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Abstract. In this paper, in terms of an axisymmetric model has a resonance peak near the magnetic shell, the toroidal
of the magnetosphere, we formulate the criteria for whicheigenfrequency of which equals the frequency of the wave.

the Alfvén waves in the magnetosphere can be toroidally anckey words. Magnetospheric physics (plasmasphere; MHD

poloidally polarized (the disturbed magnetic field vector os- . o ; -
cillates azimuthally and radially, respectively). The obvious Xvﬂﬁlgstk?en(;jr;?stabnmes) Space plasma physics (kinetic and

condition of equality of the wave frequeneyto the toroidal
(poloidal) eigenfrequencf2ry (Qpn) is a necessary and
sufficient one for the toroidal polarization of the mode and
only a necessary one for the poloidal mode. In the latter;y |ntroduction
case we must also add to it a significantly stronger condition

Q7N —Qpn|/Qry > m™t, wherem is the azimuthalwave A great variety of Alfien waves has been recorded in the
number, andV is the longitudinal wave number. In cold magnetosphere to date. They are usually categorized into
plasma (the plasma to magnetic pressure ratie: 0) the  short-period (Pc 1-2 and Pi 1) and long-period (Pc 3-5 and
left-hand side of this inequality is too small for the routinely pj2) oscillations. Of these waves, the former represent waves
recorded (in the magnetosphere) second harmonic of radiyaveling along field lines, while the latter are standing waves
ally polarized waves, therefore these waves must have nonsimilar to vibrations of guitar strings. Standing waves have
realistically large values of.. By studying several models small longitudinal wave numbers (i.e. the number of half-
of the magnetosphere differing by the level of disturbancewaves fitting along a field line between magnetically conju-
we found that the left-hand part of the poloidality criterion gate points of the ionospherey, ~ 1, while traveling waves
can be satisfied by taking into account finite plasma Presyepresent packets composed of harmonics Wit 1. Re-
sure for the observed valuesaf~ 50 — 100 (and in some  cently, it has been customary to categorize the long-period
cases, for even smaller values of the azimuthal wave numpysations into azimuthally large-scale waves (the azimuthal
bers). When the poloidality condition is satisfied, the exis-\ave numbem ~ 1) and azimuthally small-scale waves
tence of two types of radially polarized ABn waves is pos-  (;; . 1). A physical substantiation for such a categoriza-
sible. In magnetospheric regions, where the funciy  tion is the difference of the sources of these two wave modes:
is a monotonic one, the mode is poloidally polarized in a Alfy en oscillations with smalk are generally thought of as
part of its region of localization. It propagates slowly across pejng generated by a magnetoacoustic wave arriving from the
magnetic shells and changes its polarization from poloidal togter boundary of the magnetosphere, and waves with large
toroidal. The other type of radially polarized waves can exist,, by some source inside the magnetosphere (Glassmeier,
in those regions where this function reaches its extreme val1995). Furthermore, long-period hydromagnetic waves in
ues (ring current, plasmapause). These waves are standifge magnetosphere are classed according to the predominant
waves across magnetic shells, having a poloidal polarizatiomolarization (Anderson et al., 1990): azimuthally polarized,
throughout the region of its existence. Waves of this type areyr toroidal if the magnetic field vector oscillates in an az-
likely to be exemplified by giant pulsations. If the poloidality jmythal direction, radially polarized, or poloidal if the mag-
condition is not satisfied, then the mode is toroidally polar- netic field vector oscillates in a radial direction, and com-
ized throughout the region of its existence. Furthermore, itpressional if there is a significant disturbance of the magnetic
field modulus (within the linear approximation, this signifies
Correspondence tdD. Yu. Klimushkin the presence of a longitudinal component of the wave’s mag-
(kKlimush@iszf.irk.ru) netic field). The question is how these categorizations are
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correlated, i.e. under what conditions the waves with partic-cies of poloidal and toroidal oscillations (Krylov et al., 1981,
ular values ofn can have a particular polarization. Walker, 1987). A study of the global structure of the wave
Usually, this question is given a very simple answer: whenwas carried out by Leonovich and Mazur (1993), Klimushkin
m ~ 1 the Alfvén wave is predominantly toroidally polar- et al. (1995), Kouznetsov and Lotko (1995), Vetoulis and
ized, and whenn > 1 its polarization is predominantly Chen (1996), and Klimushkin (1998a, b). However, the ques-
poloidal. This conclusion is in general agreement with exper-tion still is: What are the conditions and magnetospheric re-
imental data. A theoretical substantiation for this conclusiongions where Alfen waves can have particular polarization
is the solution of the MHD equation in dipole geometry in properties? This question is addressed in the present paper.
two limiting cases: whem = 0 the mode is purely toroidal, This study is based on using an axisymmetric model of
and wherm = oo, it is purely poloidal (Dungey, 1967; Ra- the magnetosphere, taking into account all of the above-
doski, 1967). Nevertheless, the large value of the azimuthamentioned factors. Plasma pressure is considered small but
wave number cannot be recognized as a sufficient conditioriinite. The presence of the plasmapause and ring current is
for the poloidal polarization of the Alén wave. Krylov et  taken into account. Our treatment is based on the equations
al. (1981) showed that both toroidal and poloidal modes carof ideal magnetohydrodynamics, which leads us to exclude
have both low and large: values. For example, at amy storm-time compressional Pc 5 waves from our considera-
in a plasma that is inhomogeneous across magnetic shells, &bn, as there are grounds to believe that they are mirror
a certain frequency of the wave there is a surface on whichmodes (Woch et al., 1988), an understanding of which re-
the wave field has a singularity accompanied by the toroidalquires to leave the ideal MHD.
polarization of the mode (Krylov and Lifshitz, 1984; Wright ~ This paper is organized as follows. Section 2 provides a
and Thompson, 1994). system of equations describing MHD waves in plasma of fi-
Leonovich and Mazur (1990) noticed one paradox whichnite but low pressure. In Sect. 3, the frequencies of toroidal
called into question the very existence of poloidal modes.and poloidal oscillations are studied analytically and numer-
The paradox is as follows. The eigenfrequency of poloidalically. It is also established in this section that the longitu-
oscillations varies across magnetic shells. In order for thedinal structure of these modes fr ~ 1 differs little from
mode to be poloidally polarized, it is necessary that the wavesach other. Based on this fact, in Section 4 we derive an ordi-
frequencyw equals the eigenfrequency of poloidal oscilla- nary differential equation describing the structure of the wave
tions. This means that the poloidal mode is concentrated onlyacross magnetic shells. This equation is solved in Sect. 5. In
on the magnetic shell where these frequencies are equal. I8ect. 6, we summarize our knowledge of the conditions of
this case, however, the radial component of the wave vecthe toroidal and poloidal polarization of Alén waves and
tor must be equal to infinity, as well as the azimuthal com-carry out a comparison with experimental data. The main
ponent, the role of which is played by the numler On results of this study are summarized in Sect. 7.
the other hand, in order for the An wave to be poloidally
polarized, it is necessary that the radial wavelength exceeds . )
significantly the azimuthal one. 2 Basic equations

To resolve this paradox, Leonovich and Mazur (1990) in- First, we introduce the following designations: the capital

vestigated the wave field structure by assuming that the WaVe,ors B P and J stand for the equilibrium values of the

frequency differs little from the poloidal eigenfrequency. o
They showed that the wave'’s transverse structure is describeréllegneuc field, pressure and current, the small lettepsand

by the Airy equation, the solution of which has the form of a J denqte the V\_/ave-assomated perturbations of thes_g q_uantl-

g : . . ties, £ is the displacement of plasma from the equilibrium
wave outside of the poloidal surface. The mode is poloidally "' > ) o L ,

. . . . osition, p is equilibrium plasma density is the wave’s
polarized if the radial wavelength far exceeds the azimuthal o : o
: o e - electric field, andv is the wave frequency. These quantities
wavelength. This condition is satisfied at sufficiently large .
. . are related by the relation
values of the azimuthal wave humber Hence, the poloidal
mode does exist, but it is not localized near the only one magv p = (47)"1J x B 1)
netic shell but is more-or-less widely distributed in space. N ] o
This example shows that studying the polarization of the(condition of hydromagnetic equilibrium),

mode necessarily Iegds to the_: stL_ld)_/ of its global structure.; _ ¢ » g j=Vxb )
Of course, such an investigation is important per se, espe-
cially now that the system of four CLUSTER satellites holds (Ampere law),
much promise for the separation of the spatial and tempo- b—cV x E 3)
ral structure of the mode (Glassmeier et al., 2001). When @° = ¢
studying the structure of the toroidal and poloidal modes, it(Maxwell equation),
is appropriate to take into account the plasma inhomogene- )
ity not only across magnetic shells, but also in the direc-g — _25 % B (4)
tion along the external magnetic field, and, in addition, the ¢
field line curvature and finite plasma pressure, because alffreezing-in condition). We consider the hydromagnetic
of these factors affect the difference between the frequenwaves in those magnetospheric regions where the plasma to
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magnetic pressure rati8 = 87 P/B? is much less than wheree;; = B/B. In a homogeneous plasma, the “poten-
unity. In these regions equilibrium plasma pressure acrossials” ® andW¥ describe the electric field of the Alén wave
and along field lines differs no more than by 20% (Lui and fast magnetosound (FMS), respectively (Klimushkin,
and Hamilton, 1992; Michelis et al., 1997); therefore, the 1994; Glassmeier, 1995). Regarding the third MHD mode,
anisotropy of the pressure tensor can be neglected. The prestow magnetosound, it can be neglected for plasmas with
sure perturbation can then be found using the adiabaticitys « 1. Let all perturbed quantities in Eq. (6) be expressed

condition, the linearized form of which is written as in terms of the wave’s electric field written as Eq. (7). In
obtaining the equations relating and W at finite but small
p=—§-VP—yPV-§ (5)  pressure, we shall neglect the second and higher degrges of

By letting the operatov | act on the left-hand and right-hand
sides of Eq. (6) (i.e. by taking its divergence from transverse
coordinates), in view of Egs. (1) — (5) we obtain the equation:

(Kadomtsev, 1963). A linearized equation of small
monochromatic oscillations in plasma has the form

—pw2§+vp=i1xb+ijx3. (6) La®+ L.V =0. (8)
4 47

We now introduce a curvilinear coordinate system Here Ly is the Alfvén operator defined as
{x1, x2, x3}, in which the field lines play the role of coor- . . -
dinate linesx3, i.e. such lines, along which the other two L4 = ~01L7(@)d1+m"Lp(w),
coordinates are invariable (recall that the superscripts an@vhereiT is the operator of the toroidal mode,
subscripts denote counter-variant and covariant coordinates,
respectively). In this coordinate system the stream lines are_ 22 NG w2
coordinate lines2, and surfaces of constant pressure (mag-L7(w) = 93—=093 + o A2
netic shells) are coordinate surfacgs= const. This coor- v &1
dinate system is orthogonal f - B = 0 (Salat and Tataro- (here,A = B/./Amp is the Alfvén velocity) andZ. » is the
nis, 2000). The coordinatest andx? have the role of the opera,tor of the poloidal mode
radial and azimuthal coordinates, and we shall use the Mcll- '
wain parametell and the azimuthal angle, respectively, g1 NG ( w2 )
to represent them. The physical length along a field line isLp(w) = 93—=03+~— | -5 +n |,
expressed in terms of an increase on the corresponding coor- g g2 \A4
dinate asils = ./gadx3, wheregs is the component of the

~

: , . T . where
metric tensor, anq/g3 is the Lang coefficient. Similarly,
dly = Jg1dx', anddl, = . /g2dx?. The determinant of the 2 (7 242
metric tensor i = g1g2g3. n=-%\z + A 9

This paper considers the axisymmetric model of the mag-
netosphere. In this case all perturbed quantities can be spegy g is the local curvature of a field line, and= /y P/p is

e . . . 2 : A . e
ified in the form exp—iwr + ikox©), wherek; is the az-  he sound velocity... in Eq. (8) is the operator describing
imuthal component of the wave vector. If the azimuthal an-he EMS influence on the Alsn mode

gle ¢ is used as the coordinai®, thenk, = m, wherem

is the azimuthal wave number. The “physical” value of the , . 2

azimuthal component of the wave vectorkis = kp/,/gz. ~ Le =im <3lﬁ>

Unlike ko, the value ofk, depends on the radial and longi-

tudinal coordinates, because such a dependence is contained [3133233£,-m — img 2t 9382 31}

in the component of the metric tensgy; in the equatorial NFEVE NGNS

planeka(L, x3)) =ka/L =m/L in particular. _ _
An important consequence of Eg. (6) is the smallness Jgz 2

of the longitudinal component of the plasma displacement

vector when compared with its transverse component wherfA | = 91(g2/./g)91 — mz(gl/ﬁ) is the transverse Lapla-

B < 1. Within the approximation of ideal plasma conductiv- cian). This equation describes the Adfv wave excited by

ity, the longitudinal component of the wave’s electric field is FMS (a phenomenon that is often called the field-line reso-

zero, i.e. the electric field is a two-dimensional one; it lies onnance).

surfaces orthogonal to field lines. According to the Helmholz  The second equation that relates the potenttalsnd W,

theorem (see, for example, Morse and Feshbach, 1953), agan be obtained by taking the longitudinal component of the

arbitrary vector field can split into the sum of the potential curl of Eg. (6):

and vortical components. By applying this theorem to a two- _ R

dimensional fieldE, we put LrV +LI® =0. (10)

E=-V, ®+V] xe)V, (7 Here,L ¢ is the operator of the fast mode equal to
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The operatorﬁgL (Hermitian conjugate to the operatdg)
describes the back influence of the Affvmode on FMS.

In the limiting case of a homogeneous plastha, L} =
0, and Eq. (8) becomes

(@? — k3AH® = 0.

This equation has an nontrivial solution when the dispersion
relation of the Alf\en wave holds. It is for this reason that we
refer to the potentialb as a function describing the Alén

wave field. Equation (10) for homogeneous plasma has th

form

(@ — kfA? — k3 A% — k3sPHW =0,

i.e. the nontrivial solution exists provided that the dispersion

relation for FMS in a plasma with & 8 « 1 is satisfied.
Thus, the potentiall describes the field of the fast magne-
tosound.

For a further understanding of this system, we invoke the
only conceivable method of analytical research, pfarturbatioriq

theory. To do this, assume that the operaﬁncrsmdL;r are
small when compared with the operatdtg and L (see

also Fedorov et al., 1998). This is true if the scale of vari-

ation of equilibrium magnetospheric parameterso which
the operatord., and L are inversely proportional, far ex-
ceeds the scales of variation of the functigmandW. This
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concern is primarily with the Alfén mode, whereas FMS is
of our interest only because it is its source. Following per-
turbation theory, it is the solution of the homogeneous mag-
netosound equation which should be substituted, to represent
W, into the Alfvén Eq. (8). For a qualitative study of the par-
tial solution of the inhomogeneous magnetosound equation,
it is worthwhile to note that the region of localization of the
Alfv én mode, at large: on the right-hand side of the equa-
tion, is dominated by the transverse Laplacignp. It is this
operator, however, which defines the longitudinal (compres-
sional) component of the wave’s magnetic field; as can be
readily ascertained using formulas (3) and (7),

lCl

by =
9182

AW,

The potential of the Alfén mode is not involved in the defi-
nition of the longitudinal magnetic field. However, the trans-
verse Laplacian in the preceding formula is expressed in

éerms ofd, i.e.

cm 1 Ry
w /8182 2

Thus, the coupling of FMS with the AlBn mode in an inho-
mogeneous magnetic field gives rise to a marked longitudinal
component of the magnetic field in the region of localiza-
tion of the Alfven wave; see also (Safargaleev and Maltsev,
1986). As far as the electric field and the transverse compo-
ents of the FMS magnetic field are concerned, they are lost
at the background of the corresponding components of the
Alfv én wave because, as can be readily demonstrated,

b = (11)

U~ Bm 1o « .

Note that magnetosound must not necessarily be the
source of the Alfén wave. In particular, whem > 1 this

assumption looks rather natural, since it is well known thatmode can be neglected altogether, i.e. its transparent region is
near the Alfién resonance surface there occurs a singularityvery narrowly localized at the magnetopause (Leonovich and

of the wave field, and the functio® changes quite drasti-

Mazur, 2001). That is why it is usually believed that high-

cally within a very short distance; moreover, the character-waves must be excited by a source inside the magnetosphere.

istic radial wavelengtta/m whenm > 1 is much smaller

Currents in the ionosphere (Leonovich and Mazur, 1993) and

than the characteristic scale of space plasma inhomogeneigtirrents in the magnetosphere (Saka et al., 1992) can play the

(or, roughly speaking, the size of the magnetosphere).

role of such a source. We now introduce the functjdo de-

First, we turn our attention to Eq. (10). Formally, it may be Scribe all possible sources of the Aty mode. Equation (8)
treated as an inhomogeneous differential equation, the gerinay then be written as

eral solution of which is the sum of the solution of the ho-

mogeneous equation and a partial solution of the inhomoge-

LT (0)01® — m?Lp(w)® = gq. (12)

neous equation. The solution of the homogeneous equation
describes the FMS structure without taking into account the3  Toroidal and poloidal modes

interaction with the Alfién mode. The solution of this equa-

tion in cold plasma was addressed in papers of Lee (1996)As is evident from the expression (7), when the condition
and Leonovich and Mazur (2000a, b; 2001), who establishedo1®/,/g1| > Im®/./g2| is satisfied, the electric field of
that at low frequencies the FMS transparent region lies at thehe Alfvén wave is dominated by the radial component; oth-

edge of the magnetosphere, andraBicreases, it is pressed

erwise the azimuthal component is dominant. On the con-

even more strongly to the magnetopause. This solution doesary, in the former case the main contribution to the wave’s
not contain any singularities. Obviously, the influence of magnetic field is made by the azimuthal component; in the
small pressure implies merely a slight change in the shapdatter case the radial component makes the main contribu-

of the FMS transparent region.

In this paper, however, outtion. The wave structure in the former case is determined by
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the toroidal operator, and by the poloidal operator in the lat-
ter case. Lefy and Py denote the eigenfunctions of these
operators. These functions alone do not describe the global -
structure of the mode because they are not the solution ofc
Eqg. (12), but they have the role of “scaffolding” for solving

Eq. (12), as will be described in Sect. 4.

Let Q7y and Qpy denote the eigenfrequencies of the
toroidal and poloidal operators. The difference between )|
these eigenfrequencies is often referred to as the polarization
splitting of the Alfven oscillation spectrum. These quanti-
ties are functions of the radial coordinate. Plasma pressure
influences the value af27y, as well as ofQ2py, because
the definition of both the toroidal and poloidal operators in-
volves the coefficients of the metric tensor determined by the
equilibrium magnetic field, which, in turn, depends on the
current, i.e. on the derivative of pressure along the radial co
ordinate. However, pressure is involved explicitly only in the
definition of the operatoL p in terms of the quantity. For
that reason, taking it into account has a greater influence on
the value of2 py compared with27 .

Further, we introduce the notion of the toroidal and
poloidal surfaces defined by the equations

Fig. 1. The graphical solution of Egs. (13 and 14): determination
of the positions of the toroidal and poloidal surfaces in terms of the
wave frequency and the function®y v (x1) andQ2py (x1).

whereLg is the coordinate of the magnetic shell, on which

pressure reaches its maximum value, dnds the parame-

ter that determines the characteristic width of the pressure

QTN(xl) =w (13) profile. The coordinate of maximum pressure is taken to be

Lo = 3.5 in the three models. We piit = 2 in model | and

D = 2 in model I, in an attempt to reflect the fact that the

Qpn (D = w. (14)  higher the level of magnetic disturbance, the narrower the
) ) . o localization of the current across the magnetic shells (Sug-

The graphical solution of these equations is illustrated byiura, 1972 Lui et al., 1987: Lui and Hamilton, 1992: Miche-

Fig. 1. ) ) ) . lis et al., 1997), which is related to pressure by the relation
Let us designate the distance between toroidal and poImdaﬂl)' For model Ill, we tookD = 0.7, because in this case
surfaces in the equatorial plane &g (v) = Xin=%pn-BY e take into account the strong current inside of the plasma-

the order of magnitude, this value is pause (Williams and Lyons, 1974). It is worth noting that

accorging to observational data (Sugiura, 1972) there is no

jump of plasma pressure on the plasmapause. Figures 2a and
TN b present the radial profiles of pressuteand the current

(see Appendix A). The noncoincidence of the toroidal andfor models I, 11, and IIl.

poloidal surfaces is caused by the polarization splitting of  As far as the quantity is concerned, its specification is
the spectrum, i.e. ultimately, by the field line curvature. Thusequivalent to specifying the paramet@ron the shell with
the magnetospheric model under study now involves a pathe coordinate.o. In this case we started from the fact that
rameterAy which has no analog either in a homogeneousthe higher the level of magnetic disturbance, the higher the
plasma or in the one-dimensionally inhomogeneous modepressure, in general. Accordingly, in model Il the maximum
with straight field lines. value of beta must be higher than that in model | and lII.
To study the functiongy and Py and calculating the fre-  We chose the following numerical values. We put the value
quencies2ry andQpy and the coordinates of the toroidal of the plasma parameter on the L-shell of maximum pres-
and poloidal surfaces, we avail ourselves of the fact thatsureg(Lq) = 0.055 for models Il and Ill, an@(Lg) = 0.4
when g « 1 the difference in the magnetosphere from afor model I. This parameter is plotted in Fig. 2c. Plots of
dipole one can be neglected. We considered three models @he value ofy, that determine the polarization splitting of
magnetospheric plasma: model | corresponds to a low levelhe spectrum at finite pressure according to formula (A5)
of magnetospheric disturbance when a significant time hasre presented in Fig. 3. Note that these figures plot the val-
elapsed after the storm; model Il corresponds to a high levelies of these quantities in the equatorial plafeandy de-
of disturbance, and model Ill which also corresponds to acrease rapidly with the distance from it, because, by virtue of
low level of disturbance but when a short time has elapsethe MHD equilibrium condition, plasma pressure is constant
after the storm. We approximated the plasma pressure by thglong a field line, whereas the magnetic field depends on the
expression geomagnetic latitude of theta as

and

2
TN — QPN (15)

Lo— L
P="h [1 - tam?( D )} ’ B®) « f5(0). f50) = 1+ 3sif0)Y2cos®0.
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Fig. 2. Profiles of plasma pressui® (a), the equilibrium current/ (b) the equatorial value o8 (c), and the Alf\en velocity A in the
equatorial planéd) for models |, Il, Ill. Pressure and current are shown in arbitrary units; they are normalized in terms of the v&lue of
WhenJ > 0, the current flows in the eastward direction, whier 0, the current flows in the westward direction.

0.2
0
-0.2

N, [Re7]

-1.2 -

Fig. 3. Plot of the functiony (x1) in the equatorial plane for models

less, no calculations were performed for such regions. Note,
by the way, that for the polarization splitting of the spectrum
(Eq. Ab) the value of) (which is proportional to the parame-
ter B) is involved just in the form of an integral along a field
line.

The function that approximates the A#fu velocity profile,
with the plasmapause taken into account, was taken from a
paper of Leonovich and Mazur (2000b), with minor modifi-
cations:

A 1 A L1\¢ LA Lo\ 1A
217\ L \L 2"t
L1\t Lo\ L—-L
L L D,y
whereA; = 250km /s, Ao = 500km /s, L1 = 2.5, Ly = 5,

c1 = 15, c2 = 1. The parameteD,, = 0.1 determines
the width of the plasmapause, and the quantify, deter-

Noteworthy is the fact that in some regions of the magneto-mines its coordinate. Since, with increasing magnetospheric
sphere (especially in model Il and I11) the conditify, <« 1
is violated. Even in such regions, however, the field line- (see, for example, Chappell et al., 1970), we pyt = 5.5

averaged value of is small compared to unity. Neverthe- for models | and Ill, and.,, = 3.0 for model II. Figure 2d

disturbance, the magnetopause is displaced toward the Earth
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L, [Re L, [Rel

Fig. 4. Toroidal 7y = Q7y(x1)/27 and poloidalfpy = Q2px (x1)/27 frequencies whew = 1, 2 for model |.

f,, [mHz]

e ( cola}\
1 f p2 (hot)

L, [Rd]

Fig. 5. Toroidal frny = QTN(xl)/er and poloidalfpy = QPN(xl)/Zn frequencies whew = 1, 2 for model II.

presents the radial profile of the Alm velocityA for models
[, 1, 1.

It must be added that the models which we have used do
not even reach the limit of the whole variety of conditions in
the magnetosphere. Even at the same value okthandex,
the profiles of equilibrium quantities can be quite different;
situations are possible with several plasmapauses, with the
maximum of pressure shifted onto the outer L-shells, etc.
Numerical values in these formulas can also be open to ar-
gument. Nevertheless, these models are, in a sense, extreme
ones and permit the value of the poloidal and toroidal eigen-
frequencies to be judged qualitatively in some limiting and
most interesting cases.

25 3 3.5 4 45 Results of our calculations of the frequencies are shown
L, [R{] in Figs. 4-6 (to ease the comparison with observational data,
the frequenciesrn py = Qry, pn/2m are presented); for
Fig. 6. Toroidal fry = Qrn(1)/27 and poloidal fpy = the purposes of illustration we also give the values of these
Qpy (x1)/27 frequencies whew = 1 for model 111, quantities in a cold plasma f@ = 0. We note once more
that for models Il and Ill, we studied only those regions
whereg « 1, otherwise we violate the limits of applicability

f1, [mHz]
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of our theory. As is evident, pressure has quite a substantidl and Ill, this conclusion remains valid. Based on the fact of
influence on the value of the poloidal frequency. For the fun-the small difference in the functiorfg, (x3) and Py (x3) that
damental harmonicN = 1), at positive values aof, the dif- determine the longitudinal structure of long-period Afv
ference of the poloidal and toroidal frequencies is considerwaves, in the next section we shall bring the partial differen-
ably higher than that in a cold plasma, and whea 0, pres-  tial Eq. (12) to an ordinary differential equation, describing
sure leads to a change in the sign of the polarization splittinghe structure of the wave across magnetic shells.

of the spectrum in some regions of the magnetosphere (as The question arises as to whether it is possible to ex-
is evident from Figs. 4 and 5; in a cold plasma the poloidaltend our results to a more general case where the inequal-
frequency is always less than the toroidal frequency). Withity 8 « 1 does not hold. Klimushkin (1998a) studied the
an increase in the harmonic number, the polarization splitstructure of MHD waves for arbitrarg, but withm > 1.
ting of the spectrum decreases, but much more slowly tharrhere exist two modes of MHD oscillations in that limit: the
in the case of zero pressure. For the second and higher hapify én mode and the slow magnetosound mode (SMS); in
monics, the curve®r y (x!) andQpy (x?) in a cold plasma  them > 1 case fast magnetosound (FMS) can be neglected
practically coinside, whereas in the presence of pressure th@vhereas at this point we consider arbitrary but 8 < 1,
differenceQry — Qpy is quite pronounced, even fof > 2 so Alfvén mode and FMS exist, but SMS is unimportant).
(the plots forN > 2 for models | and Il and foV > 1 for  The coupled Alfén and SMS modes are described by the
model Ill are not given here, to save room). Notice also thesystem of Egs. (36) and (37) of the cited reference. A study
appearance of additional extrema of the functiyw (x1) i of this system showed that whgh~ 1, in addition to the
models Il and Il in regions of strong current which are not Alfv én resonance surface (toroidal surface), there arises the
accompanied by extrema of the functi® v (x1); inacold  SMS resonance surface, with which one more poloidal sur-
plasma, the extrema of these two functions occurred at thgace is associated. It is easy to show, however, than when the
plasmapause only. toroidal frequency far exceeds the SMS resonance frequency,
It is also of interest to investigate the functiong (w) for the equation, corresponding to the Adfv, reduces approxi-
different N, for different models. Here we confined our- mately to Eq. (12) of this paper, but with no terms containing
selves only to model | and Il (Figs. 7 and 8). Figure 7 ¢ (the absence of these terms is, of course, accounted for
shows that in model |, plasma pressure makes the poloidapy the fact that they are responsible for the FMS which is
surface shift to more distance magnetic shells compared t@bsent in the limitn > 1). Further, numerical calculations
the toroidal surface, whereas in the cold plasma case th@erformed by Cheng et al. (1993) and Lui and Cheng (2001)
poloidal surface is always closer to the Earth than the toroidakhowed that the SMS resonance frequency is indeed much
surface. Furthermore, whe¥i = 1, even in cold plasma, the |ower thanQ27y (and the cited authors did not introduce the
value of Ay is relatively large, so that plasma pressure canjimitation 8 <« 1). The reason seems to lie in the above-
contribute to a decrease in the distance between the toroidghentioned fact that even if at the equagyy ~ 1, at high
and poloidal surfaces (see Fig. 7a, b). But, on the other handatitudes beta decreases rapidly, due to the crowding of field
whenN = 2 in cold plasma this distance is very small, and lines. Hence, we can conclude that the Eq. (12) describes
pressure contributes greatly to its increase. In model Il (segyualitatively the Alfen waves, even i, g <1
Fig. 8) pressure generally increases the width of the interface
between the toroidal and poloidal surfaces, and it shifts the
poloidal surface even closer to the Earth than it does in cold . i
plasma (although its behavior may be the opposite for higher4 The eq_uatlon for the Alfven wave structure across
frequencies). magnetic shells

Thus, we can draw the following general conclusion: usu- ] ) o
ally, pressure contributes to an increase in the polarization N€ toroidal and poloidal modes are two limiting cases of

splitting of the spectrum and, hence, to an increase in the\fvén waves in the magnetosphere. If their longitudinal
distance between the toroidal and poloidal surfaces. structure differs little from one another, then it can be sug-

We now turn our attention to the question of the toroidal gfasted .that the Iongitudil_wal structl_Jre _of field line oscillations
and poloidal eigenfunctions. Using the WKB approxima- differs little from the toroidal function in the general case as
tion in longitudinal coordinate it is possible to find that when Well- Then® may be represented as
N > 1, even in a cold plasma, these functions differ rather
strongly from one another (Leonovich and Mazur, 1993). ® = Ry (x) Ty (x1, x3) 4 sy, (16)

At small N, the form of the functiongy (x3) and Py (x3)

can only be determined numerically, but it is the waves withwheres®y is a small correction. Let us assume that the
small N which manifest themselves in the form of geomag- Alfvén wave is sufficiently narrowly localized across mag-
netic Pc 3-5 pulsations addressed in this paper. Results afetic shells, and the regions of localization of differémt

our calculations of these functions far = 1, 2 for model | harmonics do not cross each other. Since the characteristic
are presented in Fig. 9. It is evident from the plots that for scale of variation of the functiofiy across magnetic shells
the first two harmonics, the differences between the poloidakoincides by the order of magnitude with the scale of varia-
and toroidal eigenfunctions are reasonably small. In modelgion of the equilibrium parametets(roughly speaking, with
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Fig. 7. Distance between the toroidal and poloidal surfatgsw) for model I: (a) inside the plasmasphere whah= 1, (b) outside the
plasmasphere whes = 1, (¢) inside the plasmasphere whan= 1, and(d) outside the plasmasphere wh&n= 2.
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Fig. 8. Distance between the toroidal and poloidal surfatggw) for model 1l outside the plasmasphef@) whenN = 1, and(b) when
N =2

the size of the magnetosphere), we can formulate a Iimitationcfﬁ of the intersection of a field line with the ionosphere; in
on the functionR y: doing this, we neglect small terms:

: 7)  o1@? - Q2 y)nRy —m?Ry (TwLp@Tv) = (Tvg). (18)

1 1 ‘ 1 1.3
— 3 RN(x )| > |— 0Ty (x", x°)
RN Tn

To determine the radial structure of the wave specified byThe derivation of this equation was based on using the nor-
the functionRy, we use the method of successive approx-malization conditions for the functiofiy (Eq. A2) and the
imations by treating the deviation of the functidn from Hermitian character of the operatby-.
the toroidal function as a small perturbation. We substitute We transform the second term on the left-hand side of
Eq. (16) into Eq. (12), multiply the resulting expression by Eq. (18) by making use of the Hermitian nature of the
Ty and integrate along the field line from the poiit to operator Lp and introducing a difference between the
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Fig. 9. Toroidal Ty and poloidalPy eigenfunctions whew =1, 2 Fig. 10. Plot of the functionK 7, an analogy of the physical value of
(model I, L = 6). the wave vector azimuthal component, wher= 1, andN =1, 2.

For comparison, the plot of the functiofiZL is shown.

toroidal and poloidal eigenfunctio = Py —Ty: , . . . .
! polol Igenfunctionsy N N 5 Alfven waves with the toroidal and poloidal polariza-

tion in different regions of the magnetosphere

2
A g T A
<TNLP(0))TN>= i% (wz_Q%N)+<¢NLP(QPN)¢N>- _ _ ) .
g2 A At this point we introduce the quantityy = KyAy, the
number of azimuthal wavelengths fitting into the transparent

Since the value oy is assumed small, the second term on regions. Since the estimation (Eq. 15) holds and, by the order
the right-hand side can be neglected. As a result, we obtaif magnitude Xy ~ m/a, one has

an ordinary differential equation describing the radial struc-

ture of the wave: Q2, -2,
VN M T
TN
I (w? — QF\)01Ry — K2 (0? — Q% )Ry =qn.  (19) o
There are two possible limiting cases; « 1, andvy > 1,
Here the following abbreviations are used: which will be considered in Sects. 5.1 and 5.2. Section 5.3
addresses the waves in those regions where the function
K2 = m? < NE Tﬁ > Qpn(x1) reaches its extreme values.
N = oz
82 A 5.1 Casey < 1: localized toroidal modes

gy = (Tnq). Within thevy <« 1 approximation, the differences between
the toroidal and poloidal surfaces can be neglected. This
Using numerical calculations it was established that the valuéneans that within this approximation the field line curva-
of Ky coincides by the order of magnitude with the az- ture is unimportant, and the wave structure qualitatively coin-
imuthal component of the wave vector in the equatorial planecides with the wave field described in earlier publications on
m/L (Fig. 10). field-line resonance (Tamao, 1965; Southwood, 1974; Chen
In publications on MHD waves in a two-dimensionally @nd Hasegawa, 1974). Since in most of the magnetosphere
inhomogeneous magnetosphere, Eq. (19) was, for the firghe functionsQ?  (x*) and Q3 (x*) are monotonically de-
time, reported by Leonovich and Mazur (1997), who also creasing ones, we can avail ourselves of the linear expansion
solved it numerically. An important difference in our article (EQ. A6). Equation (19) then becomes
o nat paper i he fact hat we obtined i sQUBon 0 1 4 1,y — K33 sy iy = v (21)
It remains to add a boundary condition for this equation. (cf. Tataronis and Grossman, 1973). Note &i@\; is a func-
A natural boundary condition with respect to the radial co- tion of the wave frequency. Next, we introduce a new vari-
ordinate is the absence of any increase in the potential wheables = Ky (x! — x%N). The solution to Eqg. (21) bounded
x1 — oo: in the radial coordinate, according to Eq. (20), is then written
in terms of the modified Bessel functiofg¢) and Ko(¢):
IRy (x* > +00)| < oo. (20)
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presence of finite conductivity of the ionosphere, in view
of which the boundary condition on the functidi®y is
a formulated thus:
@ 2
_c“CcOoSsy
sP = Rye-VT , 24
vl :F<l s, N € N) 3 (24)
Xt
X1

wherey is the angle between the field line and a normal to
the ionosphere, antl,, is global Pedersen ionospheric con-

ductivity (Leonovich and Mazur, 1993). Then in Eq. (19)
/\ /\ /\ /\ b there appears an additional term
¢ A
VAVAIl PR

g2 c?cosy 5
_ZzyNw—12|:\/_4E (3TN):|-,
j

—

whereyy is the mode damping decrement at the ionosphere
(its value is assumed small compared to the wave frequency,

¢ which reflects high ionospheric conductivity). This term van-

@ ishes in the case of infinite ionospheric conductivity. This
N / ] gives rise to a small imaginary additionitdin formula (21),
N /n=1 X Imx! = ey = 2ynva/w (sinceyy /o < 1, theney /a < 1).
Nl In view of this correction when! ~ x}N(w), the solution

behaves a®y o In[x! +iey — x}, (®)]. Hence, it fol-
lows that on the toroidal surface (that is, on a magnetic sur-
Fig. 11. Three kinds of wave structure across magnetic shells: lo-face, where toroidal eigenfrequency is equal to the wave fre-
calized resonand@), traveling wavgb), and standing wave in the quency) there occurs a sharp wave amplitude peak, the char-
resonato(c). The relation between the Albn wave "potential, o arigtic scale of localization of whiohy /a < 1. And,
shown in the figure, and the functid®y used in the text is given on the contrary, at a given magnetic shell the wave has a
by formula (16). . . . . .
maximum amplitude in the case where the toroidal eigen-
frequency at it coincides with the wave’s frequency. As is
Ry = qNKjglafza apparent from Fig.. 11a, the wave, whem:< 1, may be de—_
scribed as a localized resonance, having a toroidal polariza-
tion throughout the region of its existence.
¢ 0 Notice that the mode can be toroidal even whens 1,
[ (l -[1o d{) - Io(I)fKo(f’)dé“’] when x* > xp,, provided only that the inequalityy < 1 holds. An example
{ of this is just the magnetospheric model with straight parallel
(22) field lines where the polarization splitting of the spectrum is
[Ko(—g“) (i —f{Io(—t’)dt’) +Io(=0) j Ko(-t/)df’] when ! < 1, absent altogether, i.ey =0 for.any azimuthal wavelengths.
0 Thus, a large value of the azimuthal wave number is not a
sufficient condition of the poloidal polarization of the Aéfw
The relation betweeRy and the “potential” of the Alfén wave.
wave is given by the formula (16), where the functifi Another feature of this solution is the change in the wave
(it will be recalled) depends relatively slowly on the radial phase by 187 i.e. the change in sign of the ratity/E; at
coordinate. In Fig. 11a, we show the transverse structure ofhe crossing of the toroidal surface. This is obvious from the
the wave field described by the solution (22). fact that for the Alfen wave we havésE1 — 91E2> = 0,
On the toroidal surface this solution has a logarithmic sin-whence it follows that (Southwood, 1974)
gularity,

—00

E1 1 &0E
gva , . e (25)

Ry ~ In[w? — Q2 (xY)], (23)  E» im E;

Kyw
which, since classical publications of Chen and Inthis case£r o« (x! — x7) 7 i.e. whenx! > x7\ ()
Hasegawa (1974) and Southwood (1974), has been reandx! < xTN(a)) the Ioganthmlc derivative of the function
garded as the distinctive property of Afiu resonance. The E1(x1) has a different sign. We shall return to the relation
singularity can be regularized by taking into account the(25) in Sect. 3.
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5.2 Casevy > 1: poloidal modes that transform into which is also regularized by taking into account the finite

toroidal ones

ionospheric conductivity. However, the term before the loga-
rithm differs from the one in the casgy « 1 (cf. Eq. (23)).

To solve Eq. (21) fovy > 1, we can avail ourselves of Besides, in that case the functidn(x) was a monotonic
the method of matching asymptotic expansions. For the timeyne on both sides of the resonance surface (see Fig. 11a),
being, we consider the situation where the toroidal frequencyyhereas in the casey > 1 this function is an oscillating

is larger than the poloidal frequency. In this ca§g\, >

1
XpN-

one in the interface between the surfaggg andx3 . in-

The magnetospheric regions in which this inequality cluding in the region of toroidal polarization of the mode, as

is realized in models I-11l is evident from Figs. 4-8. The is clearly seen from the asymptotic representation (Eq. (B1))
details of the calculations are given in Appendix B, and heregiven in Appendix B, as well as from Eq. (30).

we restrict ourselves to the final answer only.
In the regionx? — x1 /| « Ay the solution is

[x1—x2
Ry=Cr-Ko|2/—IN],
ATN

where

(26)

-2
ATN = ANVy

Cr is a constant defined by Eq. (B3). In the regiaf —

is the characteristic wavelength near the toroidal surface and1 <8k1)_1 B (@? — Q%N)l/Z(Q%N — w?)32

x| < Ay the solution can be written in the integral form

(Leonovich and Mazur, 1993):

00 xl _ xl itS
RN(ZP)Zi(INKJZ\IAN/ drexp|it —— — — ) (27)
0 APN 3
where

ApPN = AN\)I;Z/3 (28)

As is evident,k; is a function of the wave frequeney,
i.e. the field line curvature also leads, along with the polar-
ization splitting of the spectrum, to the appearance of the
Alfv én wave dispersion across magnetic shells. The wave'’s
transparent region (i.e. the region Whéd% > 0) lies be-
tween the toroidal and poloidal points. This solution de-
scribes the wave, the phase velocity of which is directed from
the poloidal to the toroidal surface. The wave’s group veloc-
ity is determined from the relation

(32)

vgN:

dw 20K N (Q%, — Q5,)

As is apparentulN > 0, i.e. the wave energy is also trans-
ported from the poloidal to the toroidal surface. By the order
of magnitude, the group velocity

2
A
1 N -2
vgN ~ A (7) Vn s

i.e. it is much less than the Alén velocity. On the poloidal

is the characteristic wavelength near the poloidal surface. Irand toroidal surfaces the group velocity becomes zero.

the regionx},, < x! < x%,, where the WKB approxima-

tion is applicable, the solution is
-1/4
Ry = Cw [Klz\,(xl — bk, — xl)]

x1

expi / ki(xYyaxY, (29)
x}w
whereCy is a constant defined by Eq. (B4) and
2_02 (41
@ = i} L) (30)

Q%N (x1) — w?

If the poloidal surface is farther away from the Earth than
the toroidal surface, then the solution coincides qualitatively
with the solution forx}, > x%,. But there is one differ-
ence: the phase velocity of the wave is directed from the
toroidal to poloidal surface. Nevertheless, energy is trans-
ferred, as before, from the poloidal to the toroidal surface.
This is evident from the fact that wheRyy < Qpy, the
group velocity is negative.

Thus, we arrive at the following picture. The wave is
generated near the poloidal surface and propagates toward
the toroidal surface where it is totally attenuated, transfer-
ring its energy to the ionosphere due to its finite conduc-
tivity. Furthermore, the wave is a standing wave along

is a radial component of the wave vector squared. The funcfield lines. As the wave is propagating, the radial wave-
tion ® = Ty Ry determined by Egs. (26)—(29) is plotted in length decreases and its polarization changes from poloidal

Fig. 11b. We emphasize once again that the functignand

to toroidal. We can call this phenomenon the transforma-

Py introduced in Sect. 3 and used in many other publicationgion of the poloidal mode to a toroidal mode. Leonovich
do not describe on their own accord the wave structure irand Mazur (1993) were the first to establish this picture
the magnetosphere, as they are not the solutions of the wavier the case of a cold plasm# (= 0). The propagation

Eq. (12).

of Alfvén waves across the L-shells in a fingteplasma

Let us discuss the main features of this solution. As inwas studied by Safargaleev and Maltsev (1986), Kouznetsov

the casevy « 1, the wave field in the casey > 1 has a
logarithmic singularity on the surfacé = x}

Ry (31)

_ 2qnAna <)»PN
ATN

1/4
5 ) In[w? — QF 5 (xH)],
vNa)

and Lotko (1995), and Klimushkin (1997, 1998a). Besides,
Klimushkin et al. (1995) explored the transverse propaga-
tion within the approximatiom3 = 0, but with the three-
dimensional inhomogeneity of the magnetosphere taken into
account.
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Whenvy >> 1 the mode is confined between the poloidal Whenx! ~ 0 the toroidal frequency can be considered ap-
and toroidal surfaces, i.e. its scale of localization is deter-proximately constant 23— w? <« Q3— Q2. We introduce
mined by the field line curvature. This contrasts with the a new variable = x1/ gy, where
casevy < 1 when the scale of localization of the wave is

determined by the mode dissipation from the ionosphere. It 1 \Y? QS — Q%N v

is of interest to consider the situation wherg > 1 but RN = (K_N) Q—S : (34)
AN < €y, i.e. the scales of localization that are deter-

mined by the curvature and attenuation, compete with eacfiequation (19) then becomes

other. It is easy to see that in this case the attenuation at the , N

ionosphere is so strong that while propagating across fiel 2N 4 (0 — E)Ry = —INZRN (35)

. : o e : 2 2
lines, the mode is now dissipated within a small distance 0~ Q7w
from the poloidal surface without reaching the toroidal sur-

face (Klimushkin, 2000). where the designatiom = b“/A%, is introduced. It is an

easy matter to show that this equation defines the structure
of the mode within the resonator in the general case, and not
only on the outer edge of the plasmapause.

In contrast to the situations considered in two previous

) ) ) subsections, this equation has the solution that satisfies the
In some magnetospheric regions the mode is bounded on ®5oundary condition — Eq. (20) — even without a source,

ther side by poloidal surfaces. They are magnetic shells neaf. — 0. In this case Eq. (35) has the same form as one of

. - B 1 .
minima of the functionQpy (x), if Qpy < Qry holds  he pest known equations of physics, the 8dimger equa-
there, and regions near maxima of this function, if an inversejo for the harmonic oscillator. As is known, the existance

inequality holds there (see Figs. 4-6). The cavity betweenys ihe solution requires that the parametebe quantized,
two poloidal surfaces will be henceforth referred to as the, _ 2, 4+ 1 wheren = 0,1.2, ... is an integer number.

Alfvén resonator. At zero pressure the resonator can lie Oftrom this follows the quantization condition for the wave
the inner plasmapause edge only. Finite pressure in mOdfrequency:

els | and Il leads to the elimination of the resonator, because )
the poloidal frequency becomes larger than the toroidal fre- , 2 2 2 RN

quency; instead, there arises a resonator on the outer edg“é =, =%F % 12 (@n +1). (36)
of the plasmapause. In model Il, the resonator is produceql_|ere the “”

|n.the \'/ve%warfdtr? urr(Ient reglohn. In_ mtcr)]del “Ltvtlhe dresonattorlocalized near a maximum of the functiérp v (x1), and the
arises Ihside ot the plasmaspnere In the eastward current re-, . sign corresponds to the opposite case. The solution of

gion; the westward current in model 11l that was accidentally Eq. (35) is expressed in terms of Hermitian polvnom
coincident with the plasmapause led to a deepening of the a- (35) P poly s

resonator on_the inner edge of t_he plasmapause (th_e sit_uatioR\N = const - Hy (&) o522 (37)

is even possible whei@?,,, < 0 in this model, and this will

be discussed be|ow)_ Note that the appearance of Ca\/itieghis solution describes the Standing wave confined within the

in the region of currents requires a rather rigorous selectiorfransparent region between poloidal surfaces (Fig. 11c).

of equilibrium conditions, unlike the cavities in the plasma- When the right-hand side is nonzegy # 0, Eq. (35)

pause region. has the solution bounded wheh — +o0, at any frequency.
We now derive the equation describing the radial structurefowever, the amplitude of the solution of the inhomoge-

of the mode within the resonator near the extremum of the"€0US équation is still maximal when ~ «,, and under

function Qpy (x1); we designate this value k. For def- this condition function Eq. (37) is an appromma_te soluthn

initeness, we consider the resonator on the outer edge of th@f Ed- (35). We do not give here any mathematical details,

plasmapause where the following representation can be use@S they may be found in, for example, a paper of Leonovich
and Mazur (1995).

2 Since Hyp, whenn = 0 the wave equation is described by
Q2 b =02|1- (x_> ’ (33) the Gaussian function with the half-width It is a very im-

5.3 Waves withm > 1 in the range of extreme values of
the functionQ py (x1): localized poloidal modes

sign refers to the case where the resonator is

l portant result, because in many observed cases of poloidal

pulsations the amplitude is indeed close to a Gaussian (e.g.

where the quantity defines the characteristic width of the Ch'She.lm etal, 1.997.; Cramm et al., 2.000)' Note that this
result is the solution if the wave equation and is not a con-

resonator, and the coordinaté is measured from the point . S .
of extremum. The coordinates of the poloidal surfaces thatodUeNce of any assumptlonslof the |r.1|t|al cond!uons. The
bound the mode within the resonator are derivative of the functionEz(x") = —im® on different
slopes of the Gaussian has a different sign; therefore, in ac-
) o\ 1/2 cordance with formula (25), the transition through the region
b=+l (0) — Qo) . of localization of the mode must be accompanied by a change

Qg in the wave phase by 180 This phenomenon has already
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been pointed out by considering an example of the localizedestimation (Eq. 15) to obtain the poloidality condition of the
resonance (Sect. 5.1). In this case, however, the mode can notodea, > A, in the form

be toroidally polarized. Indeed, it is an easy matter to check|Qz —Q2 | 1

that the inequality £1/./g1| > |E2/,/g2| has as a conse- — X —F 5 = (38)
guence the inequality? — w? > Q% — Q2 indicating Y "

that the resonator is so shallow that no harmonic is accomwhich coincides with the condition of applicability of the
modated in it. On the contrary, the mode in the resonatoWWKB approximation in the radial coordinatey( > 1). If

is poloidal if the resonator is deep enough. The question othis approximation is applicable and if there exists the solu-
the conditions of the poloidal and toroidal polarization of the tion of Eq. (14), the Alfen wave must have a poloidal po-
wave will be discussed in greater detail in the next section. larization in a part of its transparent region, near the poloidal

In the plasmapause region the situation is also possib|§urface. If, however, the inequality does not hold, then even
where the transparent region is bounded on either side by twiear the surfacet ,, the mode is not poloidal. Hence, more
toroidal surfaces (see, for example, Fig. 4b). This may pro-Stringent conditions are required for the poloidal polarization
duce the impression that the solution of the wave equations if the wave than for the toroidal polarization.
this case describes a double resonance when two maxima of This gives us a clue to an understanding of the situation
the amplitude lying at = x% , are interconnected by acon- Whenvy ~ 1, where it is impossible to develop approxi-
tinuous transparent region. However, such a solution doe§hate methods for solving Eq. (19). In this case there also
not satisfy the natural boundary conditions of the decreas@ccurs an Alfien resonance accompanied by the toroidal po-
in the opaque region. Indeed, as has been pointed out in thi@rization of the mode, and since the poloidality condition
preceding subsection, the solution bounded by the opaque réloes not hold anywhere, the mode in the region of its ex-
gion which describes a resonance singularity, has the form ofstence has predominantly a toroidal polarization with some
a wave arriving at the singular turning point. But there can-addition of the poloidal component in some places where the
not be a wave arriving at two turning points simultaneously. Wave amplitude is substantially smaller. This is also con-
In fact, the solution in this region does not contain any reso-firmed by numerical calculations performed by Leonovich
nance singularities and, in essence, describes the noise backdd Mazur (1997). Thus, we can conclude that whens 1
ground of hydromagnetic oscillations of the magnetospherdhe mode has predominantly a toroidal polarization through-
(Klimushkin, 1998b). out the region of its existence.

Previous studies of the resonator in the plasmapause re- Seénerally, plasma pressure contributed to the poloidal po-

gion were carried out by (Leonovich and Mazur, 1990, 1995;Iarization of the mode, as it leads to an increase in the po-
Vetoulis and Chen. 1996 Klimushkin. 1998b: Denton and 'arization splitting of the spectrum and to an increase in the
Vetoulis, 1998). The possibility of existence of the res- width of the transparent region. Moreover, in the case of

onator on the current inside the plasmasphere was showedlit€ pressure in some regions of the magnetosphere the
by Klimushkin (1998b). poloidality condition can be satisfied, even far values

(m ~ 10, say), that are not very large. Aa waves with
suchm values still can be generated through the interac-
) ) tion with FMS, i.e. the resonance excitation of Adfv os-
6 Discussion cillations by magnetosound can also give rise to poloidally
polarized waves. Such a possibility was, for the first time,
6.1 The conditions of the poloidal and toroidal polarization pointed out by Kouznetsov and Lotko (1995), who consid-
of Alfvén waves ered the possibility that the poloidal surface can lie between
the toroidal surface and the transparent region of FMS (they
The poloidality condition of the Alfén mode in a general called the wave propagating across magnetic shells as the
form implies that the radial wavelength far exceeds the “Alfv én buoyancy wave”). But the widest transparent re-
azimuthal wavelength,. For the toroidal polarization, an gion accommodating even low-waves is produced in the
inverse inequalityr, < 4., must hold. This may produce case where plasma pressure causes the poloidal surface to
the impression that the toroidal and poloidal polarizations arepe displaced significantly toward the Earth. Just such a sit-
equivalent. This is in fact not the case. uation arises in model Il whew = 1 (see Fig. 5). The
If somewhere in the magnetosphere the equality (Eq. 13width of the transparent region in this case can reach sev-
holds, i.e. at some wave frequency there is a toroidal surfacegral terrestrial radii (see Fig. 8). Note, by the way, that in
then on this magnetic shell there is a wave field singularity,the case of very wide transparent regions, our results should
in the area of which the mode has a toroidal polarization. Butbe regarded with caution, because when deriving Eq. (19),
the existence of Eq. (14) is only necessary but not sufficienit was assumed that the transparent region was significantly
for the poloidal polarization of the mode. As an example, narrower than the magnetosphere. Leonovich and Mazur's
we consider the case of the wave traveling from the poloidal(1993) two-dimensional WKB approximation is more suited
the to toroidal surface. In this case the radial wavelengthfor investigating wide transparent regions.
near the poloidal surface is given by formula (28). By the In the case where the mode is confined within the res-
order of magnitude}, ~ a/m, we avail ourselves of the onator, the general poloidality condition > i, is trans-
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formed in a somewhat different mannekgy > m/L, what changes can be introduced into this picture by the az-

where the characteristic wavelength in the resonatgy;, imuthal inhomogeneity of the magnetosphere and the associ-
is defined by the equality (34). After some arithmetic, from ated field-aligned currents, the wide-band character and the
this we obtain possible narrow localization of oscillation sources, the inter-

; o2 1/2 1 action of waves with particles drifting in the magnetosphere,
"0 > = (39) and the active role of the ionosphere. Work in this direc-
L|Q3—q2, m tion is underway, and this is testified by recently published
A maximum width of the resonator is papers addressing these issues (Salat and Tataronis, 1999;

12 Klimushkin et al., 1995; Mann et al., 1997; Leonovich, 2000;
R Q32— Q2 Antonova et al., 2000; Vetoulis and Chen, 1996; Klimushkin,
max = Q2 2000; Glassmeier et al., 1999a; Leonovich and Mazur, 1996).

o ) ) However, the creation of a unified realistic model of MHD
By combining the two last formulas, we obtain the poloidal- \yaves in the magnetosphere is a long way from now. Ob-

ity condition in the resonator at the plasmapause in the formgenations and experiments can have a leading role in such

mbmax 1 40 efforts, and at the present stage we need at least to under-
> 4 (40) stand whether the picture available to us has anything to do

i.e. the resonator must accommodate many azimuthal waveith the information provided by experiments.

lengths. The same poloidality condition can also be obtained Observations from the ground recorded repeatedly nearly
for the resonator in the ring current region. As is evident, theMonochromatic toroidal Alfén waves in the Pc 4-5 range,
conditionvy > 1 is also satisfied for the poloidal mode in which showed characteristic properties of a localized reso-
the resonator, if the width of the transparent region is meanflance described in Sect. 5.1: a strong localization of the wave
to be a maximum width of the resonator. Again, finite pres- 2Cross L-shells, toroidal polarization, and a phase change by
sure favors the fulfilment of the poloidality condition: rather 180" at the passage across the resonance peak (Samson et
wide cavities appear on the outer edge of the plasmapaus®-» 1971; Walker et al., 1979; see also Fenrich and Sam-
in models | and Il fmax ~ 1 Rg) for all N that have been ~ SON, 1997; references therein). On the other hand, it was

studied, and in the wing current region in models I and 11l Pointed out earlier (Glassmeier et al., 1999b) that when ob-
(bmax ~ 2 R, and~ 0.5 R, respectively) whewV = 1. served from satellites, these features of the localized reso-
It is also important to remark that the higher the harmonicnances were never identified, in spite of the vast occurrence
number N, the smaller the relative polarization splitting of of toroidal pulsations. A likely explanation for this paradox
the spectrumQ?2 ,, — 2%, 1/22,, and the more difficult it would be to assume that most of the monochromatic ULF
is to satisfy the poloidality condition. This is obvious from Waves in the magnetosphere in the Pc 5 range have large az-
our Figs. 4 and 5, showing how much the difference betweerfMuthal wave numbers andy >> 1. In this case the oscil-
the poloidal and toroidal frequencies decreases when passirgtions are no longer a localized resonance, and the behavior
from N = 1to N = 2; at even highew, this difference  Of their phase is much more complicated than in the case
is still smaller. Hence, the lower the wave frequency, thevy =< 1, which corresponds to a localized resonance: when
smaller the values of the azimuthal wave number, at which it’y > 1 the Alfvén wave travels across magnetic shells, hav-
can be poloidal. ing close to the toroidal surface a very small radial compo-
Noteworthy is also the fact that in the case of large andnent of the wave vector. If this is indeed the case, then the
smallvy at a given value of the sourge the wave amplitude ~ chance to capture in the magnetosphere a localized resonance
near the resonance (toroidal) surface is different, because tHé relatively poor. Further, the atmosphere comes into play
terms of the resonance logarithm are different in these twaVhich has the role of a filter transmitting to the ground only
cases. As is seen from Eq. (23), the wave amplitude is in\Waves with a sufficiently smooth dependence of the field on
dependent ofy, whereas whemy > 1 it decreases with ~transverse coordinates; thus, the waves with> 1 almost

increasingy (Eq. 31). From this it is easy to find that in the d0 not penetrate through the atmosphere (e.g. Hughes, 1974;

2/3 vations from the ground provide a distorted picture of the

face is by a factor oy, ~ > 1 smaller compared to smail, . in th h f the infl
Thus, if magnetospheric conditions are conducive to the ex/a/€ Processes in the magnetosphete. Because of the Influ-

istence of poloidally polarized waves, at the same time thefnce of the ionosphere, only localized resonances are able to

make the toroidally polarized waves less clearly pronouncedper'e"rate to the ground, and they are the ones that are ob-
served from the radars and magnetometers. In the absence

6.2 On the observation of toroidal and poloidal Aify  of a detailed theory that would take into account the factors
waves in the magnetosphere mentioned in the preceding paragraph, this hypothesis must
be regarded only as a preliminary explanation for this para-
We now compare the picture outlined above with the exper-dox. But it clearly demonstrates how important it is to take
iment. However, we are not yet fully prepared for this en- into account the entire body of theoretical knowledge when
deavor, because currently, available theories are still too coninterpreting experimental data.
cerned with simplified models. We still do not fully know  We now turn our attention to poloidal pulsations. Space
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experiments show that they occur much more rarelythe presence of a marked increase in intensity of poloidal
than toroidal pulsations. For instance, according to thewaves near the plasmapause using AMPTE/CCE data. In all
AMPTE/CCE data (Anderson et al., 1990), about five of these cases the scale of localization across the magnetic
toroidal pulsations correspond to one poloidal pulsation.shells was< 1 Rg. This is in good agreement with the as-
This is consistent with our conclusion that for the poloidal sumption that in these cases, the poloidal waves were eigen-
polarization of the wave, more stringent conditions are re-modes of the resonator in the plasmapause region.

quired than those for the toroidal wave. Furthermore, the oc- |t seems likely that the same can also be said of one of

currence rate of radially-polarized pulsations decreases witlihe most interesting varieties of poloidally polarized waves,
the increasing harmonic numhb¥t This is readily illustrated giant pu|sations (Pg) These near]y monochromatic waves
by dynamic spectrograms obtained by Takahashi et al. (19843re usually observed during quite geomagnetic conditions,
from the ATS 6 and SMS 1 and 2 satellite data: Wl?lér:_P 3 when the p|asmapause lies somewhere at 5.5 — 6, and
the azimuthal component of the magnetic field of the pulsa-gjant pulsations (Pg) are recorded just there. Rostoker et
tions is distinguished much more clearly than the radial com-g|. (1979) were the first to notice this. The assumption that
ponent. Within the framework of our theory, this fact is read- Pg are resonator modes on the outer edge of the p|asmapause
ily explained, because with the increasing harmonic num-s consistent with the strong localization of Pg across mag-
ber, the poloidality conditions are satisfied even less. On theyetic shells accompanied by a phase change by 180 degrees
other hand, the second harmonic of radially polarized wavegGreen, 1979; Rostoker et al., 1979; Glassmeier, 1980), and
with azimuthal wave numbers from 20 to 150 is very often the amplitude distribution i is described by the Gaussian
recorded in the magnetosphere. In this case, in a cold plasm@nction with the halfwidth of about Rz (Chisham et al.,
the left-hand side of the inequality involved in the pOlOldallty 1997), and this is indeed expected for the fundamental ra-
condition (38) forN = 2 makes up no more than 1%; there- dial harmonic within the resonator on the outer edge of the
fore, this condition can Only be satisfied for pulsations with p|asmapause_ The po|0|da||ty condition (40) for the values
unrealistically large azimuthal wave numbers, > 100.  of ;» ~ 20 observed in Pg in the models which we have stud-
Taking finite pressure into account saves the situation, sincgqd, is satisfied, though without a very large reserve. On the
in this case the left-hand side readily reaches the values 10gther hand, it seems feasible to rule out the possibility that Pg
20%, and the waves witlV = 2 andm ~ 20— 150 may  are Alfven waves traveling across magnetic shells. Satellite
well have a poloidal polarization. An indication of the im- observations do not show any indications of the transforma-
portant role of finite pressure in the formation of these wavestjon of poloidal Pg-wave to toroidal waves (Takahashi et al.,
is also provided by the existence of a substantial longitudi-1992; Glassmeier et al., 1999a). Here it is very important
nal component of the magnetic field observed in a number otp make reference to satellite experiments, because such a
poloidal pulsations (e.g. Hughes et al., 1979), as it can reaciyansformation is also impossible to notice from the ground:
Enarkgd Vfll;es for Alfén waves only in the case of finife  at the samen the transverse component of the wave vector
see Eq. 11). . . .

Singer et al. (1982) and Engebretson et al. (1992) consid®L = \/(k%/gl) + (m?/g2) in poloidal waves £y = 0) is

ered the radially polarized Pc 4 pulsations events which ardntch smaller than that in toroidal waves (~ oo); there-
strongly localized across magnetic shells. One would expector®: Whenvy > 1, only the oscillations near the poloidal
surface have a chance to be transmitted through the iono-

that these pulsations were the excitations of the &ifves- ,
onator described in Sect. 5.3. Cramm et al. (2000) explored;phere (Leonovich and Mazur, 1996).
a poloidal Pc 4 pulsation observed by the Equator-S satellite. On the other hand, Green (1985) detected several Pg
An analysis showed that this pulsation was nearly monochro€vents deep inside the plasmasphere. The geomagnetic con-
matic and very narrowly localized across magnetic shells (&fitions where these pulsations were observed, were charac-
Gaussian with the half-width of about GgL;), and there was terized by the presence of a significant ring current inside the
a phase Change by 18@at the transition through the region plasmasphere, exaCtIy as in the case of our model Ill. But this
of localization. Such a behavior is characteristic for poloidal model assumes a resonator inside the plasmasphere. Thus,
waves confined within the resonator. The authors made aM/€ can conclude that the events observed by Green (1985)
estimate of the azimuthal wave number using reasoning simwere the eigenmodes of this resonator.
ilar to ours in Sect. 6.1, and obtained the valuenof 150. At the same time, thd.-dependence of averaged spec-
Of course, it is necessary to understand where this resonatdra of poloidal oscillations observed by AMPTE/CCE (Taka-
was localized in any particular case, but the relevant infor-hashi and Anderson, 1992) shows that there exists a rather
mation is not always available. clearly pronounced population of radially polarized waves,
One of the resonators must be localized on the outemot associated with regions of poloidal frequency extrema.
boundary of the plasmapause. In all likelihood, radi- These waves ought to be traveling across magnetic shells. It
ally polarized waves that are confined within this resonatorseems likely that the radially polarized waves that are stand-
represent a reasonably widespread phenomenon. Singarg waves across magnetic shells are generally more acces-
et al. (1982) reported ISEE-1, 2 satellite observations ofsible to observations when compared with poloidal waves.
poloidal waves which were strongly localized across the L-At present, the concept is widely held that high-energy parti-
shells in this region. Takahashi and Anderson (1992) showedles drifting in the magnetosphere supply energy to observed
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poloidal pulsations via bounce-drift resonance. Indeed, inimplies that many azimuthal wavelengths are accommodated
some cases unstable distribution functions of particles asbetween the toroidal and poloidal surfaces. If this condition
sociated with poloidal waves were observed (Hughes et al.is not satisfied, then the mode is toroidally polarized through-
1978, 1979; Glassmeier et al., 1999a; Wright et al., 2001);out the region of its existence. Furthermore, it is sharply lo-
there are also a number of indirect arguments in favor of thiscalized across magnetic shells, having a singularity on the
concept (Takahashi et al., 1990; Fenrich and Samson, 1997oroidal surface (regularized by taking into account the iono-
Ozeke and Mann, 2001). It can be suggested that, were it napheric dissipation). If the poloidality condition is satisfied,
for the high-energy particles, the waves with largevould then the wave is poloidally polarized in the part of its trans-
simply not have had a sufficiently large amplitude in order to parent region. It propagates slowly across the magnetic shells
be observed. But in the case of the displacement of the azand changes its polarization from poloidal to toroidal. Fi-
imuthally small-scale waves across magnetic shells, the mogtally, there exist regions in which the poloidal frequency
enhanced waves would be the ones near the toroidal surfac& p reaches its extreme values. The poloidality condition
because the waves were to accumulate the particle energy iior these regions is written as Eq. (39). In this case the
the process of their propagation from the poloidal to toroidalwave is a standing wave across the magnetic shells, having a
surface (Klimushkin, 2000), although the build-up rate of the poloidal polarization throughout the region of its existence.
wave energy decreases as the wave detaches itself from tfhe fundamental (most easily excited) harmonic of this res-
poloidal surface. And only when high-waves are confined onator is described by a Gaussian function.
within the resonator, is the transfer of energy from particles It is progressively easier to satisfy the poloidality condi-
able to enhance the poloidal pulsations. tion with the increasing difference between the toroidal and
poloidal frequencies (polarization splitting of the spectrum)
and with the increasing azimuthal wave numkerThe for-
7 Conclusion mer of these quantities is determined by geospace plasma and
magnetic field parameters, and by the longitudinal harmonic

In conclusion, we briefly restate the logic of our paper numberN. We studied three models of the magnetosphere:
and describe the main results. Our principal intent was to

study the conditions where the Afflm waves in the magne-
tosphere can be toroidally or radially polarized. Since the
toroidal (poloidal) polarization of Alfén waves implies that  (II) high level of disturbance; here is a well-developed ring
the radial wavelength of the wave is significantly smaller current; and

(larger) than the azimuthal wavelengty it is impossible to
study the polarization without studying the structure of the
wave field across magnetic shells. To do this, we made use of
the system of MHD equations by writing them for plasma of

(I) low level of disturbance when a significant time has
elapsed after the storm;

(1 low level of disturbance, but when a short time has
elapsed after the storm (significant ring current inside
of the plasmasphere).

finite but small pressure residing in a curved magnetic field. The main conclusion drawn by considering these mod-
As a consequence of this system, we obtained Eq. (12), ©IS implies that an increasing plasma pressure con-
the basic equation of our paper. It describes the @ifwave tributes to satlsfylng the polo@allty condition at fixed
excited by the magnetosound and, perhaps, by some other - |t was ascertained that witfi actually observed
sources. This equation defines both the transverse and longi- N theé magnetosphere, this condition is satisfied for
tudinal structure of the wave. This is described in the limit poloidal Alfven waves withV = 2 andm ~ 50 — 100
Ar < A, by a toroidal longitudinal function, otherwise it is that are routinely observed in the magnetosphere. The
described by a poloidal function. Using numerical calcula- presence of a special criterion of poloidality explains
tions we found that whetv = 1 — 3 (with these longitudinal the scarcity of poloidal pulsations compared to toroidal

harmonic numbers were our prime interest), these functions ~ Pulsations, especially whew > 2.
differ relatively slightly from one another. That permitted A furtherimportant result is the inferred possible existence
us to separate the longitudinal and transverse structures byf the resonator for poloidal waves in the plasmapause re-
the method of successive approximations. Thus, we obtainedion. We adduced arguments in support of the fact that oscil-
Eqg. (19), describing the structure of the wave across magnetitations that are modes of this resonator are indeed observed.
shells. The solution of this equation allowed us to determinePossibly, they include, among others, giant pulsations (Pg).
both the spatial structure of the wave and the conditions of At the same time our conclusion about the agreement of
toroidal and poloidal polarization. theory and observations is a preliminary one, because there
In order for the wave to be toroidally polarized on the mag- are a large number of factors which are neglected by our the-
netic shell with the radial coordinate', it is necessary and ory and which can have a substantial influence on the be-
sufficient that the conditiom = Q7 is satisfied, where havior of MHD waves in the magnetosphere. Specifically,
Qry is the toroidal eigenfrequency on a given shell. A sim- they include the azimuthal inhomogeneity of the magneto-
ilar conditionw = Qpy, developed for the poloidal fre- sphere, field-aligned currents, the non-stationarity of the os-
quency, is not a sufficient condition of poloidal polarization cillations, the narrow localization of their sources, the inter-
— it is also necessary that condition (38) is satisfied, whichaction of waves with particles drifting in the magnetosphere,
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and the active role of the ionosphere. Hence, further effortscontains explicitly the field line curvature—! according to

are needed, in order to create the more realistic models oformula (9). The situation is somewhat more complicated in

ULF waves in the magnetosphere. cold plasma, where the second term of this formula is respon-
sible for the splitting of the spectrum. The quantig>/g1
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guantity varies even along straight field lines. In these con-
figurations field lines must become increasingly sparser with
Appendix A Definitions and basic properties of toroidal  he advance along them. Such configurations, however, are
and poloidal modes unlikely to be relevant to magnetosphere physics, where it
is assumed that field lines become sparser when leaving one
magnetic flux and become denser when entering another flux.
Obviously, in this case the derivative), - V)./g2/g1 can be
0, (A1) nonzero only when field lines are curved. Moreover, in this
case the curvature is only a necessary rather than sufficient

wherex$ stands for the intersection points of a field line with condition of the polarization splitting of the spectrum. In-
the upper ionospheric boundary. Toroidal and poloidal func-deed, it can be shown (Krylov et al., 1981; Krylov and Lif-
tions are conveniently normalized in the following manner; shitz, 1984) that the following relation holds:

<£T_13>—1’ <\/_§P_1%’>_<\/_§T_1$> (A2) (e||'V)|n\/g2/g1=K+—K_,

g2 A2\ g A2

Let Ty and Py denote the eigen-functions of toroidal and
poloidal operators satisfying the boundary conditions
Tn, Pn|

3,3 —
x°=x3

g1 A2
whereK, and K_ are a maximum and minimum curvature
(here the angle brackets designate integration along the fielgf the surfaces that are orthogonal to field lines (i.e. of the
line between the ionsospher&sJ — f:j ()dxg) With .Xs = c'onst SurfaceS). As an exgmp!e of th.e.mOdel in Wthh
- here is a curvature but no polarization splitting, we consider
he situation where the magnetic shells are semicylinders and
the field lines are circles. The surfaced = const are
plane in this modelK, — K_ = 0, and, hence, the toroidal
and poloidal eigenfrequencies coincide in this model. For

such a normalization of these functions, they have identica{
dimensions and can be compared with one another.

Let Qrny and Qpy denote the eigenfrequencies of the
toroidal and poloidal operators, where

L1(Qrn)Ty =0 (A3) further discussion of this issue see paper of Leonovich and

Mazur (1990). The final conclusion from this discussion is
and thus: in geomagnetic field models the polarization splitting
A of the spectrum is possible only in the case of curved field
Lp(Qpn)Pyv =0 (A4) lines P P y

hold. The difference between the toroidal and poloidal eigen- To make a rough estimate of the distance between the
frequencies is often referred to as the polarization splitting oftoroidal and poloidal surfacesy, we assume that it is small
the Alfvén oscillation spectrum. To find an analitical expres- compared to the typical size of the magnetosphere. We can
sion for it we multiply Eq. (A3) byPy and Eq. (A4) byTy, then avail ourselves of the expansions

extract one from the other, and integrate along the field line.

After the integration by parts, we obtain the difference be- ) ) 5 xl— X%N
i iag o= QFy = 0° — (AB)
tween the squares of these eigenfrequencies: TN P
Qfy — oy = [(vga n PyT) and
82 /83 1 2 2 2 Xt —xpy
+<PNTN(e|| V) (In /g— }ﬂ -<?PNTN> . (A5 oT = Qpy =0 — (AT)
1

The polarization splitting of the spectrum is caused by theBecause the difference between the toroidal and poloidal
presence of the field line curvature. This is obvious if fi- eigenfrequencies is rather smallRQyy — Qpy <«

nite plasma pressure is taken into account, because the fir§t7y, Qpy, andQrxy ~ o in the mode localization region,
term of the expression (A5) that takes this factor into accountwe then obtain from Eqgs. (A6, A7) the ordering (15).
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Appendix B The asymptotic solution of the radial struc-  Cy = vagnaAy/, vy w27/, (B4)

ture equation whenvy > 1 Thus, the asymptotic solution of Eq. (19) is given by the

The interval between the toroidal and poloidal surfaces Car?xpressions (26, 27, 29) with constants defined by formulas

be broken up into three regions: near the toroidal surfacéBB' B4). ) ) o
(le—x%Nl < Ay), near the poloidal surfaca(l—x})m < Noteworthy is the importance of taking into account the

Ay), and sufficiently far away from these surfaces where the/'9ht-hand side of Eq. (19), the source of oscillatians

WKB approximation is applicable. Here we consider only Without the source, this equation would not have any solu-

the situation where the toroidal frequency is larger than the_tions at all, which are bounded in the opaque region, accord-

poloidal frequency. In this case:,, > x3 . ing to Eq. (20), because it would be impossible to match the
In the region|x® — X%N| < A;\]/V the gﬁpansion (A6) can solutions near the poloidal and toroidal surfaces.
be used. Then Eq. (19), through the substitution
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