123 1.182 1.161 0.481
(10, 10) 1.357 2.126 2.132 1.190 1.169 0.482
(11, 11) 1.493 2.126 2.132 1.189 1.172 0.480
(12, 12) 1.628 2.126 2.131 1.188 1.173 0.479
(13, 13) 1.764 2.126 2.130 1.187 1.175 0.478
(14, 14) 1.900 2.126 2.130 1.186 1.176 0.477
(15, 15) 2.035 2.126 2.129 1.186 1.176 0.476
(16, 16) 2.171 2.126 2.129 1.185 1.177 0.476
(17, 17) 2.307 2.126 2.128 1.185 1.177 0.475
(18, 18) 2.443 2.125 2.128 1.184 1.178 0.475
(19, 19) 2.578 2.125 2.133 1.189 1.181 0.476
(20, 20) 2.714 2.125 2.132 1.188 1.181 0.476
(21, 21) 2.850 2.125 2.132 1.187 1.181 0.475
(22, 22) 2.985 2.125 2.131 1.187 1.181 0.475
(23, 23) 3.121 2.125 2.131 1.187 1.181 0.475
Average 2.126 2.129 1.186 1.171 0.479
Zigzag
(11, 0) 0.862 1.877 1.882 0.951 0.900 0.491
(12, 0) 0.940 1.872 1.875 0.946 0.904 0.485
(14, 0) 1.097 1.876 1.877 0.945 0.914 0.482
(16, 0) 1.254 1.878 1.878 0.945 0.920 0.479
(17, 0) 1.332 1.879 1.879 0.944 0.922 0.478
(19, 0) 1.489 1.881 1.880 0.944 0.926 0.477
(21, 0) 1.645 1.962 1.961 1.058 0.990 0.485
(22, 0) 1.724 1.890 1.888 0.947 0.934 0.477
(24, 0) 1.880 1.890 1.888 0.946 0.936 0.476
(26, 0) 2.037 1.948 1.946 1.036 0.983 0.482
(28, 0) 2.194 1.890 1.892 0.949 0.940 0.476
(29, 0) 2.272 1.943 1.945 1.030 0.981 0.482
(31, 0) 2.429 1.939 1.941 1.024 0.979 0.481
(33, 0) 2.585 1.890 1.891 0.948 0.941 0.475
(35, 0) 2.742 1.890 1.891 0.948 0.942 0.475
(36, 0) 2.820 1.890 1.891 0.947 0.942 0.475
(38, 0) 2.977 1.890 1.894 0.951 0.944 0.475
(40, 0) 3.134 1.890 1.894 0.951 0.944 0.475
Average 1.899 1.900 0.967 0.941 0.479

size and chirality. Nevertheless, it asymptotically converges
to a constant value for large diameter nanotubes. Also,
elastic constants are slightly larger for armchair nanotubes
compared to zigzag nanotubes, although the difference is
minimal.

Figure 5 depicts the variation in radial Young’s modu-
lus versus nanotube diameter at different aspect ratios for
both armchair and zigzag geometries, respectively. For the
armchair nanotube, as the diameter increases radial Young’s
modulus converges to a value equal to 1.274 TPa. Also, at

small diameters, a large variability in Young’s modulus exists
particularly at low aspect ratios (AR = 5–10). This variability
vanishes at large diameters. The zigzag nanotubes follow
similar behavior with an averaged converged value of radial
Young’s modulus equal to 1.252 TPa. The difference between
radial Young’s modulus for both geometries is approximately
2% where Young’s modulus of armchair is slightly higher
than the zigzag configuration. The figures also show that, for
diameters greater than 2.5 nm, there is no effect of aspect ratio
on 𝐸
𝑟
. Also, nanotubes with diameter less than 0.8 nm offer
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(a) (b)

(c) (d)

Figure 4: Atomistic FE model of (10, 10) armchair SWCNT with (a) AR = 5, (b) AR = 10, (c) AR = 20, and (d) AR = 30.
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Figure 5: Radial Young’s modulus for different aspect ratios (AR) of (a) armchair and (b) zigzag SWCNT.

no advantage over conventional metallic materials. However
between 0.8 nm and 2.5 nm diameter nanotube, one has to be
carefully selecting right configuration of nanotube, diameter,
and length, in order to exploit its strength potential.

Different behaviors of both configurations (armchair and
zigzag) in the axial direction exist, as shown in Figure 6.
For armchair, the axial Young’s modulus is higher at small
diameters and decreases as diameter increases until it con-
verges to a value of 1.261 TPa. The zigzag nanotube follows
similar behavior with an asymptotic axial Young’s modulus
equal to 1.284 TPa. Contrary to the previous case, there is a
small impact of aspect ratio on𝐸

𝑧
for both geometries at high

diameters. Similar argument of careful selection of diameter
and length, as discussed before, is also true for this case (0.8 ≤

𝑑CNT ≤ 2.5 nm).
It is worthwhile to mention that the difference between

calculated values of radial and axial Young’s moduli in either
case of armchair or zigzag nanotubes is negligible. This
observation confirms the isotropic behavior of SWCNTs
concerning stiffness as most researches have assumed with
respect to both geometric configurations.

Figure 7 shows the variation of out-of-plane Poisson’s
ratio, ]

𝑧𝑟
, with respect to carbon nanotube diameter and
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Figure 6: Axial Young’s modulus for different aspect ratios (AR) of (a) armchair and (b) zigzag SWCNT.
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Figure 7: Out-of-plane Poisson’s ratio for different aspect ratios (AR) of (a) armchair and (b) zigzag SWCNT.

aspect ratio for both armchair and zigzag geometries, respec-
tively. As depicted in figures, armchair and zigzag nanotubes
share a similar behavior; that is, ]

𝑧𝑟
is higher at low diameters

and decreases with increasing diameter till it converges
to values of 0.362 and 0.339, respectively. The decrease in
Poisson’s ratio is steep for diameter greater than 0.8 nm and
less than 2.5 nm for aspect ratio below 10, while the decrease
is gradual as aspect ratio increases for same range of nanotube
diameters. The in-plane Poisson’s ratio, ]

𝜃𝑧
, as shown in

Figure 8 behaves differently as it has lower values at small
diameters and increases with an increase in diameter till it
converges to 0.352 and 0.323 at high aspect ratio for armchair
and zigzag, respectively. One can notice a striking similarity
between out-of-plane and in-plane Poisson’s ratio (]

𝑧𝑟
and

]
𝜃𝑧
) for both armchair and zigzag configurations. The two

cases are a mirror image of each other at the whole range
of aspect ratio showing a large variation in Poisson’s ratio

especially in the range between 0.8 nm and 2.0 nm, as shown
in Figures 6 and 7.

Figure 9 shows the variation of shear modulus, 𝐺
𝑟𝜃
,

with respect to carbon nanotube diameter and aspect ratio
for both armchair and zigzag geometries, respectively. The
figures show that both armchair and zigzag nanotubes behave
similarly. Values of 𝐺

𝑟𝜃
are slightly higher at low diameters

and decrease till converging to 0.442 TPa and 0.467 TPa for
armchair and zigzag carbon nanotube, respectively. Also, the
radial shearmodulus, determined by loading # 5, matches the
calculated axial shear modulus, 𝐺

𝜃𝑧
, shown in Table 2. This

observation confirms the isotropic behavior of SWCNTs.
In order to examine the capability of current modeling

method to predict the elastic behavior of SWCNTs with
a reasonable accuracy, Table 3 illustrates a comparison of
current values of Young’s modulus, shear modulus, and
Poisson’s ratio with several corresponding experimental and



10 Journal of Nanomaterials

AR = 30

AR = 20

AR = 10

AR = 5

1.1 1.6 2.1 2.6 3.10.6
Carbon nanotube diameter (nm)

In
-p

la
ne

 P
oi

ss
on

’s 
ra

tio
,�

𝜃
z

−0.20

−0.10

0.00

0.10

0.20

0.30

0.40

(a)
AR = 30

AR = 20

AR = 10

AR = 5

1.1 1.6 2.1 2.6 3.10.6
Carbon nanotube diameter (nm)

In
-p

la
ne

 P
oi

ss
on

’s 
ra

tio
,�

𝜃
z

−0.15

−0.10

−0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(b)

Figure 8: In-plane Poisson’s ratio for different aspect ratios (AR) of (a) armchair and (b) zigzag SWCNT.
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Figure 9: Radial shear modulus for different aspect ratios (AR) of (a) armchair and (b) zigzag SWCNT.

theoretical predictions reported in the literature. As can be
observed, Young’s modulus and shear modulus are in a good
agreement with the published results. On the other hand, the
calculated values of Poisson’s ratio are on the high side when
compared to those calculated by other researchers which
show a wide range of variation.

7. Conclusions

In this study, an atomistic-based continuum modeling
approach is developed to calculate the effective elastic moduli
of SWCNTs based on energy equivalence between atomistic
model and continuum model. At low aspect ratio, Young’s
modulus values, as extracted from elastic moduli, show
strong dependence on diameter for both armchair and zigzag

configurations. Similar dependence of Poisson’s ratio on
geometric parameters of SWCNTs is confirmed. This effect
diminishes as aspect ratio increases where both elastic con-
stants become almost constant at high aspect ratios. Unlike
other works reported in the literature, current modeling is
capable of calculating elastic moduli (𝐶

11
, 𝐶
33
, 𝐶
13
, 𝐶
23
,

and 𝐶
66
) directly, from which elastic constants are extracted.

Results of Young’s modulus obtained in this study are in good
agreement with several published theoretical and experimen-
tal predictions; however, values of Poisson’s ratio are higher
than those obtained by other researchers. A big discrepancy
among estimated values of Poisson’s ratio as reported in
literature exists. Thus, further investigation is still needed.
Furthermore, contrary to several previous studies, current
modeling approach avoids assuming isotropic behavior (axial
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Figure 10: Loadings and boundary conditions on the atomistic FE model of SWCNT.
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Table 3: Comparison of Young’s, shear modulus, and Poisson’s ratio with other results available in the literature.

Study 𝐸 (TPa)∗ 𝐺 (TPa)∗ ]∗

Present study 𝐸
𝑟
= 1.260 ± 0.020

𝐸
𝑧
= 1.270 ± 0.020

𝐺
𝑟𝜃
= 0.450 ± 0.025

𝐺
𝜃𝑧

= 0.470 ± 0.025

]
𝑧𝑟
≈ 0.350 ± 0.025

]
𝜃𝑧

≈ 0.340 ± 0.025

Experimental methods
Krishnan et al. [2] 1.300 — —
Yu et al. [21] 1.020 — —
Hall et al. [22] — 0.410 —
Theoretical methods
Hernández et al. [23] 1.2400 — 0.256
Shen and Li [24] 1.2000 0.5000 0.16
Giannopoulos et al. [25] 1.2478 0.3245 —
Shokrieh and Rafiee [11] 1.042 — —
Rafiee and Heidarhaei [15] 1.325 — —
Ghavamian et al. [19] — ≈0.073–0.378 —
Sakharova et al. [26] 1.078 — —
To [27] 1.03 0.475 0.16
Huang and Rodrigue [28] 1.030 — 0.063
Wu et al. [29] 1.06 0.418 0.273
∗The values of 𝐸, 𝐺, and ] in the reported literature represent the values of 𝐸𝑧, 𝐺𝜃𝑧, and ]𝑧𝑟, respectively.

versus radial) of SWCNT. Instead, isotropic behavior was
confirmed based on output results. The presented results
demonstrate that the current multiscale-based model pro-
vides a valuable tool for prediction of elastic moduli of SWC-
NTs. Therefore, it will be extended in future to modeling of
thermal and mechanical behavior of MWCNT and SWCNT
based nanocomposites.
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