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Abstract. In this paper, in terms of an axisymmetric model
of the magnetosphere, we formulate the criteria for which
the Alfvén waves in the magnetosphere can be toroidally and
poloidally polarized (the disturbed magnetic field vector os-
cillates azimuthally and radially, respectively). The obvious
condition of equality of the wave frequencyω to the toroidal
(poloidal) eigenfrequency�T N (�PN ) is a necessary and
sufficient one for the toroidal polarization of the mode and
only a necessary one for the poloidal mode. In the latter
case we must also add to it a significantly stronger condition
|�T N −�PN |/�T N � m−1, wherem is the azimuthal wave
number, andN is the longitudinal wave number. In cold
plasma (the plasma to magnetic pressure ratioβ = 0) the
left-hand side of this inequality is too small for the routinely
recorded (in the magnetosphere) second harmonic of radi-
ally polarized waves, therefore these waves must have non-
realistically large values ofm. By studying several models
of the magnetosphere differing by the level of disturbance,
we found that the left-hand part of the poloidality criterion
can be satisfied by taking into account finite plasma pres-
sure for the observed values ofm ∼ 50− 100 (and in some
cases, for even smaller values of the azimuthal wave num-
bers). When the poloidality condition is satisfied, the exis-
tence of two types of radially polarized Alfvén waves is pos-
sible. In magnetospheric regions, where the function�PN

is a monotonic one, the mode is poloidally polarized in a
part of its region of localization. It propagates slowly across
magnetic shells and changes its polarization from poloidal to
toroidal. The other type of radially polarized waves can exist
in those regions where this function reaches its extreme val-
ues (ring current, plasmapause). These waves are standing
waves across magnetic shells, having a poloidal polarization
throughout the region of its existence. Waves of this type are
likely to be exemplified by giant pulsations. If the poloidality
condition is not satisfied, then the mode is toroidally polar-
ized throughout the region of its existence. Furthermore, it
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has a resonance peak near the magnetic shell, the toroidal
eigenfrequency of which equals the frequency of the wave.
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MHD theory)

1 Introduction

A great variety of Alfv́en waves has been recorded in the
magnetosphere to date. They are usually categorized into
short-period (Pc 1-2 and Pi 1) and long-period (Pc 3-5 and
Pi 2) oscillations. Of these waves, the former represent waves
traveling along field lines, while the latter are standing waves
similar to vibrations of guitar strings. Standing waves have
small longitudinal wave numbers (i.e. the number of half-
waves fitting along a field line between magnetically conju-
gate points of the ionosphere),N ∼ 1, while traveling waves
represent packets composed of harmonics withN � 1. Re-
cently, it has been customary to categorize the long-period
pulsations into azimuthally large-scale waves (the azimuthal
wave numberm ∼ 1) and azimuthally small-scale waves
(m � 1). A physical substantiation for such a categoriza-
tion is the difference of the sources of these two wave modes:
Alfv én oscillations with smallm are generally thought of as
being generated by a magnetoacoustic wave arriving from the
outer boundary of the magnetosphere, and waves with large
m by some source inside the magnetosphere (Glassmeier,
1995). Furthermore, long-period hydromagnetic waves in
the magnetosphere are classed according to the predominant
polarization (Anderson et al., 1990): azimuthally polarized,
or toroidal if the magnetic field vector oscillates in an az-
imuthal direction, radially polarized, or poloidal if the mag-
netic field vector oscillates in a radial direction, and com-
pressional if there is a significant disturbance of the magnetic
field modulus (within the linear approximation, this signifies
the presence of a longitudinal component of the wave’s mag-
netic field). The question is how these categorizations are
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correlated, i.e. under what conditions the waves with partic-
ular values ofm can have a particular polarization.

Usually, this question is given a very simple answer: when
m ∼ 1 the Alfvén wave is predominantly toroidally polar-
ized, and whenm � 1 its polarization is predominantly
poloidal. This conclusion is in general agreement with exper-
imental data. A theoretical substantiation for this conclusion
is the solution of the MHD equation in dipole geometry in
two limiting cases: whenm = 0 the mode is purely toroidal,
and whenm = ∞, it is purely poloidal (Dungey, 1967; Ra-
doski, 1967). Nevertheless, the large value of the azimuthal
wave number cannot be recognized as a sufficient condition
for the poloidal polarization of the Alfv́en wave. Krylov et
al. (1981) showed that both toroidal and poloidal modes can
have both low and largem values. For example, at anym
in a plasma that is inhomogeneous across magnetic shells, at
a certain frequency of the wave there is a surface on which
the wave field has a singularity accompanied by the toroidal
polarization of the mode (Krylov and Lifshitz, 1984; Wright
and Thompson, 1994).

Leonovich and Mazur (1990) noticed one paradox which
called into question the very existence of poloidal modes.
The paradox is as follows. The eigenfrequency of poloidal
oscillations varies across magnetic shells. In order for the
mode to be poloidally polarized, it is necessary that the wave
frequencyω equals the eigenfrequency of poloidal oscilla-
tions. This means that the poloidal mode is concentrated only
on the magnetic shell where these frequencies are equal. In
this case, however, the radial component of the wave vec-
tor must be equal to infinity, as well as the azimuthal com-
ponent, the role of which is played by the numberm. On
the other hand, in order for the Alfvén wave to be poloidally
polarized, it is necessary that the radial wavelength exceeds
significantly the azimuthal one.

To resolve this paradox, Leonovich and Mazur (1990) in-
vestigated the wave field structure by assuming that the wave
frequency differs little from the poloidal eigenfrequency.
They showed that the wave’s transverse structure is described
by the Airy equation, the solution of which has the form of a
wave outside of the poloidal surface. The mode is poloidally
polarized if the radial wavelength far exceeds the azimuthal
wavelength. This condition is satisfied at sufficiently large
values of the azimuthal wave numberm. Hence, the poloidal
mode does exist, but it is not localized near the only one mag-
netic shell but is more-or-less widely distributed in space.

This example shows that studying the polarization of the
mode necessarily leads to the study of its global structure.
Of course, such an investigation is important per se, espe-
cially now that the system of four CLUSTER satellites holds
much promise for the separation of the spatial and tempo-
ral structure of the mode (Glassmeier et al., 2001). When
studying the structure of the toroidal and poloidal modes, it
is appropriate to take into account the plasma inhomogene-
ity not only across magnetic shells, but also in the direc-
tion along the external magnetic field, and, in addition, the
field line curvature and finite plasma pressure, because all
of these factors affect the difference between the frequen-

cies of poloidal and toroidal oscillations (Krylov et al., 1981;
Walker, 1987). A study of the global structure of the wave
was carried out by Leonovich and Mazur (1993), Klimushkin
et al. (1995), Kouznetsov and Lotko (1995), Vetoulis and
Chen (1996), and Klimushkin (1998a, b). However, the ques-
tion still is: What are the conditions and magnetospheric re-
gions where Alfv́en waves can have particular polarization
properties? This question is addressed in the present paper.

This study is based on using an axisymmetric model of
the magnetosphere, taking into account all of the above-
mentioned factors. Plasma pressure is considered small but
finite. The presence of the plasmapause and ring current is
taken into account. Our treatment is based on the equations
of ideal magnetohydrodynamics, which leads us to exclude
storm-time compressional Pc 5 waves from our considera-
tion, as there are grounds to believe that they are mirror
modes (Woch et al., 1988), an understanding of which re-
quires to leave the ideal MHD.

This paper is organized as follows. Section 2 provides a
system of equations describing MHD waves in plasma of fi-
nite but low pressure. In Sect. 3, the frequencies of toroidal
and poloidal oscillations are studied analytically and numer-
ically. It is also established in this section that the longitu-
dinal structure of these modes forN ∼ 1 differs little from
each other. Based on this fact, in Section 4 we derive an ordi-
nary differential equation describing the structure of the wave
across magnetic shells. This equation is solved in Sect. 5. In
Sect. 6, we summarize our knowledge of the conditions of
the toroidal and poloidal polarization of Alfvén waves and
carry out a comparison with experimental data. The main
results of this study are summarized in Sect. 7.

2 Basic equations

First, we introduce the following designations: the capital
lettersB, P andJ stand for the equilibrium values of the
magnetic field, pressure and current, the small lettersb, p and
j denote the wave-associated perturbations of these quanti-
ties, ξ is the displacement of plasma from the equilibrium
position, ρ is equilibrium plasma density,E is the wave’s
electric field, andω is the wave frequency. These quantities
are related by the relation

∇P = (4π)−1J × B (1)

(condition of hydromagnetic equilibrium),

J = ∇ × B, j = ∇ × b (2)

(Ampere law),

iωb = c∇ × E (3)

(Maxwell equation),

E = −
iω

c
ξ × B (4)

(freezing-in condition). We consider the hydromagnetic
waves in those magnetospheric regions where the plasma to
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magnetic pressure ratioβ ≡ 8πP/B2 is much less than
unity. In these regions equilibrium plasma pressure across
and along field lines differs no more than by 20% (Lui
and Hamilton, 1992; Michelis et al., 1997); therefore, the
anisotropy of the pressure tensor can be neglected. The pres-
sure perturbation can then be found using the adiabaticity
condition, the linearized form of which is written as

p = −ξ · ∇P − γP ∇ · ξ (5)

(Kadomtsev, 1963). A linearized equation of small
monochromatic oscillations in plasma has the form

−ρω2ξ + ∇p =
1

4π
J × b +

1

4π
j × B. (6)

We now introduce a curvilinear coordinate system
{x1, x2, x3

}, in which the field lines play the role of coor-
dinate linesx3, i.e. such lines, along which the other two
coordinates are invariable (recall that the superscripts and
subscripts denote counter-variant and covariant coordinates,
respectively). In this coordinate system the stream lines are
coordinate linesx2, and surfaces of constant pressure (mag-
netic shells) are coordinate surfacesx1

= const . This coor-
dinate system is orthogonal ifJ · B = 0 (Salat and Tataro-
nis, 2000). The coordinatesx1 andx2 have the role of the
radial and azimuthal coordinates, and we shall use the McIl-
wain parameterL and the azimuthal angleϕ, respectively,
to represent them. The physical length along a field line is
expressed in terms of an increase on the corresponding coor-
dinate asdl3 =

√
g3dx3, whereg3 is the component of the

metric tensor, and
√

g3 is the Laḿe coefficient. Similarly,
dl1 =

√
g1dx1, anddl2 =

√
g2dx2. The determinant of the

metric tensor isg = g1g2g3.
This paper considers the axisymmetric model of the mag-

netosphere. In this case all perturbed quantities can be spec-
ified in the form exp(−iωt + ik2x

2), wherek2 is the az-
imuthal component of the wave vector. If the azimuthal an-
gle ϕ is used as the coordinatex2, thenk2 = m, wherem

is the azimuthal wave number. The “physical” value of the
azimuthal component of the wave vector isk̂2 = k2/

√
g2.

Unlike k2, the value ofk̂2 depends on the radial and longi-
tudinal coordinates, because such a dependence is contained
in the component of the metric tensorg2; in the equatorial
planek̂2(L, x3

eq) = k2/L = m/L in particular.
An important consequence of Eq. (6) is the smallness

of the longitudinal component of the plasma displacement
vector when compared with its transverse component when
β � 1. Within the approximation of ideal plasma conductiv-
ity, the longitudinal component of the wave’s electric field is
zero, i.e. the electric field is a two-dimensional one; it lies on
surfaces orthogonal to field lines. According to the Helmholz
theorem (see, for example, Morse and Feshbach, 1953), an
arbitrary vector field can split into the sum of the potential
and vortical components. By applying this theorem to a two-
dimensional fieldE, we put

E = −∇⊥8 + ∇⊥ × e||9, (7)

wheree|| = B/B. In a homogeneous plasma, the “poten-
tials” 8 and9 describe the electric field of the Alfvén wave
and fast magnetosound (FMS), respectively (Klimushkin,
1994; Glassmeier, 1995). Regarding the third MHD mode,
slow magnetosound, it can be neglected for plasmas with
β � 1. Let all perturbed quantities in Eq. (6) be expressed
in terms of the wave’s electric field written as Eq. (7). In
obtaining the equations relating8 and9 at finite but small
pressure, we shall neglect the second and higher degrees ofβ.
By letting the operator∇⊥ act on the left-hand and right-hand
sides of Eq. (6) (i.e. by taking its divergence from transverse
coordinates), in view of Eqs. (1) – (5) we obtain the equation:

L̂A8 + L̂c9 = 0. (8)

Here,L̂A is the Alfvén operator defined as

L̂A ≡ −∂1L̂T (ω)∂1 + m2L̂P (ω),

whereL̂T is the operator of the toroidal mode,

L̂T (ω) = ∂3
g2
√

g
∂3 +

√
g

g1

ω2

A2

(here,A = B/
√

4πρ is the Alfvén velocity) andL̂P is the
operator of the poloidal mode,

L̂P (ω) = ∂3
g1
√

g
∂3 +

√
g

g2

(
ω2

A2
+ η

)
,

where

η = −
2

R

(
J

B
+

2

R

s2

A2

)
, (9)

1/R is the local curvature of a field line, ands =
√

γP/ρ is
the sound velocity.L̂c in Eq. (8) is the operator describing
the FMS influence on the Alfv́en mode,

L̂c = im

(
∂1

ω2

A2

)

+

[
∂1∂3

g2
√

g
∂3

g1
√

g
im − im∂3

g1
√

g
∂3

g2
√

g
∂1

]
−im η ∂1 − im

√
g3

√
g2

Rη

2
1⊥

(1⊥ ≡ ∂1(g2/
√

g)∂1 − m2(g1/
√

g) is the transverse Lapla-
cian). This equation describes the Alfvén wave excited by
FMS (a phenomenon that is often called the field-line reso-
nance).

The second equation that relates the potentials8 and9,
can be obtained by taking the longitudinal component of the
curl of Eq. (6):

L̂F 9 + L̂+
c 8 = 0. (10)

Here,L̂F is the operator of the fast mode equal to
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L̂F = −1⊥

g3
√

g

s2
+ A2

A2
1⊥ − ∂1η

g2
√

g
∂1

−

[
∂1

Rη

2

1
√

g1
∇⊥ − ∇⊥

Rη

2

1
√

g1
∂1

]
+

[
m2 g1

√
g

L̂T

g1
√

g
− ∂1

g2
√

g
L̂P

g2
√

g
∂1

]
.

The operatorL̂+
c (Hermitian conjugate to the operatorL̂c)

describes the back influence of the Alfvén mode on FMS.
In the limiting case of a homogeneous plasma,L̂c, L̂

+
c =

0, and Eq. (8) becomes

(ω2
− k2

||
A2)8 = 0.

This equation has an nontrivial solution when the dispersion
relation of the Alfv́en wave holds. It is for this reason that we
refer to the potential8 as a function describing the Alfvén
wave field. Equation (10) for homogeneous plasma has the
form

(ω2
− k2

||
A2

− k2
⊥
A2

− k2
⊥
s2)9 = 0,

i.e. the nontrivial solution exists provided that the dispersion
relation for FMS in a plasma with 0< β � 1 is satisfied.
Thus, the potential9 describes the field of the fast magne-
tosound.

For a further understanding of this system, we invoke the
only conceivable method of analytical research, perturbation
theory. To do this, assume that the operatorsL̂c andL̂+

c are
small when compared with the operatorsL̂A and L̂F (see
also Fedorov et al., 1998). This is true if the scale of vari-
ation of equilibrium magnetospheric parametersa, to which
the operatorŝLc and L̂+

c are inversely proportional, far ex-
ceeds the scales of variation of the functions8 and9. This
assumption looks rather natural, since it is well known that
near the Alfv́en resonance surface there occurs a singularity
of the wave field, and the function8 changes quite drasti-
cally within a very short distance; moreover, the character-
istic radial wavelengtha/m whenm � 1 is much smaller
than the characteristic scale of space plasma inhomogeneity
(or, roughly speaking, the size of the magnetosphere).

First, we turn our attention to Eq. (10). Formally, it may be
treated as an inhomogeneous differential equation, the gen-
eral solution of which is the sum of the solution of the ho-
mogeneous equation and a partial solution of the inhomoge-
neous equation. The solution of the homogeneous equation
describes the FMS structure without taking into account the
interaction with the Alfv́en mode. The solution of this equa-
tion in cold plasma was addressed in papers of Lee (1996),
and Leonovich and Mazur (2000a, b; 2001), who established
that at low frequencies the FMS transparent region lies at the
edge of the magnetosphere, and asm increases, it is pressed
even more strongly to the magnetopause. This solution does
not contain any singularities. Obviously, the influence of
small pressure implies merely a slight change in the shape
of the FMS transparent region. In this paper, however, our

concern is primarily with the Alfv́en mode, whereas FMS is
of our interest only because it is its source. Following per-
turbation theory, it is the solution of the homogeneous mag-
netosound equation which should be substituted, to represent
9, into the Alfvén Eq. (8). For a qualitative study of the par-
tial solution of the inhomogeneous magnetosound equation,
it is worthwhile to note that the region of localization of the
Alfv én mode, at largem on the right-hand side of the equa-
tion, is dominated by the transverse Laplacian1⊥. It is this
operator, however, which defines the longitudinal (compres-
sional) component of the wave’s magnetic field; as can be
readily ascertained using formulas (3) and (7),

b|| =
ic

ω

1
√

g1g2
1⊥9.

The potential of the Alfv́en mode is not involved in the defi-
nition of the longitudinal magnetic field. However, the trans-
verse Laplacian in the preceding formula is expressed in
terms of8, i.e.

b|| =
cm

ω

1
√

g1g2

Rη

2
8. (11)

Thus, the coupling of FMS with the Alfv́en mode in an inho-
mogeneous magnetic field gives rise to a marked longitudinal
component of the magnetic field in the region of localiza-
tion of the Alfvén wave; see also (Safargaleev and Maltsev,
1986). As far as the electric field and the transverse compo-
nents of the FMS magnetic field are concerned, they are lost
at the background of the corresponding components of the
Alfv én wave because, as can be readily demonstrated,

9 ∼ βm−18 � 8.

Note that magnetosound must not necessarily be the
source of the Alfv́en wave. In particular, whenm � 1 this
mode can be neglected altogether, i.e. its transparent region is
very narrowly localized at the magnetopause (Leonovich and
Mazur, 2001). That is why it is usually believed that high-m

waves must be excited by a source inside the magnetosphere.
Currents in the ionosphere (Leonovich and Mazur, 1993) and
currents in the magnetosphere (Saka et al., 1992) can play the
role of such a source. We now introduce the functionq to de-
scribe all possible sources of the Alfvén mode. Equation (8)
may then be written as

∂1L̂T (ω)∂18 − m2L̂P (ω)8 = q. (12)

3 Toroidal and poloidal modes

As is evident from the expression (7), when the condition
|∂18/

√
g1| � |m8/

√
g2| is satisfied, the electric field of

the Alfvén wave is dominated by the radial component; oth-
erwise the azimuthal component is dominant. On the con-
trary, in the former case the main contribution to the wave’s
magnetic field is made by the azimuthal component; in the
latter case the radial component makes the main contribu-
tion. The wave structure in the former case is determined by
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the toroidal operator, and by the poloidal operator in the lat-
ter case. LetTN andPN denote the eigenfunctions of these
operators. These functions alone do not describe the global
structure of the mode because they are not the solution of
Eq. (12), but they have the role of “scaffolding” for solving
Eq. (12), as will be described in Sect. 4.

Let �T N and �PN denote the eigenfrequencies of the
toroidal and poloidal operators. The difference between
these eigenfrequencies is often referred to as the polarization
splitting of the Alfvén oscillation spectrum. These quanti-
ties are functions of the radial coordinate. Plasma pressure
influences the value of�T N , as well as of�PN , because
the definition of both the toroidal and poloidal operators in-
volves the coefficients of the metric tensor determined by the
equilibrium magnetic field, which, in turn, depends on the
current, i.e. on the derivative of pressure along the radial co-
ordinate. However, pressure is involved explicitly only in the
definition of the operator̂LP in terms of the quantityη. For
that reason, taking it into account has a greater influence on
the value of�PN compared with�T N .

Further, we introduce the notion of the toroidal and
poloidal surfaces defined by the equations

�T N (x1) = ω (13)

and

�PN (x1) = ω. (14)

The graphical solution of these equations is illustrated by
Fig. 1.

Let us designate the distance between toroidal and poloidal
surfaces in the equatorial plane as1N (ω) = x1

T N −x1
PN . By

the order of magnitude, this value is

1N ∼ a
�2

T N − �2
PN

�2
T N

(15)

(see Appendix A). The noncoincidence of the toroidal and
poloidal surfaces is caused by the polarization splitting of
the spectrum, i.e. ultimately, by the field line curvature. Thus
the magnetospheric model under study now involves a pa-
rameter1N which has no analog either in a homogeneous
plasma or in the one-dimensionally inhomogeneous model
with straight field lines.

To study the functionsTN andPN and calculating the fre-
quencies�T N and�PN and the coordinates of the toroidal
and poloidal surfaces, we avail ourselves of the fact that
when β � 1 the difference in the magnetosphere from a
dipole one can be neglected. We considered three models of
magnetospheric plasma: model I corresponds to a low level
of magnetospheric disturbance when a significant time has
elapsed after the storm; model II corresponds to a high level
of disturbance, and model III which also corresponds to a
low level of disturbance but when a short time has elapsed
after the storm. We approximated the plasma pressure by the
expression

P = P0

[
1 − tanh2

(
L0 − L

D

)]
,

ΩPN(x
1)

Ω
P

N
, Ω

T
N

ΩTN(x
1)

x1
PN x1

TN
x1

ω

Fig. 1. The graphical solution of Eqs. (13 and 14): determination
of the positions of the toroidal and poloidal surfaces in terms of the
wave frequencyω and the functions�T N (x1) and�PN (x1).

whereL0 is the coordinate of the magnetic shell, on which
pressure reaches its maximum value, andD is the parame-
ter that determines the characteristic width of the pressure
profile. The coordinate of maximum pressure is taken to be
L0 = 3.5 in the three models. We putD = 2 in model I and
D = 2 in model II, in an attempt to reflect the fact that the
higher the level of magnetic disturbance, the narrower the
localization of the current across the magnetic shells (Sug-
iura, 1972; Lui et al., 1987; Lui and Hamilton, 1992; Miche-
lis et al., 1997), which is related to pressure by the relation
(1). For model III, we tookD = 0.7, because in this case
we take into account the strong current inside of the plasma-
pause (Williams and Lyons, 1974). It is worth noting that
accorging to observational data (Sugiura, 1972) there is no
jump of plasma pressure on the plasmapause. Figures 2a and
b present the radial profiles of pressureP and the currentJ
for models I, II, and III.

As far as the quantityP0 is concerned, its specification is
equivalent to specifying the parameterβ on the shell with
the coordinateL0. In this case we started from the fact that
the higher the level of magnetic disturbance, the higher the
pressure, in general. Accordingly, in model II the maximum
value of beta must be higher than that in model I and III.
We chose the following numerical values. We put the value
of the plasma parameter on the L-shell of maximum pres-
sureβ(L0) = 0.055 for models II and III, andβ(L0) = 0.4
for model I. This parameter is plotted in Fig. 2c. Plots of
the value ofη, that determine the polarization splitting of
the spectrum at finite pressure according to formula (A5)
are presented in Fig. 3. Note that these figures plot the val-
ues of these quantities in the equatorial plane;β andη de-
crease rapidly with the distance from it, because, by virtue of
the MHD equilibrium condition, plasma pressure is constant
along a field line, whereas the magnetic field depends on the
geomagnetic latitude of theta as

B(θ) ∝ fB(θ), fB(θ) ≡ (1 + 3 sin2 θ)1/2 cos−6 θ.
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Noteworthy is the fact that in some regions of the magneto-
sphere (especially in model II and III) the conditionβeq � 1
is violated. Even in such regions, however, the field line-
averaged value ofβ is small compared to unity. Neverthe-

less, no calculations were performed for such regions. Note,
by the way, that for the polarization splitting of the spectrum
(Eq. A5) the value ofη (which is proportional to the parame-
terβ) is involved just in the form of an integral along a field
line.

The function that approximates the Alfvén velocity profile,
with the plasmapause taken into account, was taken from a
paper of Leonovich and Mazur (2000b), with minor modifi-
cations:

A =

{
1

2

[
A1

(
L1

L

)c1

+ A2

(
L2

L

)c2
]

−
1

2
A1[(

L1

L

)c1

− A2

(
L2

L

)c2
]

tanh

(
L − Lpp

Dpp

)}
fB(θ),

whereA1 = 250km/s, A2 = 500km/s, L1 = 2.5, L2 = 5,
c1 = 1.5, c2 = 1. The parameterDpp = 0.1 determines
the width of the plasmapause, and the quantityLpp deter-
mines its coordinate. Since, with increasing magnetospheric
disturbance, the magnetopause is displaced toward the Earth
(see, for example, Chappell et al., 1970), we putLpp = 5.5
for models I and III, andLpp = 3.0 for model II. Figure 2d
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Fig. 4. ToroidalfT N = �T N (x1)/2π and poloidalfPN = �PN (x1)/2π frequencies whenN = 1, 2 for model I.

Fig. 5. ToroidalfT N = �T N (x1)/2π and poloidalfPN = �PN (x1)/2π frequencies whenN = 1, 2 for model II.

Fig. 6. Toroidal fT N = �T N (x1)/2π and poloidalfPN =

�PN (x1)/2π frequencies whenN = 1 for model III.

presents the radial profile of the Alfvén velocityA for models
I, II, III.

It must be added that the models which we have used do
not even reach the limit of the whole variety of conditions in
the magnetosphere. Even at the same value of theKp-index,
the profiles of equilibrium quantities can be quite different;
situations are possible with several plasmapauses, with the
maximum of pressure shifted onto the outer L-shells, etc.
Numerical values in these formulas can also be open to ar-
gument. Nevertheless, these models are, in a sense, extreme
ones and permit the value of the poloidal and toroidal eigen-
frequencies to be judged qualitatively in some limiting and
most interesting cases.

Results of our calculations of the frequencies are shown
in Figs. 4–6 (to ease the comparison with observational data,
the frequenciesfT N,PN = �T N,PN/2π are presented); for
the purposes of illustration we also give the values of these
quantities in a cold plasma forβ = 0. We note once more
that for models II and III, we studied only those regions
whereβ � 1, otherwise we violate the limits of applicability
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of our theory. As is evident, pressure has quite a substantial
influence on the value of the poloidal frequency. For the fun-
damental harmonic (N = 1), at positive values ofη, the dif-
ference of the poloidal and toroidal frequencies is consider-
ably higher than that in a cold plasma, and whenη < 0, pres-
sure leads to a change in the sign of the polarization splitting
of the spectrum in some regions of the magnetosphere (as
is evident from Figs. 4 and 5; in a cold plasma the poloidal
frequency is always less than the toroidal frequency). With
an increase in the harmonic number, the polarization split-
ting of the spectrum decreases, but much more slowly than
in the case of zero pressure. For the second and higher har-
monics, the curves�T N (x1) and�PN (x1) in a cold plasma
practically coinside, whereas in the presence of pressure the
difference�T N −�PN is quite pronounced, even forN ≥ 2
(the plots forN > 2 for models I and II and forN > 1 for
model III are not given here, to save room). Notice also the
appearance of additional extrema of the function�PN (x1) in
models II and III in regions of strong current which are not
accompanied by extrema of the function�T N (x1); in a cold
plasma, the extrema of these two functions occurred at the
plasmapause only.

It is also of interest to investigate the functions1N (ω) for
different N , for different models. Here we confined our-
selves only to model I and II (Figs. 7 and 8). Figure 7
shows that in model I, plasma pressure makes the poloidal
surface shift to more distance magnetic shells compared to
the toroidal surface, whereas in the cold plasma case the
poloidal surface is always closer to the Earth than the toroidal
surface. Furthermore, whenN = 1, even in cold plasma, the
value of1N is relatively large, so that plasma pressure can
contribute to a decrease in the distance between the toroidal
and poloidal surfaces (see Fig. 7a, b). But, on the other hand,
whenN = 2 in cold plasma this distance is very small, and
pressure contributes greatly to its increase. In model II (see
Fig. 8) pressure generally increases the width of the interface
between the toroidal and poloidal surfaces, and it shifts the
poloidal surface even closer to the Earth than it does in cold
plasma (although its behavior may be the opposite for higher
frequencies).

Thus, we can draw the following general conclusion: usu-
ally, pressure contributes to an increase in the polarization
splitting of the spectrum and, hence, to an increase in the
distance between the toroidal and poloidal surfaces.

We now turn our attention to the question of the toroidal
and poloidal eigenfunctions. Using the WKB approxima-
tion in longitudinal coordinate it is possible to find that when
N � 1, even in a cold plasma, these functions differ rather
strongly from one another (Leonovich and Mazur, 1993).
At small N , the form of the functionsTN (x3) andPN (x3)

can only be determined numerically, but it is the waves with
smallN which manifest themselves in the form of geomag-
netic Pc 3-5 pulsations addressed in this paper. Results of
our calculations of these functions forN = 1, 2 for model I
are presented in Fig. 9. It is evident from the plots that for
the first two harmonics, the differences between the poloidal
and toroidal eigenfunctions are reasonably small. In models

II and III, this conclusion remains valid. Based on the fact of
the small difference in the functionsTN (x3) andPN (x3) that
determine the longitudinal structure of long-period Alfvén
waves, in the next section we shall bring the partial differen-
tial Eq. (12) to an ordinary differential equation, describing
the structure of the wave across magnetic shells.

The question arises as to whether it is possible to ex-
tend our results to a more general case where the inequal-
ity β � 1 does not hold. Klimushkin (1998a) studied the
structure of MHD waves for arbitraryβ, but with m � 1.
There exist two modes of MHD oscillations in that limit: the
Alfv én mode and the slow magnetosound mode (SMS); in
them � 1 case fast magnetosound (FMS) can be neglected
(whereas at this point we consider arbitrarym, but β � 1,
so Alfvén mode and FMS exist, but SMS is unimportant).
The coupled Alfv́en and SMS modes are described by the
system of Eqs. (36) and (37) of the cited reference. A study
of this system showed that whenβ ∼ 1, in addition to the
Alfv én resonance surface (toroidal surface), there arises the
SMS resonance surface, with which one more poloidal sur-
face is associated. It is easy to show, however, than when the
toroidal frequency far exceeds the SMS resonance frequency,
the equation, corresponding to the Alfvén, reduces approxi-
mately to Eq. (12) of this paper, but with no terms containing
9 (the absence of these terms is, of course, accounted for
by the fact that they are responsible for the FMS which is
absent in the limitm � 1). Further, numerical calculations
performed by Cheng et al. (1993) and Lui and Cheng (2001)
showed that the SMS resonance frequency is indeed much
lower than�T N (and the cited authors did not introduce the
limitation β � 1). The reason seems to lie in the above-
mentioned fact that even if at the equatorβeq ∼ 1, at high
latitudes beta decreases rapidly, due to the crowding of field
lines. Hence, we can conclude that the Eq. (12) describes
qualitatively the Alfv́en waves, even ifβeq ≤ 1.

4 The equation for the Alfvén wave structure across
magnetic shells

The toroidal and poloidal modes are two limiting cases of
Alfv én waves in the magnetosphere. If their longitudinal
structure differs little from one another, then it can be sug-
gested that the longitudinal structure of field line oscillations
differs little from the toroidal function in the general case as
well. Then8 may be represented as

8 = RN (x1)TN (x1, x3) + δ8N , (16)

whereδ8N is a small correction. Let us assume that the
Alfv én wave is sufficiently narrowly localized across mag-
netic shells, and the regions of localization of differentN-
harmonics do not cross each other. Since the characteristic
scale of variation of the functionTN across magnetic shells
coincides by the order of magnitude with the scale of varia-
tion of the equilibrium parametersa (roughly speaking, with
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Fig. 7. Distance between the toroidal and poloidal surfaces1N (ω) for model I: (a) inside the plasmasphere whenN = 1, (b) outside the
plasmasphere whenN = 1, (c) inside the plasmasphere whenN = 1, and(d) outside the plasmasphere whenN = 2.

Fig. 8. Distance between the toroidal and poloidal surfaces1N (ω) for model II outside the plasmasphere:(a) whenN = 1, and(b) when
N = 2.

the size of the magnetosphere), we can formulate a limitation
on the functionRN :∣∣∣∣ 1

RN

∂1RN (x1)

∣∣∣∣ �

∣∣∣∣ 1

TN

∂1TN (x1, x3)

∣∣∣∣ . (17)

To determine the radial structure of the wave specified by
the functionRN , we use the method of successive approx-
imations by treating the deviation of the function8 from
the toroidal function as a small perturbation. We substitute
Eq. (16) into Eq. (12), multiply the resulting expression by
TN and integrate along the field line from the pointx3

− to

x3
+ of the intersection of a field line with the ionosphere; in

doing this, we neglect small terms:

∂1(ω
2
− �2

T N )∂1RN − m2RN

〈
TN L̂P (ω)TN

〉
= 〈TNq〉. (18)

The derivation of this equation was based on using the nor-
malization conditions for the functionTN (Eq. A2) and the
Hermitian character of the operatorL̂T .

We transform the second term on the left-hand side of
Eq. (18) by making use of the Hermitian nature of the
operator L̂P and introducing a difference between the
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Fig. 9. ToroidalTN and poloidalPN eigenfunctions whenN = 1, 2
(model I,L = 6).

toroidal and poloidal eigenfunctionsφN = PN − TN :

〈
TN L̂P (ω)TN

〉
=

〈√
g

g2

T 2
N

A2

〉
(ω2

− �2
PN ) +

〈
φN L̂P (�PN )φN

〉
.

Since the value ofφN is assumed small, the second term on
the right-hand side can be neglected. As a result, we obtain
an ordinary differential equation describing the radial struc-
ture of the wave:

∂1(ω
2
− �2

T N )∂1RN − K2
N (ω2

− �2
PN )RN = qN . (19)

Here the following abbreviations are used:

K2
N = m2

〈√
g

g2

T 2
N

A2

〉
,

qN = 〈TNq〉.

Using numerical calculations it was established that the value
of KN coincides by the order of magnitude with the az-
imuthal component of the wave vector in the equatorial plane
m/L (Fig. 10).

In publications on MHD waves in a two-dimensionally
inhomogeneous magnetosphere, Eq. (19) was, for the first
time, reported by Leonovich and Mazur (1997), who also
solved it numerically. An important difference in our article
from that paper is the fact that we obtained this equation for
plasma with finite pressure.

It remains to add a boundary condition for this equation.
A natural boundary condition with respect to the radial co-
ordinate is the absence of any increase in the potential when
x1

→ ∞:

|RN (x1
→ ±∞)| < ∞. (20)

4 6 8 10

L , [RE]

0.08

0.12

0.16

0.2

0.24

0.28

K
N

,
[R

E
-1
]

1/L

N=1

N=2

Fig. 10.Plot of the functionKN , an analogy of the physical value of
the wave vector azimuthal component, whenm = 1, andN = 1, 2.
For comparison, the plot of the function 1/L is shown.

5 Alfv én waves with the toroidal and poloidal polariza-
tion in different regions of the magnetosphere

At this point we introduce the quantityνN ≡ KN1N , the
number of azimuthal wavelengths fitting into the transparent
regions. Since the estimation (Eq. 15) holds and, by the order
of magnitude,KN ∼ m/a, one has

νN ∼ m
�2

T N − �2
PN

�2
T N

.

There are two possible limiting cases:νN � 1, andνN � 1,
which will be considered in Sects. 5.1 and 5.2. Section 5.3
addresses the waves in those regions where the function
�PN (x1) reaches its extreme values.

5.1 CaseνN � 1: localized toroidal modes

Within theνN � 1 approximation, the differences between
the toroidal and poloidal surfaces can be neglected. This
means that within this approximation the field line curva-
ture is unimportant, and the wave structure qualitatively coin-
cides with the wave field described in earlier publications on
field-line resonance (Tamao, 1965; Southwood, 1974; Chen
and Hasegawa, 1974). Since in most of the magnetosphere
the functions�2

T N (x1) and�2
PN (x1) are monotonically de-

creasing ones, we can avail ourselves of the linear expansion
(Eq. A6). Equation (19) then becomes

∂1(x
1
− x1

T N )∂1RN − K2
N (x1

− x1
T N )RN = qNω−2a (21)

(cf. Tataronis and Grossman, 1973). Note thatx1
T N is a func-

tion of the wave frequencyω. Next, we introduce a new vari-
ableζ = KN (x1

− x1
T N ). The solution to Eq. (21) bounded

in the radial coordinate, according to Eq. (20), is then written
in terms of the modified Bessel functionsI0(ζ ) andK0(ζ ):
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c

n = 1

n = 0

Φ

x 1
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b

Φ

Φ

x 1

x 1

Fig. 11. Three kinds of wave structure across magnetic shells: lo-
calized resonance(a), traveling wave(b), and standing wave in the
resonator(c). The relation between the Alfvén wave “potential”8,
shown in the figure, and the functionRN used in the text is given
by formula (16).

RN = qNK−1
N ω−2a

·



[
K0(ζ )

(
i −

ζ∫
0

I0(ζ
′)dζ ′

)
− I0(ζ )

∞∫
ζ

K0(ζ
′)dζ ′

]
when x1 > x1

T N ,

[
K0(−ζ )

(
i −

ζ∫
0

I0(−ζ ′)dζ ′

)
+ I0(−ζ )

ζ∫
−∞

K0(−ζ ′)dζ ′

]
when x1 < x1

T N .

(22)

The relation betweenRN and the “potential” of the Alfv́en
wave is given by the formula (16), where the functionTN

(it will be recalled) depends relatively slowly on the radial
coordinate. In Fig. 11a, we show the transverse structure of
the wave field described by the solution (22).

On the toroidal surface this solution has a logarithmic sin-
gularity,

RN ∼
qN a

KNω
ln [ω2

− �2
T N (x1)], (23)

which, since classical publications of Chen and
Hasegawa (1974) and Southwood (1974), has been re-
garded as the distinctive property of Alfvén resonance. The
singularity can be regularized by taking into account the

presence of finite conductivity of the ionosphere, in view
of which the boundary condition on the functionδ8N is
formulated thus:

δ8N |x3
±

= ∓

(
i
c2 cosχ

4π6p

RN e|| · ∇TN

)
x3
±

, (24)

whereχ is the angle between the field line and a normal to
the ionosphere, and6p is global Pedersen ionospheric con-
ductivity (Leonovich and Mazur, 1993). Then in Eq. (19)
there appears an additional term〈
TN L̂T (�T N )∂2

1δ8N

〉
= 2iγNω ≡ i

∑
j=x3

±

[
g2
√

g

c2 cosχ

4π6p

(∂3TN )2

]
j

,

whereγN is the mode damping decrement at the ionosphere
(its value is assumed small compared to the wave frequency,
which reflects high ionospheric conductivity). This term van-
ishes in the case of infinite ionospheric conductivity. This
gives rise to a small imaginary addition tox1 in formula (21),
Im x1

= εN ≡ 2γNa/ω (sinceγN/ω � 1, thenεN/a � 1).
In view of this correction whenx1

' x1
T N (ω), the solution

behaves as8N ∝ ln [x1
+ iεN − x1

T N (ω)]. Hence, it fol-
lows that on the toroidal surface (that is, on a magnetic sur-
face, where toroidal eigenfrequency is equal to the wave fre-
quency) there occurs a sharp wave amplitude peak, the char-
acteristic scale of localization of whichεN/a � 1. And,
on the contrary, at a given magnetic shell the wave has a
maximum amplitude in the case where the toroidal eigen-
frequency at it coincides with the wave’s frequency. As is
apparent from Fig. 11a, the wave, whenν � 1, may be de-
scribed as a localized resonance, having a toroidal polariza-
tion throughout the region of its existence.

Notice that the mode can be toroidal even whenm � 1,
provided only that the inequalityνN � 1 holds. An example
of this is just the magnetospheric model with straight parallel
field lines where the polarization splitting of the spectrum is
absent altogether, i.e.νN = 0 for any azimuthal wavelengths.
Thus, a large value of the azimuthal wave number is not a
sufficient condition of the poloidal polarization of the Alfvén
wave.

Another feature of this solution is the change in the wave
phase by 180◦, i.e. the change in sign of the ratioE2/E1 at
the crossing of the toroidal surface. This is obvious from the
fact that for the Alfv́en wave we have∂2E1 − ∂1E2 = 0,
whence it follows that (Southwood, 1974)

E1

E2
=

1

im

∂1E2

E2
. (25)

In this case,E1 ∝ (x1
− x1

T N )−1, i.e. whenx1 > x1
T N (ω)

andx1 < x1
T N (ω) the logarithmic derivative of the function

E1(x
1) has a different sign. We shall return to the relation

(25) in Sect. 3.
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5.2 CaseνN � 1: poloidal modes that transform into
toroidal ones

To solve Eq. (21) forνN � 1, we can avail ourselves of
the method of matching asymptotic expansions. For the time
being, we consider the situation where the toroidal frequency
is larger than the poloidal frequency. In this casex1

T N >

x1
PN . The magnetospheric regions in which this inequality

is realized in models I–III is evident from Figs. 4–8. The
details of the calculations are given in Appendix B, and here
we restrict ourselves to the final answer only.

In the region|x1
− x1

T N | � 1N the solution is

RN = CT · K0

2

√
x1 − x1

T N

λT N

 , (26)

where

λT N = 1Nν−2
N

is the characteristic wavelength near the toroidal surface and
CT is a constant defined by Eq. (B3). In the region|x1

−

x1
PN | � 1N the solution can be written in the integral form

(Leonovich and Mazur, 1993):

RN (zP ) = iqNK2
N1N

∫
∞

0
dt exp

(
it

x1
− x1

T N

λPN

−
it3

3

)
, (27)

where

λPN = 1Nν
−2/3
N (28)

is the characteristic wavelength near the poloidal surface. In
the regionx1

PN < x1 < x1
T N , where the WKB approxima-

tion is applicable, the solution is

RN = CW

[
K2

N (x1
− x1

PN )(x1
T N − x1)

]−1/4

expi

x1∫
x1
PN

k1(x
1′

)dx1′
, (29)

whereCW is a constant defined by Eq. (B4) and

k2
1 = K2

N

ω2
− �2

PN (x1)

�2
T N (x1) − ω2

(30)

is a radial component of the wave vector squared. The func-
tion 8 = TNRN determined by Eqs. (26)–(29) is plotted in
Fig. 11b. We emphasize once again that the functionsTN and
PN introduced in Sect. 3 and used in many other publications
do not describe on their own accord the wave structure in
the magnetosphere, as they are not the solutions of the wave
Eq. (12).

Let us discuss the main features of this solution. As in
the caseνN � 1, the wave field in the caseνN � 1 has a
logarithmic singularity on the surfacex1

= x1
T N

RN ∼
2qN1Na

ν2
Nω2

(
λPN

λT N

)1/4

ln [ω2
− �2

T N (x1)], (31)

which is also regularized by taking into account the finite
ionospheric conductivity. However, the term before the loga-
rithm differs from the one in the caseνN � 1 (cf. Eq. (23)).
Besides, in that case the function8(x1) was a monotonic
one on both sides of the resonance surface (see Fig. 11a),
whereas in the caseνN � 1 this function is an oscillating
one in the interface between the surfacesx1

T N andx1
PN , in-

cluding in the region of toroidal polarization of the mode, as
is clearly seen from the asymptotic representation (Eq. (B1))
given in Appendix B, as well as from Eq. (30).

As is evident,k1 is a function of the wave frequencyω,
i.e. the field line curvature also leads, along with the polar-
ization splitting of the spectrum, to the appearance of the
Alfv én wave dispersion across magnetic shells. The wave’s
transparent region (i.e. the region wherek2

1 > 0) lies be-
tween the toroidal and poloidal points. This solution de-
scribes the wave, the phase velocity of which is directed from
the poloidal to the toroidal surface. The wave’s group veloc-
ity is determined from the relation

v1
gN =

(
∂k1

∂ω

)−1

=
(ω2

− �2
PN )1/2(�2

T N − ω2)3/2

2ωKN (�2
T N − �2

PN )
. (32)

As is apparent,v1
gN > 0, i.e. the wave energy is also trans-

ported from the poloidal to the toroidal surface. By the order
of magnitude, the group velocity

v1
gN ∼ A

(
1N

a

)2

ν−2
N ,

i.e. it is much less than the Alfvén velocity. On the poloidal
and toroidal surfaces the group velocity becomes zero.

If the poloidal surface is farther away from the Earth than
the toroidal surface, then the solution coincides qualitatively
with the solution forx1

T N > x1
PN . But there is one differ-

ence: the phase velocity of the wave is directed from the
toroidal to poloidal surface. Nevertheless, energy is trans-
ferred, as before, from the poloidal to the toroidal surface.
This is evident from the fact that when�T N < �PN , the
group velocity is negative.

Thus, we arrive at the following picture. The wave is
generated near the poloidal surface and propagates toward
the toroidal surface where it is totally attenuated, transfer-
ring its energy to the ionosphere due to its finite conduc-
tivity. Furthermore, the wave is a standing wave along
field lines. As the wave is propagating, the radial wave-
length decreases and its polarization changes from poloidal
to toroidal. We can call this phenomenon the transforma-
tion of the poloidal mode to a toroidal mode. Leonovich
and Mazur (1993) were the first to establish this picture
for the case of a cold plasma (β = 0). The propagation
of Alfv én waves across the L-shells in a finite-β plasma
was studied by Safargaleev and Maltsev (1986), Kouznetsov
and Lotko (1995), and Klimushkin (1997, 1998a). Besides,
Klimushkin et al. (1995) explored the transverse propaga-
tion within the approximationβ = 0, but with the three-
dimensional inhomogeneity of the magnetosphere taken into
account.
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WhenνN � 1 the mode is confined between the poloidal
and toroidal surfaces, i.e. its scale of localization is deter-
mined by the field line curvature. This contrasts with the
caseνN � 1 when the scale of localization of the wave is
determined by the mode dissipation from the ionosphere. It
is of interest to consider the situation whereνN � 1 but
1N � εN , i.e. the scales of localization that are deter-
mined by the curvature and attenuation, compete with each
other. It is easy to see that in this case the attenuation at the
ionosphere is so strong that while propagating across field
lines, the mode is now dissipated within a small distance
from the poloidal surface without reaching the toroidal sur-
face (Klimushkin, 2000).

5.3 Waves withm � 1 in the range of extreme values of
the function�PN (x1): localized poloidal modes

In some magnetospheric regions the mode is bounded on ei-
ther side by poloidal surfaces. They are magnetic shells near
minima of the function�PN (x1), if �PN < �T N holds
there, and regions near maxima of this function, if an inverse
inequality holds there (see Figs. 4–6). The cavity between
two poloidal surfaces will be henceforth referred to as the
Alfv én resonator. At zero pressure the resonator can lie on
the inner plasmapause edge only. Finite pressure in mod-
els I and II leads to the elimination of the resonator, because
the poloidal frequency becomes larger than the toroidal fre-
quency; instead, there arises a resonator on the outer edge
of the plasmapause. In model II, the resonator is produced
in the westward current region. In model III, the resonator
arises inside of the plasmasphere in the eastward current re-
gion; the westward current in model III that was accidentally
coincident with the plasmapause led to a deepening of the
resonator on the inner edge of the plasmapause (the situation
is even possible where�2

PN < 0 in this model, and this will
be discussed below). Note that the appearance of cavities
in the region of currents requires a rather rigorous selection
of equilibrium conditions, unlike the cavities in the plasma-
pause region.

We now derive the equation describing the radial structure
of the mode within the resonator near the extremum of the
function�PN (x1); we designate this value by�0. For def-
initeness, we consider the resonator on the outer edge of the
plasmapause where the following representation can be used:

�2
PN (x1) = �2

0

1 −

(
x1

l

)2
 , (33)

where the quantityl defines the characteristic width of the
resonator, and the coordinatex1 is measured from the point
of extremum. The coordinates of the poloidal surfaces that
bound the mode within the resonator are

b = ±l

(
ω2

− �2
0

�2
0

)1/2

.

Whenx1
' 0 the toroidal frequency can be considered ap-

proximately constant if�2
0−ω2

� �2
0−�2

T N . We introduce
a new variableξ = x1/λRN , where

λRN =

(
l

KN

)1/2
(

�2
0 − �2

T N

�2
0

)1/4

. (34)

Equation (19) then becomes

d2RN

dξ2
+ (σ − ξ2)RN =

qNλRN

�2
0 − �2

T N

, (35)

where the designationσ = b2/λ2
RN is introduced. It is an

easy matter to show that this equation defines the structure
of the mode within the resonator in the general case, and not
only on the outer edge of the plasmapause.

In contrast to the situations considered in two previous
subsections, this equation has the solution that satisfies the
boundary condition – Eq. (20) – even without a source,
qN = 0. In this case Eq. (35) has the same form as one of
the best known equations of physics, the Schrödinger equa-
tion for the harmonic oscillator. As is known, the existance
of the solution requires that the parameterσ be quantized,
σ = 2n + 1, wheren = 0, 1, 2, ... is an integer number.
From this follows the quantization condition for the wave
frequency:

ω2
= ω2

n ≡ �2
0 ∓ �2

0
λ2

RN

l2
(2n + 1). (36)

Here the “−” sign refers to the case where the resonator is
localized near a maximum of the function�PN (x1), and the
“+” sign corresponds to the opposite case. The solution of
Eq. (35) is expressed in terms of Hermitian polynomialsHn:

RN = const · Hn(ξ) e−ξ2/2. (37)

This solution describes the standing wave confined within the
transparent region between poloidal surfaces (Fig. 11c).

When the right-hand side is nonzero,qN 6= 0, Eq. (35)
has the solution bounded whenx1

→ ±∞, at any frequency.
However, the amplitude of the solution of the inhomoge-
neous equation is still maximal whenω ' ωn, and under
this condition function Eq. (37) is an approximate solution
of Eq. (35). We do not give here any mathematical details,
as they may be found in, for example, a paper of Leonovich
and Mazur (1995).

SinceH0, whenn = 0 the wave equation is described by
the Gaussian function with the half-widthb. It is a very im-
portant result, because in many observed cases of poloidal
pulsations the amplitude is indeed close to a Gaussian (e.g.
Chisham et al., 1997; Cramm et al., 2000). Note that this
result is the solution if the wave equation and is not a con-
sequence of any assumptions of the initial conditions. The
derivative of the functionE2(x

1) = −im8 on different
slopes of the Gaussian has a different sign; therefore, in ac-
cordance with formula (25), the transition through the region
of localization of the mode must be accompanied by a change
in the wave phase by 180◦. This phenomenon has already
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been pointed out by considering an example of the localized
resonance (Sect. 5.1). In this case, however, the mode can not
be toroidally polarized. Indeed, it is an easy matter to check
that the inequality|E1/

√
g1| � |E2/

√
g2| has as a conse-

quence the inequalityω2
0 − ω2

1 � �2
0 − �2

T N , indicating
that the resonator is so shallow that no harmonic is accom-
modated in it. On the contrary, the mode in the resonator
is poloidal if the resonator is deep enough. The question of
the conditions of the poloidal and toroidal polarization of the
wave will be discussed in greater detail in the next section.

In the plasmapause region the situation is also possible
where the transparent region is bounded on either side by two
toroidal surfaces (see, for example, Fig. 4b). This may pro-
duce the impression that the solution of the wave equations in
this case describes a double resonance when two maxima of
the amplitude lying atx1

= x1
T N are interconnected by a con-

tinuous transparent region. However, such a solution does
not satisfy the natural boundary conditions of the decrease
in the opaque region. Indeed, as has been pointed out in the
preceding subsection, the solution bounded by the opaque re-
gion which describes a resonance singularity, has the form of
a wave arriving at the singular turning point. But there can-
not be a wave arriving at two turning points simultaneously.
In fact, the solution in this region does not contain any reso-
nance singularities and, in essence, describes the noise back-
ground of hydromagnetic oscillations of the magnetosphere
(Klimushkin, 1998b).

Previous studies of the resonator in the plasmapause re-
gion were carried out by (Leonovich and Mazur, 1990, 1995;
Vetoulis and Chen, 1996; Klimushkin, 1998b; Denton and
Vetoulis, 1998). The possibility of existence of the res-
onator on the current inside the plasmasphere was showed
by Klimushkin (1998b).

6 Discussion

6.1 The conditions of the poloidal and toroidal polarization
of Alfv én waves

The poloidality condition of the Alfv́en mode in a general
form implies that the radial wavelengthλr far exceeds the
azimuthal wavelengthλa . For the toroidal polarization, an
inverse inequality,λr � λa , must hold. This may produce
the impression that the toroidal and poloidal polarizations are
equivalent. This is in fact not the case.

If somewhere in the magnetosphere the equality (Eq. 13)
holds, i.e. at some wave frequency there is a toroidal surface,
then on this magnetic shell there is a wave field singularity,
in the area of which the mode has a toroidal polarization. But
the existence of Eq. (14) is only necessary but not sufficient
for the poloidal polarization of the mode. As an example,
we consider the case of the wave traveling from the poloidal
the to toroidal surface. In this case the radial wavelength
near the poloidal surface is given by formula (28). By the
order of magnitude,λa ∼ a/m, we avail ourselves of the

estimation (Eq. 15) to obtain the poloidality condition of the
modeλr � λa in the form

|�2
T N − �2

PN |

�2
T N

�
1

m
, (38)

which coincides with the condition of applicability of the
WKB approximation in the radial coordinate (νN � 1). If
this approximation is applicable and if there exists the solu-
tion of Eq. (14), the Alfv́en wave must have a poloidal po-
larization in a part of its transparent region, near the poloidal
surface. If, however, the inequality does not hold, then even
near the surfacex1

PN the mode is not poloidal. Hence, more
stringent conditions are required for the poloidal polarization
of the wave than for the toroidal polarization.

This gives us a clue to an understanding of the situation
when νN ∼ 1, where it is impossible to develop approxi-
mate methods for solving Eq. (19). In this case there also
occurs an Alfv́en resonance accompanied by the toroidal po-
larization of the mode, and since the poloidality condition
does not hold anywhere, the mode in the region of its ex-
istence has predominantly a toroidal polarization with some
addition of the poloidal component in some places where the
wave amplitude is substantially smaller. This is also con-
firmed by numerical calculations performed by Leonovich
and Mazur (1997). Thus, we can conclude that whenνN ≤ 1
the mode has predominantly a toroidal polarization through-
out the region of its existence.

Generally, plasma pressure contributed to the poloidal po-
larization of the mode, as it leads to an increase in the po-
larization splitting of the spectrum and to an increase in the
width of the transparent region. Moreover, in the case of
finite pressure in some regions of the magnetosphere the
poloidality condition can be satisfied, even form values
(m ' 10, say), that are not very large. Alfvén waves with
such m values still can be generated through the interac-
tion with FMS, i.e. the resonance excitation of Alfvén os-
cillations by magnetosound can also give rise to poloidally
polarized waves. Such a possibility was, for the first time,
pointed out by Kouznetsov and Lotko (1995), who consid-
ered the possibility that the poloidal surface can lie between
the toroidal surface and the transparent region of FMS (they
called the wave propagating across magnetic shells as the
“Alfv én buoyancy wave”). But the widest transparent re-
gion accommodating even low-m waves is produced in the
case where plasma pressure causes the poloidal surface to
be displaced significantly toward the Earth. Just such a sit-
uation arises in model III whenN = 1 (see Fig. 5). The
width of the transparent region in this case can reach sev-
eral terrestrial radii (see Fig. 8). Note, by the way, that in
the case of very wide transparent regions, our results should
be regarded with caution, because when deriving Eq. (19),
it was assumed that the transparent region was significantly
narrower than the magnetosphere. Leonovich and Mazur’s
(1993) two-dimensional WKB approximation is more suited
for investigating wide transparent regions.

In the case where the mode is confined within the res-
onator, the general poloidality conditionλr � λa is trans-
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formed in a somewhat different manner:λRN � m/L,
where the characteristic wavelength in the resonator,λRN ,
is defined by the equality (34). After some arithmetic, from
this we obtain

l

L

∣∣∣∣∣ �2
0

�2
0 − �2

T N

∣∣∣∣∣
1/2

�
1

m
. (39)

A maximum width of the resonator is

bmax = l

∣∣∣∣∣�2
0 − �2

T N

�2
0

∣∣∣∣∣
1/2

.

By combining the two last formulas, we obtain the poloidal-
ity condition in the resonator at the plasmapause in the form

mbmax

L
� 1, (40)

i.e. the resonator must accommodate many azimuthal wave-
lengths. The same poloidality condition can also be obtained
for the resonator in the ring current region. As is evident, the
conditionνN � 1 is also satisfied for the poloidal mode in
the resonator, if the width of the transparent region is meant
to be a maximum width of the resonator. Again, finite pres-
sure favors the fulfilment of the poloidality condition: rather
wide cavities appear on the outer edge of the plasmapause
in models I and III (bmax ∼ 1RE) for all N that have been
studied, and in the wing current region in models II and III
(bmax ∼ 2RE , and∼ 0.5RE , respectively) whenN = 1.

It is also important to remark that the higher the harmonic
numberN , the smaller the relative polarization splitting of
the spectrum|�2

T N − �2
PN |/�2

T N , and the more difficult it
is to satisfy the poloidality condition. This is obvious from
our Figs. 4 and 5, showing how much the difference between
the poloidal and toroidal frequencies decreases when passing
from N = 1 to N = 2; at even higherN , this difference
is still smaller. Hence, the lower the wave frequency, the
smaller the values of the azimuthal wave number, at which it
can be poloidal.

Noteworthy is also the fact that in the case of large and
smallνN at a given value of the sourceq, the wave amplitude
near the resonance (toroidal) surface is different, because the
terms of the resonance logarithm are different in these two
cases. As is seen from Eq. (23), the wave amplitude is in-
dependent ofνN , whereas whenνN � 1 it decreases with
increasingνN (Eq. 31). From this it is easy to find that in the
case of largeνN the wave amplitude near the resonance sur-
face is by a factor ofν2/3

N � 1 smaller compared to smallνN .
Thus, if magnetospheric conditions are conducive to the ex-
istence of poloidally polarized waves, at the same time they
make the toroidally polarized waves less clearly pronounced.

6.2 On the observation of toroidal and poloidal Alfvén
waves in the magnetosphere

We now compare the picture outlined above with the exper-
iment. However, we are not yet fully prepared for this en-
deavor, because currently, available theories are still too con-
cerned with simplified models. We still do not fully know

what changes can be introduced into this picture by the az-
imuthal inhomogeneity of the magnetosphere and the associ-
ated field-aligned currents, the wide-band character and the
possible narrow localization of oscillation sources, the inter-
action of waves with particles drifting in the magnetosphere,
and the active role of the ionosphere. Work in this direc-
tion is underway, and this is testified by recently published
papers addressing these issues (Salat and Tataronis, 1999;
Klimushkin et al., 1995; Mann et al., 1997; Leonovich, 2000;
Antonova et al., 2000; Vetoulis and Chen, 1996; Klimushkin,
2000; Glassmeier et al., 1999a; Leonovich and Mazur, 1996).
However, the creation of a unified realistic model of MHD
waves in the magnetosphere is a long way from now. Ob-
servations and experiments can have a leading role in such
efforts, and at the present stage we need at least to under-
stand whether the picture available to us has anything to do
with the information provided by experiments.

Observations from the ground recorded repeatedly nearly
monochromatic toroidal Alfv́en waves in the Pc 4-5 range,
which showed characteristic properties of a localized reso-
nance described in Sect. 5.1: a strong localization of the wave
across L-shells, toroidal polarization, and a phase change by
180◦ at the passage across the resonance peak (Samson et
al., 1971; Walker et al., 1979; see also Fenrich and Sam-
son, 1997; references therein). On the other hand, it was
pointed out earlier (Glassmeier et al., 1999b) that when ob-
served from satellites, these features of the localized reso-
nances were never identified, in spite of the vast occurrence
of toroidal pulsations. A likely explanation for this paradox
would be to assume that most of the monochromatic ULF
waves in the magnetosphere in the Pc 5 range have large az-
imuthal wave numbers andνN � 1. In this case the oscil-
lations are no longer a localized resonance, and the behavior
of their phase is much more complicated than in the case
νN ≤ 1, which corresponds to a localized resonance: when
νN � 1 the Alfvén wave travels across magnetic shells, hav-
ing close to the toroidal surface a very small radial compo-
nent of the wave vector. If this is indeed the case, then the
chance to capture in the magnetosphere a localized resonance
is relatively poor. Further, the atmosphere comes into play
which has the role of a filter transmitting to the ground only
waves with a sufficiently smooth dependence of the field on
transverse coordinates; thus, the waves withm � 1 almost
do not penetrate through the atmosphere (e.g. Hughes, 1974;
Glassmeier and Stellmacher, 2000). For that reason, obser-
vations from the ground provide a distorted picture of the
wave processes in the magnetosphere. Because of the influ-
ence of the ionosphere, only localized resonances are able to
penetrate to the ground, and they are the ones that are ob-
served from the radars and magnetometers. In the absence
of a detailed theory that would take into account the factors
mentioned in the preceding paragraph, this hypothesis must
be regarded only as a preliminary explanation for this para-
dox. But it clearly demonstrates how important it is to take
into account the entire body of theoretical knowledge when
interpreting experimental data.

We now turn our attention to poloidal pulsations. Space
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experiments show that they occur much more rarely
than toroidal pulsations. For instance, according to the
AMPTE/CCE data (Anderson et al., 1990), about five
toroidal pulsations correspond to one poloidal pulsation.
This is consistent with our conclusion that for the poloidal
polarization of the wave, more stringent conditions are re-
quired than those for the toroidal wave. Furthermore, the oc-
currence rate of radially-polarized pulsations decreases with
the increasing harmonic numberN . This is readily illustrated
by dynamic spectrograms obtained by Takahashi et al. (1984)
from the ATS 6 and SMS 1 and 2 satellite data: whenN ≥ 3
the azimuthal component of the magnetic field of the pulsa-
tions is distinguished much more clearly than the radial com-
ponent. Within the framework of our theory, this fact is read-
ily explained, because with the increasing harmonic num-
ber, the poloidality conditions are satisfied even less. On the
other hand, the second harmonic of radially polarized waves
with azimuthal wave numbers from 20 to 150 is very often
recorded in the magnetosphere. In this case, in a cold plasma
the left-hand side of the inequality involved in the poloidality
condition (38) forN = 2 makes up no more than 1%; there-
fore, this condition can only be satisfied for pulsations with
unrealistically large azimuthal wave numbers,m � 100.
Taking finite pressure into account saves the situation, since
in this case the left-hand side readily reaches the values 10–
20%, and the waves withN = 2 andm ∼ 20 − 150 may
well have a poloidal polarization. An indication of the im-
portant role of finite pressure in the formation of these waves
is also provided by the existence of a substantial longitudi-
nal component of the magnetic field observed in a number of
poloidal pulsations (e.g. Hughes et al., 1979), as it can reach
marked values for Alfv́en waves only in the case of finiteβ
(see Eq. 11).

Singer et al. (1982) and Engebretson et al. (1992) consid-
ered the radially polarized Pc 4 pulsations events which are
strongly localized across magnetic shells. One would expect
that these pulsations were the excitations of the Alfvén res-
onator described in Sect. 5.3. Cramm et al. (2000) explored
a poloidal Pc 4 pulsation observed by the Equator-S satellite.
An analysis showed that this pulsation was nearly monochro-
matic and very narrowly localized across magnetic shells (a
Gaussian with the half-width of about 0.1RE), and there was
a phase change by 180◦ at the transition through the region
of localization. Such a behavior is characteristic for poloidal
waves confined within the resonator. The authors made an
estimate of the azimuthal wave number using reasoning sim-
ilar to ours in Sect. 6.1, and obtained the value ofm ' 150.
Of course, it is necessary to understand where this resonator
was localized in any particular case, but the relevant infor-
mation is not always available.

One of the resonators must be localized on the outer
boundary of the plasmapause. In all likelihood, radi-
ally polarized waves that are confined within this resonator
represent a reasonably widespread phenomenon. Singer
et al. (1982) reported ISEE-1, 2 satellite observations of
poloidal waves which were strongly localized across the L-
shells in this region. Takahashi and Anderson (1992) showed

the presence of a marked increase in intensity of poloidal
waves near the plasmapause using AMPTE/CCE data. In all
of these cases the scale of localization across the magnetic
shells was≤ 1RE . This is in good agreement with the as-
sumption that in these cases, the poloidal waves were eigen-
modes of the resonator in the plasmapause region.

It seems likely that the same can also be said of one of
the most interesting varieties of poloidally polarized waves,
giant pulsations (Pg). These nearly monochromatic waves
are usually observed during quite geomagnetic conditions,
when the plasmapause lies somewhere atL ∼ 5.5 − 6, and
giant pulsations (Pg) are recorded just there. Rostoker et
al. (1979) were the first to notice this. The assumption that
Pg are resonator modes on the outer edge of the plasmapause
is consistent with the strong localization of Pg across mag-
netic shells accompanied by a phase change by 180 degrees
(Green, 1979; Rostoker et al., 1979; Glassmeier, 1980), and
the amplitude distribution inL is described by the Gaussian
function with the halfwidth of about 1RE (Chisham et al.,
1997), and this is indeed expected for the fundamental ra-
dial harmonic within the resonator on the outer edge of the
plasmapause. The poloidality condition (40) for the values
of m ∼ 20 observed in Pg in the models which we have stud-
ied, is satisfied, though without a very large reserve. On the
other hand, it seems feasible to rule out the possibility that Pg
are Alfvén waves traveling across magnetic shells. Satellite
observations do not show any indications of the transforma-
tion of poloidal Pg-wave to toroidal waves (Takahashi et al.,
1992; Glassmeier et al., 1999a). Here it is very important
to make reference to satellite experiments, because such a
transformation is also impossible to notice from the ground:
at the samem the transverse component of the wave vector

k⊥ =

√
(k2

1/g1) + (m2/g2) in poloidal waves (k1 = 0) is
much smaller than that in toroidal waves (k1 → ∞); there-
fore, whenνN � 1, only the oscillations near the poloidal
surface have a chance to be transmitted through the iono-
sphere (Leonovich and Mazur, 1996).

On the other hand, Green (1985) detected several Pg
events deep inside the plasmasphere. The geomagnetic con-
ditions where these pulsations were observed, were charac-
terized by the presence of a significant ring current inside the
plasmasphere, exactly as in the case of our model III. But this
model assumes a resonator inside the plasmasphere. Thus,
we can conclude that the events observed by Green (1985)
were the eigenmodes of this resonator.

At the same time, theL-dependence of averaged spec-
tra of poloidal oscillations observed by AMPTE/CCE (Taka-
hashi and Anderson, 1992) shows that there exists a rather
clearly pronounced population of radially polarized waves,
not associated with regions of poloidal frequency extrema.
These waves ought to be traveling across magnetic shells. It
seems likely that the radially polarized waves that are stand-
ing waves across magnetic shells are generally more acces-
sible to observations when compared with poloidal waves.
At present, the concept is widely held that high-energy parti-
cles drifting in the magnetosphere supply energy to observed
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poloidal pulsations via bounce-drift resonance. Indeed, in
some cases unstable distribution functions of particles as-
sociated with poloidal waves were observed (Hughes et al.,
1978, 1979; Glassmeier et al., 1999a; Wright et al., 2001);
there are also a number of indirect arguments in favor of this
concept (Takahashi et al., 1990; Fenrich and Samson, 1997;
Ozeke and Mann, 2001). It can be suggested that, were it not
for the high-energy particles, the waves with largem would
simply not have had a sufficiently large amplitude in order to
be observed. But in the case of the displacement of the az-
imuthally small-scale waves across magnetic shells, the most
enhanced waves would be the ones near the toroidal surface,
because the waves were to accumulate the particle energy in
the process of their propagation from the poloidal to toroidal
surface (Klimushkin, 2000), although the build-up rate of the
wave energy decreases as the wave detaches itself from the
poloidal surface. And only when high-m waves are confined
within the resonator, is the transfer of energy from particles
able to enhance the poloidal pulsations.

7 Conclusion

In conclusion, we briefly restate the logic of our paper
and describe the main results. Our principal intent was to
study the conditions where the Alfvén waves in the magne-
tosphere can be toroidally or radially polarized. Since the
toroidal (poloidal) polarization of Alfv́en waves implies that
the radial wavelength of the waveλr is significantly smaller
(larger) than the azimuthal wavelengthλa , it is impossible to
study the polarization without studying the structure of the
wave field across magnetic shells. To do this, we made use of
the system of MHD equations by writing them for plasma of
finite but small pressure residing in a curved magnetic field.

As a consequence of this system, we obtained Eq. (12),
the basic equation of our paper. It describes the Alfvén wave
excited by the magnetosound and, perhaps, by some other
sources. This equation defines both the transverse and longi-
tudinal structure of the wave. This is described in the limit
λr � λa by a toroidal longitudinal function, otherwise it is
described by a poloidal function. Using numerical calcula-
tions we found that whenN = 1−3 (with these longitudinal
harmonic numbers were our prime interest), these functions
differ relatively slightly from one another. That permitted
us to separate the longitudinal and transverse structures by
the method of successive approximations. Thus, we obtained
Eq. (19), describing the structure of the wave across magnetic
shells. The solution of this equation allowed us to determine
both the spatial structure of the wave and the conditions of
toroidal and poloidal polarization.

In order for the wave to be toroidally polarized on the mag-
netic shell with the radial coordinatex1, it is necessary and
sufficient that the conditionω = �T N is satisfied, where
�T N is the toroidal eigenfrequency on a given shell. A sim-
ilar condition ω = �PN , developed for the poloidal fre-
quency, is not a sufficient condition of poloidal polarization
– it is also necessary that condition (38) is satisfied, which

implies that many azimuthal wavelengths are accommodated
between the toroidal and poloidal surfaces. If this condition
is not satisfied, then the mode is toroidally polarized through-
out the region of its existence. Furthermore, it is sharply lo-
calized across magnetic shells, having a singularity on the
toroidal surface (regularized by taking into account the iono-
spheric dissipation). If the poloidality condition is satisfied,
then the wave is poloidally polarized in the part of its trans-
parent region. It propagates slowly across the magnetic shells
and changes its polarization from poloidal to toroidal. Fi-
nally, there exist regions in which the poloidal frequency
�PN reaches its extreme values. The poloidality condition
for these regions is written as Eq. (39). In this case the
wave is a standing wave across the magnetic shells, having a
poloidal polarization throughout the region of its existence.
The fundamental (most easily excited) harmonic of this res-
onator is described by a Gaussian function.

It is progressively easier to satisfy the poloidality condi-
tion with the increasing difference between the toroidal and
poloidal frequencies (polarization splitting of the spectrum)
and with the increasing azimuthal wave numberm. The for-
mer of these quantities is determined by geospace plasma and
magnetic field parameters, and by the longitudinal harmonic
numberN . We studied three models of the magnetosphere:

(I) low level of disturbance when a significant time has
elapsed after the storm;

(II) high level of disturbance; here is a well-developed ring
current; and

(III) low level of disturbance, but when a short time has
elapsed after the storm (significant ring current inside
of the plasmasphere).

The main conclusion drawn by considering these mod-
els implies that an increasing plasma pressure con-
tributes to satisfying the poloidality condition at fixed
m. It was ascertained that withβ actually observed
in the magnetosphere, this condition is satisfied for
poloidal Alfvén waves withN = 2 andm ∼ 50− 100
that are routinely observed in the magnetosphere. The
presence of a special criterion of poloidality explains
the scarcity of poloidal pulsations compared to toroidal
pulsations, especially whenN > 2.

A further important result is the inferred possible existence
of the resonator for poloidal waves in the plasmapause re-
gion. We adduced arguments in support of the fact that oscil-
lations that are modes of this resonator are indeed observed.
Possibly, they include, among others, giant pulsations (Pg).

At the same time our conclusion about the agreement of
theory and observations is a preliminary one, because there
are a large number of factors which are neglected by our the-
ory and which can have a substantial influence on the be-
havior of MHD waves in the magnetosphere. Specifically,
they include the azimuthal inhomogeneity of the magneto-
sphere, field-aligned currents, the non-stationarity of the os-
cillations, the narrow localization of their sources, the inter-
action of waves with particles drifting in the magnetosphere,
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and the active role of the ionosphere. Hence, further efforts
are needed, in order to create the more realistic models of
ULF waves in the magnetosphere.
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Appendix A Definitions and basic properties of toroidal
and poloidal modes

Let TN andPN denote the eigen-functions of toroidal and
poloidal operators satisfying the boundary conditions

TN , PN |x3=x3
±

= 0, (A1)

wherex3
± stands for the intersection points of a field line with

the upper ionospheric boundary. Toroidal and poloidal func-
tions are conveniently normalized in the following manner:〈√

g

g1

T 2
N

A2

〉
= 1,

〈√
g

g2

P 2
N

A2

〉
=

〈√
g

g2

T 2
N

A2

〉
(A2)

(here the angle brackets designate integration along the field

line between the ionsospheres,〈...〉 =
∫ x3

+

x3
−

(...)dx3). With

such a normalization of these functions, they have identical
dimensions and can be compared with one another.

Let �T N and �PN denote the eigenfrequencies of the
toroidal and poloidal operators, where

L̂T (�T N )TN = 0 (A3)

and

L̂P (�PN )PN = 0 (A4)

hold. The difference between the toroidal and poloidal eigen-
frequencies is often referred to as the polarization splitting of
the Alfvén oscillation spectrum. To find an analitical expres-
sion for it we multiply Eq. (A3) byPN and Eq. (A4) byTN ,
extract one from the other, and integrate along the field line.
After the integration by parts, we obtain the difference be-
tween the squares of these eigenfrequencies:

�2
T N − �2

PN =

[ 〈√
g3 η PNTN

〉
+

〈
PNTN (e|| · ∇)

(
ln
√

g2

g1

)〉]
·

〈√
g3

A2
PNTN

〉−1

. (A5)

The polarization splitting of the spectrum is caused by the
presence of the field line curvature. This is obvious if fi-
nite plasma pressure is taken into account, because the first
term of the expression (A5) that takes this factor into account,

contains explicitly the field line curvatureR−1 according to
formula (9). The situation is somewhat more complicated in
cold plasma, where the second term of this formula is respon-
sible for the splitting of the spectrum. The quantity

√
g2/g1

involved in the formula has a simple geometrical meaning. If
we take a flux tube with the cross sectiondx1

= 1, dx2
= 1,

then the physical dimensions in these directions will be, re-
spectively,dx̂1

= 1 ·
√

g2, dx̂2
= 1 ·

√
g2. Thus the quantity

√
g2/g1 describes the variation of the ratio of these physi-

cal dimensions along the tube, i.e. the change of the form of
this cross-section (Leonovich and Mazur, 1990). One may
well imagine the magnetic field configurations in which this
quantity varies even along straight field lines. In these con-
figurations field lines must become increasingly sparser with
the advance along them. Such configurations, however, are
unlikely to be relevant to magnetosphere physics, where it
is assumed that field lines become sparser when leaving one
magnetic flux and become denser when entering another flux.
Obviously, in this case the derivative(e|| · ∇)

√
g2/g1 can be

nonzero only when field lines are curved. Moreover, in this
case the curvature is only a necessary rather than sufficient
condition of the polarization splitting of the spectrum. In-
deed, it can be shown (Krylov et al., 1981; Krylov and Lif-
shitz, 1984) that the following relation holds:

(e|| · ∇) ln
√

g2/g1 = K+ − K−,

whereK+ andK− are a maximum and minimum curvature
of the surfaces that are orthogonal to field lines (i.e. of the
x3

= const surfaces). As an example of the model in which
there is a curvature but no polarization splitting, we consider
the situation where the magnetic shells are semicylinders and
the field lines are circles. The surfacesx3

= const are
plane in this model,K+ − K− = 0, and, hence, the toroidal
and poloidal eigenfrequencies coincide in this model. For
further discussion of this issue see paper of Leonovich and
Mazur (1990). The final conclusion from this discussion is
thus: in geomagnetic field models the polarization splitting
of the spectrum is possible only in the case of curved field
lines.

To make a rough estimate of the distance between the
toroidal and poloidal surfaces1N , we assume that it is small
compared to the typical size of the magnetosphere. We can
then avail ourselves of the expansions

ω2
− �2

T N = ω2 x1
− x1

T N

a
(A6)

and

ω2
− �2

PN = ω2 x1
− x1

PN

a
. (A7)

Because the difference between the toroidal and poloidal
eigenfrequencies is rather small,�T N − �PN �

�T N ,�PN , and�T N ∼ ω in the mode localization region,
we then obtain from Eqs. (A6, A7) the ordering (15).
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Appendix B The asymptotic solution of the radial struc-
ture equation whenνN � 1

The interval between the toroidal and poloidal surfaces can
be broken up into three regions: near the toroidal surface
(|x1

−x1
T N | � 1N ), near the poloidal surface (|x1

−x1
PN | �

1N ), and sufficiently far away from these surfaces where the
WKB approximation is applicable. Here we consider only
the situation where the toroidal frequency is larger than the
poloidal frequency. In this casex1

T N > x1
PN .

In the region|x1
− x1

T N | � 1N , the expansion (A6) can
be used. Then Eq. (19), through the substitution

zT =

√
x1 − x1

T N

λT N

, λT N = 1Nν−2
N ,

is transformed to the zero-order Bessel equation. The solu-
tion of this equation, bounded whenx1 > x1

T N , is

RN = CT · K0(2zT ),

whereCT is an arbitrary constant yet to be determined. We
now put the asymptotic representation of the solution (26) for
x1
T N > x1, (x1

T N − x1)/λT N � 1:

RN = CT

√
π

4

(
x1
T N − x1

λT N

)−1/4

exp

−2i

√
x1
T N − x1

λT N

−
iπ

4

. (B1)

This expression describes the wave propagating toward the
increase of the coordinatex1.

Near the poloidal surface, when|x1
−x1

PN | � 1N , we can
make use of the linear expansion (A7). Then, we introduce a
new variable

zP =
x1

− x1
T N

λPN

, λPN = 1Nν
−2/3
N .

Then Eq. (19) is brought to the inhomogeneous Airy equa-
tion. We need to find such a solution to this equation that is
bounded whenx1 < x1

PN and represents a wave propagat-
ing toward the increase in the coordinatex1 (in order that it
can be matched with the solution whenx1

' x1
T N ). We give

this solution in the integral form (Eq. 27) (see Leonovich and
Mazur, 1993). The asymptotic representation of this solution
whenzP > 0, zP � 1 is

RN = qNK2
N1N

π1/2

z
1/4
P

exp

(
2i

3
z

3/2
P +

iπ

4

)
. (B2)

Whenx1
PN < x1 < x1

T N in the region where the WKB
approximation is applicable, the solution is given by Eq. (29).
The asymptotic representations (Eqs. (B1), (B2), (29)) are
matched in regions of their common applicability, defining
the constantsCT andCW :

CT =
2qN1Na

ν2
Nω2

(
λPN

λT N

)1/4

exp

(
iπ

2
+ i

∫ x1
T N

x1
PN

k1dx1

)
,(B3)

CW =
√

πqNa1N/, ν
−5/3
N ω−2eiπ/4. (B4)

Thus, the asymptotic solution of Eq. (19) is given by the
expressions (26, 27, 29) with constants defined by formulas
(B3, B4).

Noteworthy is the importance of taking into account the
right-hand side of Eq. (19), the source of oscillationsqN .
Without the source, this equation would not have any solu-
tions at all, which are bounded in the opaque region, accord-
ing to Eq. (20), because it would be impossible to match the
solutions near the poloidal and toroidal surfaces.
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