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We consider maximum and minimum cut problems with nonnegative weights of edges. We define the graphs of the cone
decompositions and find a linear clique number for the min-cut problem and a superpolynomial clique number for the max-cut
problem. These values characterize the time complexity in a broad class of algorithms based on linear comparisons.

1. Introduction

We consider the well-known maximum and minimum cut
problems.

Instance 1. Given an undirected graph 𝐺 = (𝑉, 𝐸) and a
weight function 𝑐 : 𝐸 → Z+, it is required to find such a
subset 𝑆 of the vertex set𝑉 (cut) that the sumof the weights of
the edges from 𝐸 with one endpoint in 𝑆 and another in𝑉 \ 𝑆

is as small as possible (minimum cut or min-cut) or as large
as possible (maximum cut, max-cut).

While our discussion of the cut problem [1] in this paper
is focused on integral edge weights, we remark that results
and their proofs remain valid with real weights.

It is known that the min-cut problem with nonnega-
tive edges is polynomially solvable: Dinic-Edmonds-Karp
algorithm based on the maximum flow problem has the
running time of 𝑂(|𝑉|

3
|𝐸|) [2], Hao-Orlin modification has

the running time of 𝑂(|𝑉||𝐸|log(|𝑉|
2
/|𝐸|)) [3], and Stoer-

Wagner algorithm that does not use the flow techniques has
the complexity 𝑂(|𝑉||𝐸| + |𝑉|

2log|𝑉|) [4].
Nevertheless, the min-cut and max-cut problems with

arbitrary edges and the max-cut problem with nonnegative
edges are NP-hard with no known algorithms faster than an
exhaustive search [1].

We will estimate the min-cut and max-cut complexity
with the polyhedral approach and study the clique number

of the graph of the cone decomposition for the cut problems
with nonnegative edges. This value is known as a measure
of complexity in a wide class of algorithms based on linear
comparisons. The presented results were announced in [5].
Similar characteristics of the shortest path and 3-dimensional
matching problems are considered in [6, 7].

2. Cut Polytope and Cone Decomposition

With every subset 𝑆 ⊆ N
𝑛

= {1, . . . , 𝑛} (every cut in the
complete graph on 𝑛 vertices) we associate a characteristic
vector according to the following rule:

𝑑 = (
𝑛

2
) , 𝛿 (𝑆) ∈ {0, 1}

𝑑

,

𝛿 (𝑆)
𝑖,𝑗

=
{

{

{

1, if 󵄨󵄨󵄨󵄨𝑆 ∩ {𝑖, 𝑗}
󵄨󵄨󵄨󵄨 = 1,

0, otherwise.

(1)

Therefore, the coordinates of the characteristic vector (also
known as the cut vector) indicate whether the corresponding
edges are in the cut or not. The convex hull of all cut vectors
is known as the cut polytope CUT(𝑛) [8]:

CUT (𝑛) = conv {𝛿 (𝑆) : 𝑆 ⊆ N
𝑛
} ⊆ R

𝑑

. (2)
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Max-cut and min-cut problems are reduced to the linear
programming on the CUT(𝑛) polytope with objective vector
containing the weights of the edges.

We introduce a dual construction. Let𝑋 be a set of points
in R𝑑. Let 𝑥 ∈ 𝑋. Denote

𝐾 (𝑥) = {𝑐 ∈ R
𝑑

: (𝑐, 𝑥) ≤ (𝑐, 𝑦) , ∀𝑦 ∈ 𝑋} . (3)

Since 𝐾(𝑥) is the set of solutions of a finite system of
homogeneous linear inequalities, it is a convex polyhedral
cone. Given that

⋃

𝑥∈𝑋

𝐾 (𝑥) = R
𝑑

, (4)

the set of all cones 𝐾(𝑥) is called the cone decomposition of
the space R𝑑 by the set 𝑋. Cone decomposition is similar to
Voronoi diagram, exactly coinciding with it if the Euclidean
norm of all points in 𝑋 is equal.

We consider the graph of the cone decomposition with
the cones being the vertices, and two cones 𝐾(𝑥) and 𝐾(𝑦)

are adjacent if and only if they have a common facet:

dim (𝐾 (𝑥) ∩ 𝐾 (𝑦)) = 𝑑 − 1. (5)

Denote by 𝜔(𝑋) the clique number, the number of
vertices in a maximum clique, of the graph of the cone
decomposition. It is known [6, 9] that the complexity of
the direct type algorithms, based on linear comparisons, of
finding the minimum (or maximum, if we change the sign
of the inequality in the definition of the cone) of a linear
objective function (𝑐, 𝑥) on the set 𝑋, or, which is the same,
finding the cone 𝐾(𝑥), which the vector 𝑐 belongs to, cannot
be less than the value of 𝜔(𝑋) − 1.

Indeed, if some algorithm at each step performs a single
linear comparison (verification of linear inequality (𝑐, 𝑦) ≥ 𝑏

or (𝑐, 𝑦) ≤ 𝑏), from a geometric point of view that means
drawing a hyperplane and discarding a wrong half-space. But
if 𝑛 cones are pairwise adjacent, then for any hyperplane there
exist points of at least 𝑛 − 1 cones in one of the half-spaces;
hence, such direct type algorithm (algorithmwith direct type
linear decision tree [6, 9]) can separate and discard at most
one wrong cone at a time in the worst case (Figure 1). Thus,
𝜔(𝑋) − 1 is a lower bound on the height of the decision
tree and on the complexity of combinatorial optimization
problems in the wide class of algorithms, including sorting
algorithms, greedy algorithm, dynamic programming, and
branch and bound.

We introduce four different cone decompositions: for the
maximum cut and the minimum cut problems, as well as for
the problems with nonnegative edges. Denote by Δ

𝑛
the set

of vertices of the cut polytope CUT(𝑛). Let 𝑥 ∈ Δ
𝑛
. Define

𝐾max (𝑥) = {𝑐 ∈ R
𝑑

: (𝑐, 𝑥) ≥ (𝑐, 𝑦) , ∀𝑦 ∈ Δ
𝑛
} ,

𝐾min (𝑥) = {𝑐 ∈ R
𝑑

: (𝑐, 𝑥) ≤ (𝑐, 𝑦) , ∀𝑦 ∈ Δ
𝑛
} ,

𝐾
+

max (𝑥) = {𝑐 ∈ R
𝑑

, 𝑐 ≥ 0 : (𝑐, 𝑥) ≥ (𝑐, 𝑦) , ∀𝑦 ∈ Δ
𝑛
} ,

𝐾
+

min (𝑥) = {𝑐 ∈ R
𝑑

, 𝑐 ≥ 0 : (𝑐, 𝑥) ≤ (𝑐, 𝑦) , ∀𝑦 ∈ Δ
𝑛
} .

(6)
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Figure 1:Anyhyperplane can separate atmost one pairwise adjacent
cone.

It is known [10] that the graph of the CUT(𝑛) polytope
is complete, so the graphs of cone decompositions 𝐾max and
𝐾min are complete as well, because the adjacency of ver-
tices means the adjacency of the corresponding cones, and,
therefore, their clique numbers are exponential. However, if
we consider the problem with nonnegative edges, then the
situation is fundamentally different.

Note that these constructions are deeply connected with
the cut polyhedron [11, 12]. In particular, we reestablish the
results on the min-cut in terms of cones.

3. Graph of the Cone Decomposition for the
Min-Cut Problem with Nonnegative Edges

Two sets 𝐴 and 𝐵 are called intersecting if

𝐴 ∩ 𝐵 ̸= 0,

𝐴 \ 𝐵 ̸= 0,

𝐵 \ 𝐴 ̸= 0.

(7)

Lemma 1. Cones𝐾+min(𝑥) and𝐾
+

min(𝑦) are adjacent if and only
if cuts 𝑥 and 𝑦 are not intersecting.

Proof. Assume that the cuts 𝑥 and 𝑦 are intersecting, but
the cones 𝐾

+

min(𝑥) and 𝐾
+

min(𝑦) are adjacent. Adjacency of
the cones means that there exists a nonnegative vector 𝑐 that
belongs both to 𝐾

+

min(𝑥) and 𝐾
+

min(𝑦), but does not belong to
any other cone from the cone decomposition 𝐾

+

min:

∃𝑐 ∈ R
𝑑

(𝑐 ≥ 0) , ∀𝑧 ∈ Δ
𝑛
\ {𝑥, 𝑦} ,

(𝑐, 𝑥) = (𝑐, 𝑦) < (𝑐, 𝑧) .

(8)

It is well known that the cut function of a nonnegatively
weighted undirected graph is submodular [12]:

(𝑐, 𝑥) + (𝑐, 𝑦) ≥ (𝑐, 𝑥 ∪ 𝑦) + (𝑐, 𝑥 ∩ 𝑦) . (9)

Since cuts 𝑥 and 𝑦 are intersecting, both cuts 𝑥∪𝑦 and 𝑥∩

𝑦 are nonempty, and at least one of them is less than (𝑐, 𝑥) and
(𝑐, 𝑦). So we have a contradiction: cones𝐾+min(𝑥) and𝐾

+

min(𝑦)

are not adjacent.
Now we consider two cuts 𝑥 and 𝑦 that are not inter-

secting. Without loss of generality we assume that 𝑥 ⊂ 𝑦.
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Figure 2: Cuts 𝑥 and 𝑦 in the case of 𝑥 ⊂ 𝑦.

We assign the weights of edges in the following way: all edges
that connect subsets 𝑥 and 𝑦 \ 𝑥 have the total sum equal to
some positive integer 𝑘, the sum of all edges connecting 𝑦

and 𝑦 \ 𝑥 is also equal to 𝑘, edges between 𝑥 and 𝑦 have zero
weight, and any other edge is equal to 𝑘 + 1 (Figure 2).

We have cuts 𝑥 and 𝑦 equal to 𝑘, cut 𝑦 \ 𝑥 equals 2𝑘,
and any other cut contains at least one edge of the weight
𝑘 + 1. Thus, by inequality (8), cones 𝐾+min(𝑥) and 𝐾

+

min(𝑦) are
adjacent.

Theorem 2. Clique number 𝜔(𝐾
+

min) of the graph of the
cone decomposition for the min-cut problem with nonnegative
weights of edges is linear by the number 𝑛 of vertices of the
original graph and equal to

𝜔 (𝐾
+

min) = 2𝑛 − 3. (10)

Proof. A family 𝐹 is called laminar if no two sets𝐴, 𝐵 ∈ 𝐹 are
intersecting. It is known [11] that a laminar family of subsets
of 𝑉 that does not contain 0, 𝑉, and both a subset 𝑆 and
its complement 𝑉 \ 𝑆 has at most 2𝑛 − 3 subsets. Since, by
Lemma 1, a laminar family of cuts corresponds to a clique in
the graph of the cone decomposition, we obtain the required
value.

As an example of 2𝑛 − 3 pairwise adjacent cones we can
consider the following cuts:

(i) 𝑛 cuts of the form 𝑆
𝑖
= {𝑖}, where 1 ≤ 𝑖 ≤ 𝑛;

(ii) 𝑛−3 cuts of the form 𝑆
𝑘
= {1, 2, . . . , 𝑘}, where 2 ≤ 𝑘 ≤

𝑛 − 2.

4. Graph of the Cone Decomposition for the
Max-Cut Problem with Nonnegative Edges

Lemma 3. Cones 𝐾
+

max(𝑥) and 𝐾
+

max(𝑦) are adjacent if and
only if one of the following conditions is true:

(i) cuts 𝑥 and 𝑦 are intersecting;
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Figure 3: Cuts 𝑥, 𝑦, 𝑧, and 𝑡.

(ii) the difference between two cuts 𝑥 and 𝑦 has exactly one
element:

󵄨󵄨󵄨󵄨𝑥 \ 𝑦
󵄨󵄨󵄨󵄨 = 1,

𝑜𝑟
󵄨󵄨󵄨󵄨𝑦 \ 𝑥

󵄨󵄨󵄨󵄨 = 1,

𝑜𝑟
󵄨󵄨󵄨󵄨𝑥 \ 𝑦

󵄨󵄨󵄨󵄨 = 1,

𝑜𝑟
󵄨󵄨󵄨󵄨𝑦 \ 𝑥

󵄨󵄨󵄨󵄨 = 1.

(11)

Proof. We consider two cuts 𝑥 and 𝑦 that are not intersecting
and have more than one element in the difference. Without
loss of generality, we assume that𝑥 ⊂ 𝑦.We divide the set𝑦\𝑥

into two subsets𝐴 and 𝐵, since it has at least two vertices, and
consider two additional cuts 𝑧 = 𝑥∪𝐴 and 𝑡 = 𝑥∪𝐵 (Figure 3).

Hence, by submodularity of the cut function, we have

(𝑐, 𝑧) + (𝑐, 𝑡) ≥ (𝑐, 𝑥 = 𝑧 ∩ 𝑡) + (𝑐, 𝑦 = 𝑧 ∪ 𝑡) . (12)

Thus, cones 𝐾+max(𝑥) and 𝐾
+

max(𝑦) can not be adjacent.
Now we assume that cuts 𝑥 and 𝑦 are intersecting and

assign the weights in such way that all the edges, connecting
sets 𝑥 ∩ 𝑦 and 𝑥 ∩ 𝑦, have positive weights with the total sum
equal to some integer 𝑘; similarly, the edges, connecting sets
𝑥 ∩ 𝑦 and 𝑥 ∩ 𝑦, also have positive weights with the same
total sum 𝑘, while all the remaining edges are equal to zero
(Figure 4).

Cuts 𝑥 and 𝑦 have the weight equal to 2𝑘. Since 2𝑘 is the
total weight of all edges in the graph, no other cuts can have
weight exceeding 2𝑘. As for the cuts equal to 2𝑘, they have to
split vertex sets 𝑥∩𝑦 and 𝑥∩𝑦, as well as 𝑥∩𝑦 and 𝑥∩𝑦. Only
cuts 𝑥 and 𝑦meet this requirement.Thus, cones𝐾+max(𝑥) and
𝐾
+

max(𝑦) are adjacent.
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Figure 4: Intersecting cuts 𝑥 and 𝑦.
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Figure 5: Cuts 𝑥 and 𝑦 with one element in the difference.

The last configuration has cuts 𝑥 and 𝑦 not intersecting
with exactly one element in the difference. Without loss of
generality, we assume that 𝑥 ⊂ 𝑦 and 𝑦 \ 𝑥 = {𝑤}, where
𝑤 ∈ 𝑉. We assign the weights of the edges in the following
way: the weight of all edges connecting 𝑤 and 𝑥 is equal to
𝑘, the same is for the edges connecting 𝑤 and 𝑦, every edge
between 𝑥 and𝑦 has the weight 𝑘+1, with the total number of
these edges denoted by 𝑚, and the weights of all other edges
are assigned to be zero (Figure 5).

The total weight of all edges in the graph is equal to𝑚(𝑘+

1)+2𝑘.Theweight of both cuts 𝑥 and 𝑦 is𝑚(𝑘+1)+𝑘. If some
cut 𝑧 does not include at least one edge of the weight 𝑘 + 1,
then it is less than 𝑥 and 𝑦:

(𝑐, 𝑧) ≤ (𝑚 − 1) (𝑘 + 1) + 2𝑘 = 𝑚 (𝑘 + 1) + 𝑘 − 1. (13)

Thus, anymaximumcut should split vertex sets𝑥 and𝑦, while
vertex 𝑤 can be included (cut 𝑦) or excluded (cut 𝑥). Hence,
cones 𝐾+max(𝑥) and 𝐾

+

max(𝑦) are adjacent.

Theorem 4. Clique number 𝜔(𝐾
+

max) of the graph of the
cone decomposition for the max-cut problem with nonnegative
weights of edges is superpolynomial by the number 𝑛 of vertices
of the original graph and equals

𝜔 (𝐾
+

max) = (

𝑛

𝑛

2
− 1

) ≥
2
𝑛

√2𝑛
(1 −

2

𝑛 + 2
) , (14)

for even 𝑛 and

𝜔 (𝐾
+

max) = (

𝑛

𝑛 − 1

2

) ≥
2
𝑛

√2 (𝑛 − 1)
(1 −

1

𝑛 + 1
) , (15)

for odd 𝑛.

Proof. The adjacency criterion of Lemma 3 is very similar
to the Erdös-Ko-Rado theorem about the largest number
of pairwise intersecting subsets. Therefore, we will use the
construction from the Katona short proof [13].

First of all, we will consider only subsets 𝑆 ⊂ 𝑉 = N
𝑛

=

{1, 2, 3, . . . , 𝑛} of the size |𝑆| ≤ ⌊𝑛/2⌋. Otherwise, we can
replace 𝑆with its complement𝑉\𝑆 that will have the required
number of vertices.

Suppose we have some family 𝐴 of cuts with pairwise
adjacent cones. We arrange the elements ofN

𝑛
into any cyclic

order and consider the sets from𝐴 that form intervals within
this cyclic order. The question is how many intervals of the
cyclic ordermay belong to𝐴. For example, consider the cyclic
order {1, 2, . . . , 𝑛} and the interval 𝑆 = {1, 2, . . . , 𝑠}. There are
two intervals {1, 2, . . . , 𝑠 − 1} and {2, . . . , 𝑠} inside 𝑆 and two
intervals {1, 2, . . . , 𝑠, 𝑠 + 1} and {𝑛, 1, . . . , 𝑠} containing 𝑆, with
cones adjacent to𝐾

+

max(𝑆). From these four intervals, only two
may be pairwise adjacent.Then, for any 𝑖 ∈ {2, . . . , 𝑠} there are
at most two adjacent intervals, starting at 𝑖, with one element
in the difference, {𝑖, . . . , 𝑡} and {𝑖, . . . , 𝑡, 𝑡+1}, and two adjacent
intervals, ending at 𝑖 − 1, {𝑞, . . . , 𝑖 − 1} and {𝑞 − 1, 𝑞, . . . , 𝑖 − 1}.
Again from these four intervals only two may be pairwise
adjacent. Thus, there are 2(𝑠 − 1) + 2 = 2𝑠 intervals in the
cyclic order with the cones adjacent to 𝐾

+

max(𝑆).
Let 𝑛 be equal to 2𝑘 + 1. Since 𝑠 ≤ 𝑘, at most 2𝑘 + 1

intervals for a single cyclic order may belong to the family 𝐴.
We will count the number of pairs (𝑆, 𝐶), where 𝑆 is a set in
𝐴 and 𝐶 is a cyclic order for which 𝑆 is an interval, in two
ways. First, for each set 𝑆 we may generate 𝐶 by choosing
one of 𝑠! permutations of 𝑆 and (2𝑘 + 1 − 𝑠)! permutations
of the remaining elements. The smallest value is for 𝑠 = 𝑘.
And second, there are (2𝑘)! cyclic orders, each of which has
at most 2𝑘 + 1 intervals of 𝐴. Thus, we have

|𝐴| 𝑘! (𝑘 + 1)! ≤ (𝑆, 𝐶) ≤ (2𝑘 + 1) (2𝑘)!,

|𝐴| ≤
(2𝑘 + 1)!

𝑘! (𝑘 + 1)!
= (

2𝑘 + 1

𝑘
) .

(16)

We consider two random cuts 𝑥 and 𝑦 of the size 𝑘. Since
they have the same size, 𝑥 and 𝑦 cannot be nested.Therefore,
if they do not intersect, then 𝑥 ⊂ 𝑦, |𝑦\𝑥| = 2𝑘+1−𝑘−𝑘 = 1,
and cones𝐾+max(𝑥) and𝐾

+

max(𝑦) are adjacent. Thus, the set of
all possible ( 2𝑘+1

𝑘
) cuts of the size 𝑘 form a clique in the graph

of the cone decomposition, and we have

𝜔 (𝐾
+

max) = (

𝑛

𝑛 − 1

2

) , (17)

for odd 𝑛.
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Let 𝑛 be equal to 2𝑘. We again consider the cyclic order
and estimate themaximumnumber of intervals with pairwise
adjacent cones. Since any interval of the size 𝑠may be adjacent
to at most 2𝑠 intervals, the maximum value will be for 𝑠 = 𝑘.
However, there are only 𝑘 intervals of the size 𝑘 that form a
cut, as all other intervals of the size 𝑘 will be complementary
to them. So we have to include some smaller intervals as well.
We assume that 𝐴 contains only intervals of the sizes 𝑘 and
𝑘−1, and at most 2𝑘−1 intervals for a single cyclic order may
belong to the family 𝐴.

We divide 𝐴 into two subsets 𝐴
𝑘
and 𝐴

𝑘−1
, containing

only cuts of the corresponding size. Cuts of 𝐴
𝑘
and 𝐴

𝑘−1

cannot be nested, as they have the same size, and the
difference with complementary cuts are not equal to one.
Therefore, they are pairwise intersecting. Considering that

(
2𝑘 − 1

𝑘 − 1
) + (

2𝑘 − 1

𝑘 − 2
) = (

2𝑘

𝑘 − 1
) . (18)

By Erdös-Ko-Rado theorem we have

󵄨󵄨󵄨󵄨𝐴𝑘
󵄨󵄨󵄨󵄨 ≤ (

2𝑘 − 1

𝑘 − 1
) ,

󵄨󵄨󵄨󵄨𝐴𝑘−1
󵄨󵄨󵄨󵄨 ≤ (

2𝑘 − 1

𝑘 − 2
) ,

|𝐴| =
󵄨󵄨󵄨󵄨𝐴𝑘

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐴𝑘−1

󵄨󵄨󵄨󵄨 ≤ (
2𝑘

𝑘 − 1
) .

(19)

We consider all the cuts of the sizes 𝑘 and 𝑘−1 that include
vertex 1. If two such cuts 𝑥 and 𝑦 do not intersect, then,
without loss of generality, 𝑥 ⊂ 𝑦 and |𝑦 \ 𝑥| = 𝑘 − (𝑘 − 1) = 1.
There are exactly (

2𝑘−1

𝑘−1
) + (
2𝑘−1

𝑘−2
) of such cuts, so we have

|𝐴| = (
2𝑘

𝑘 − 1
) . (20)

Now suppose that there exists a family 𝐵 of cuts with
pairwise adjacent cones that contains intervals of the size less
than 𝑘−1 and is greater than𝐴.Then, for any cyclic orderwith
at least one interval of the size less than 𝑘−1 there are at most
2𝑘 − 3 intervals that may belong to the family 𝐵. At the same
time, for a smaller cut 𝑆 we can construct more cyclic orders
𝐶 containing 𝑆 as an interval. And so we get the contradiction:

(2𝑘 − 1) (2𝑘 − 1)! = (𝑆 ∈ 𝐴, 𝐶) ,

(𝑆 ∈ 𝐴, 𝐶) < (𝑆 ∈ 𝐵, 𝐶) ,

(𝑆 ∈ 𝐵, 𝐶) < (2𝑘 − 1) (2𝑘 − 1)!.

(21)

Thus, the family 𝐴 of 𝑘 and 𝑘 − 1 sized cuts with pairwise
adjacent cones is the largest, and

𝜔 (𝐾
+

max) = (

𝑛

𝑛

2
− 1

) (22)

for even 𝑛.

We can estimate these values using the central binomial
coefficient:

(
2𝑛

𝑛
) ≥

4
𝑛

√4𝑛
,

(

𝑛

𝑛

2
− 1

) =
𝑛/2

𝑛 − 𝑛/2 + 1
(

𝑛

𝑛

2

) =
𝑛

𝑛 + 2
(

𝑛

𝑛

2

) ,

𝜔 (𝐾
+

max) = (

𝑛

𝑛

2
− 1

) ≥
2
𝑛

√2𝑛
(1 −

2

𝑛 + 2
) ,

(23)

for even 𝑛 and

(

𝑛

𝑛 − 1

2

) =
𝑛

𝑛 − (𝑛 − 1) /2
(

𝑛 − 1

𝑛 − 1

2

)

=
2𝑛

𝑛 + 1
(

𝑛 − 1

𝑛 − 1

2

) ,

𝜔 (𝐾
+

max) = (

𝑛

𝑛 − 1

2

) ≥
2
𝑛

√2 (𝑛 − 1)
(1 −

1

𝑛 + 1
) ,

(24)

for odd 𝑛.

5. Conclusion

Min-cut and max-cut problems with arbitrary weights of
edges and max-cut problem with nonnegative edges are NP-
hard, while there are efficient polynomial algorithms for
the min-cut problem with nonnegative edges. This situation
corresponds to the geometric properties of the problem.
Clique number of the graph of the cone decomposition is
known as the lower bound on complexity in the class of
algorithms that are based on linear comparisons. Graphs of
the cone decompositions for the cut problems with arbitrary
edges are complete, so their clique numbers are exponential.
Clique number for the max-cut problem with nonnegative
edges is superpolynomial and for the min-cut problem with
nonnegative edges is linear.

Note that both obtained values are below the complexity
of the best known algorithms for the cut problems with
nonnegative edges. Hence, at least on this approach, there
are no geometric obstacles to the construction of the more
efficient algorithms.

Described results are based on the properties of the
cut problem. For other combinatorial problems, it can be
different.

Theorem 5. If all points of the set 𝑋 ⊂ {0, 1}
𝑑 belong to a

sphere centered at the origin

‖𝑎‖ = ‖𝑏‖ , ∀𝑎, 𝑏 ∈ 𝑋, (25)

and for a pair of points 𝑥, 𝑦 ∈ 𝑋 cones 𝐾max(𝑥) and 𝐾max(𝑦)

are adjacent, then nonnegative cones𝐾+max(𝑥) and𝐾
+

max(𝑦) are
adjacent as well.
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The same is true for cones 𝐾min(𝑥) and 𝐾min(𝑦) and
nonnegative cones 𝐾+min(𝑥) and 𝐾

+

min(𝑦).

Proof. Consider a set of points 𝑋 ⊂ {0, 1}
𝑑 such that

‖𝑎‖ = ‖𝑏‖ , ∀𝑎, 𝑏 ∈ 𝑋. (26)
Suppose that for a pair of points 𝑥 and 𝑦 of 𝑋 cones

𝐾max(𝑥) and 𝐾max(𝑦) are adjacent:

(𝑐, 𝑥) = (𝑐, 𝑦) > (𝑐, 𝑧) , ∃𝑐 ∈ R
𝑑

, ∀𝑧 ∈ 𝑋 \ {𝑥, 𝑦} . (27)

Then there exists a vector 𝑐
+
∈ R𝑑 (𝑐

+
≥ 0) such that

𝑐
+
= 𝑐 + 𝑐̃, where 𝑐̃ = 𝐶 (1, 1, 1, . . . , 1) ∈ R

𝑑

. (28)
Now we have that

(𝑐, 𝑥) = (𝑐, 𝑦) > (𝑐, 𝑧) , ∀𝑧 ∈ 𝑋 \ {𝑥, 𝑦}

(𝑐
+
− 𝑐̃, 𝑥) > (𝑐

+
− 𝑐̃, 𝑧) ,

(𝑐
+
, 𝑥) − (𝑐̃, 𝑥) > (𝑐

+
, 𝑧) − (𝑐̃, 𝑧) ,

‖𝑥‖ = ‖𝑧‖ 󳨐⇒ (𝑐̃, 𝑥) = (𝑐̃, 𝑧) ,

(𝑐
+
, 𝑥) = (𝑐

+
, 𝑦) > (𝑐

+
, 𝑧) .

(29)

Cones 𝐾+max(𝑥) and 𝐾
+

max(𝑦) are adjacent.
For 𝐾

+

min cones proof can be obtained from the above by
changing the sign in the corresponding inequality.

As a result, for the problem where Euclidean norm of
the characteristic vectors is a constant, graphs of the cone
decompositions with arbitrary objective vectors and nonneg-
ative objective vectors will completely coincide, and, hence,
the same problem on the minimum and maximum will have
the same characteristics.

This is true, for example, for the traveling salesman
problem, where all the possible solutions can be encoded
as 0/1 vectors with exactly 𝑛 units, or the spanning tree
problem, where all the possible solutions have 𝑛 − 1 units.
Indeed, all four instances of the traveling salesman problem
(minimumwith arbitrary edges, minimumwith nonnegative
edges, maximum with arbitrary edges, and maximum with
nonnegative edges) are known to be NP-hard, while all four
instances of the spanning tree problem are polynomially
solvable. At the same time, for the path problem in the graph
with nonnegative edges the path can contain any number
of edges, and possible solutions do not belong to a sphere
centered at the origin, so, as well as for the cut problem,
the shortest path problem is polynomially solvable, while the
longest path problem is NP-hard [1].
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