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We establish the L” boundedness for some commutators of oscillatory singular integrals with the kernel condition which was
introduced by Grafakos and Stefanov. Our theorems contain various conditions on the phase function.

1. Introduction

The homogeneous singular integral operator T, is defined by

Q —
Tof (x) =pv. J . ﬁf (v) dy, 1)

where Q € L'(8"™") satisfies the following conditions.

(a) Q is homogeneous function of degree zero on R"\ {0};
that is,

Q(tx) = Q (x) (2)

for any t > 0 and x € R" \ {0}.

(b) Q has mean zero on S"', the unit sphere in R"; that
is,

| 0()do(x) =0 ()

The oscillatory singular integral we will consider here is
defined by

io(y) 2 ()

"

If ¢(x) = 0, the operator T, becomes the singular integral
operator T,.

Tyf (x) = pv. JW e flx=y)dy. @)

When ¢(x) = P(x) is a real polynomial, the L? bounded-
ness of T¢ was first studied by Ricci and Stein [1] with Q €
C'(§"™"), and Hu and Pan [2] obtained the weighted H !
boundedness of T,. When Q € L'(S"Y, r > 1, Lu and
Zhang proved the L? boundedness [3] and this was extended
to the case of Q € L In"L(S"™") by Ojanen [4] and the case of
Q € H'(S"™") by Fan and Pan [5].

Grafakos and Stefanov [6] introduced a class of kernel
functions F,(S"') which contains all Q(y) € L'(S"")
satisfying (3) and

—1\ 1+«
sup J leO)(n]y-&7) Tdo(y) <o (5)
Eesnfl NG
where & > 0 is a fixed constant. This kernel condition has
been considered by many authors [7-13].
The singular integral along surfaces which is defined by

Tyaf (%, %,,1) = pv. J Q ();)

—f (x =y % — 0 (Iy]) dy
R [yl

(6)
was also studied by many authors [14-18]. Under the condi-

tion Q € F{X(S”_l), Pan et al. [16] established the following
Theorem.

Theorem A (see [16]). Let ¢(t) € C'([0,00)), $(0) = ¢'(0) =
0, and ¢' is a convex increasing function fort > 0, Q €
E(S"") for some o > 0; then, Ty, is bounded on LP(R™1)
for (2+20)/(1 +2a) < p <2+ 2.



Later, Cheng and Pan [14] improved the result for n = 2
by removing the condition ¢'(0) = 0.

Theorem B (see [14]). Let ¢(t) € C'([0, 00)), ¢(0) =0, anqu'
is a convex increasing function fort > 0, Q € F,(S*™") for some
a > 0; then, Ty is bounded on LP(R?) for (2 +2a) /(14 2ax) <
P <2+ 2a

It has been proved that the boundedness of T4 on LP(R™)
can be obtained from the L?(R"!) boundedness of Tyq (see

[5D).

For a function b € L,,.(R"), let A be a linear operator on
some measurable function space; the commutator between A
and b is defined by [b, A] f(x) = b(x)Af(x) — A(bf)(x).

It has been proved by Hu [19] that Q € L(log L*(S" 1Y) is
a sufficient condition for the commutator to be bounded on
LP(R"), which is defined by

b.1a) £ )= [ TE2 0w -b0) £ 0y

7)

Recently, Chen and Ding [20] established the L* bounded-
ness of the commutator of singular integrals with the kernel
condition Q € F (S").

It is natural to ask whether the similar result holds for

the commutators of oscillatory singular integrals, which is
defined by

b,T, X) = p.v. ei‘l)(}')M b(x)-b(x-
[6.T,] F(x) =p JW |y|n(() (x=»))

x f(x—-y)dy.

In this paper, we will give a positive answer to the above
question by imposing some conditions on ¢.

We first prove the boundedness of the commutator of
singular integral along surfaces, which is defined by

[b’ T¢,Q] f (x, xn+1)

S W IO AR ETCR Y 1))
Ryl
x f (x =y, x,0 = ¢ (|y]) dy-
)

Theorem 1. Let Q be a function in L' (S"") satisfying (2) and
(3), b € BMO(R™?), radial function ¢ € C'([0,00)) with
$(0) = ¢'(0) = 0, and ¢' is a convex increasing function. If
Q € F,($"") for some « > 1, then [b, Tyl is bounded on
LZ(R’H—I).

Theorem 2. Let Q be a function in LY(sY satisfying (2) and
(3), b € BMO(R?), radial function ¢(|t]) = |t|. IfQ € Fa(Sl)
for some o > 1, then [b, T¢,Q] is bounded on Lp(le)for (o +
Dia<p<a+l
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Remark 3. However, for n > 3, we can not prove the L (R™*')
boundedness of [b,T, ] by our method using Lemma 11,
since the conditions imposed on ¢ in Theorem 1 conflict with
Lemma 11. Only when n = 2 by removing the condition
(p’(O) = 0 in Theorem 1 can we eliminate the conflict, and
¢(|t]) = [t is a feasible function. Also, by another method,
it is hard to give the boundedness of the maximal operator
defined by

[b7 M¢,Q] f (x, xn+1)

| 10))

ilyl<2t |y]"

Jj€Z

X (b(x,%,,,)—b (10)
x (x = 3, %1 = ¢ (|3]))

X f(x =y x0 =0 () dy|.

Then we give the boundedness of the commutators of
oscillatory singular integral [b, T].

Let b(x) € BMO(R"), X = (x, x,.,,) € R™, B(X) = b(x),
and we have the following result.

Theorem 4. If [B, T, ] is bounded on LP(R™1) with bound
ClIBll grvo@n+y, then [b, Ty] is bounded on LP(R™) with bound
bll grtomn)-

Combining Theorem 4 with Theorems 1 and 2, respec-
tively, we can get the following two theorems immediately.

Theorem 5. Let Q be a function in L' (S*™") satisfying (2) and
(3), b € BMO(R"), radial function ¢ € CY([0, 00)) with
$(0) = ¢'(0) = 0, and ¢' is a convex increasing function.
IfQ e Fa(Snfl)for some o« > 1, then [b, T¢] is bounded on
L*(R™).

Theorem 6. Let Q be a function in L'(S') satisfying (2) and
(3), b € BMO(R?), radial function ¢(|t]) = [t|. If Q € F“(Sl)
for some o > 1, then [b, Tyl is bounded on LP([R{Z)for (o +
D/ia<p<a+l

In above theorems, the phase functions are radial. But
when Ricci and Stein first studied the oscillatory singular
integral Ty, they take ¢(x) = P(x), apparently nonradial. In
Theorem 7, we will take $(x) = P(x) = Y7, ,-; G,x", and this
condition was mentioned in [21].

Theorem 7. Let Q be a function in L'(S*™") satisfying (2) and
(3), b € BMO(R™). If Q € F,(S"™") is an odd kernel for some
a > 1, ¢(x) = ZTZl =1 a,x" is an even phase; then, [b, Ty
extends to a bounded operator from LF(R") into itself for (a +
Dia<p<a+l
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2. Lemmas

We give some lemmas which will be used in the proof of
Theorems 1 and 2.

Lemma 8. Let m(;(g) e CH(R™") (0 < & < 00) be a family
of multipliers such that suppmy ¢ {€ : |&] < 8}, Vems =
(0mg/0&,, ...,0ms/0E,), and for some constants C,0 < A <
1/2, and a > 0

5], < Cmin {AS, log™ @) (2 + 6)} ,
(11
[Verms]., < €.
Let Ty be the multiplier operator defined by T;(f) =

ms(©) f(©), & = (£&,,,). For b € BMO(R™"), denote by
[b, Ts] the commutator of Ts. Then for any 0 < v < 1, there
exists a positive constant C = C(n, v) such that

M 1
16751 11, < Clblviorer (48 Tog () 11,

10

VA
116, T5] £1l, < Clbllspromnnlog ™ 2 +8) || £,

if <

1

if6>\/Z

(12)

Proof. We assume that [|b]|gyore1) = 1. Let X = (x, x,,,;) and
let W(X) be a radial function such that supp¥ ¢ {x : 1/4 <

|X| < 4}, and
IEZZ\P (27%) =1 (13)

for |%] > 0. Set ¥y(X) = ¥, ., ¥(27'%) and ¥(X) = ¥(27'%)
for positive integer [. Let K5(X) = mg(f) the inverse Fourier
transform of my;. Split K5 as

Ky (%) = K5 (%) ¥ (%) + ) K5 (D) W) (%) = ) Kg (%) (14)
I=1 =0

Let Ty, be the convolution operator whose kernel is K ;

that is, Ty, f = K, * f. Recall that suppmg ¢ {& : [&] < &}.
Trivial computation shows that || Kg [l < [IKsll,, < lmsll; <
C&™!. This via the Young inequality says that

I75.f 1, < €™ I £ (1)
Note that IRM @(ﬁ)dﬁ = 0. Thus

"I/((S\,l"oo = (m6 (E - 27111’ En-f—l - 271’7n+1) - Mg
R+

% (88— 270)) ¥ () ]
D)

< C2!|Vems | jR n| |¥ ()| di

< 27| Vems | _ j 7l |¥ ()| dif < 27

On the other hand, by the Yong inequality, we have
Kol < IR I%], < Cmin{adlog " @ + o)
17)

Then, using the same argument of the proof of Lemma 2 in
[22] we can prove Lemma 8. ]

Let the measure g; on R™! be defined by

j f(y’yn+1)d0j
Rnﬂ

(18)
a(y)
= fOe(y)) T Xi<lyls2iy 4y
e b
forall j € Z. Define the maximal operator in R"*' by ¢* f =

supjezlajl | fl.

Lemma 9 (see [18]). Suppose o* is bounded on L1(R™") for
all 1 < g < co. Then, for arbitrary functions g;, the following

vector valued inequality:
1/2
2
Z|gj|
i

1/2
2
(Zoeat) | <
J
The maximal function in R? is defined by

Lq([RnH)

Lq(RnH)
(19)

holds with any 1 < g < oo.

2k+1

1
(Mg ) (x1,x;) = sup Jk

2

|f (x; —t.x, — ¢ ()| dt.
(20)

We know that the LI(R™") boundedness of o* is deduced
from the L9(R?) boundedness of M. ¢ by method of rotations,
and if ¢ is as in Theorem 1 or Theorem 2, M, is a bounded

operator on LI(R?) forall 1 < q < 00 (see [23, 24]).

Let ¢ € S(R") be a radial function satisfying 0 < ¢ < 1
with its support in the unit ball and ¢(§) = 1 for |§] <
1/2. The function ¢,(§) = @(&/2) — p(&) € S(R") satisfies
Yiez 9o(2778) = 1for & # 0. For j € Z, denote by Ajand
G; thg convolution operators whose symbols are ¢,(27/¢) and
@(277), respectively.

Lemma 10 (see [20]). For the multiplier G, (k € Z), b €
BMO(R"), and any fixed 0 < T < 1/2, we have

2kt *
Gib () = Geb ()| < €™ = 3 Wbllgnior )

where C is independent of k and 7.

Let & = (§,&,,,) € R™" and let (&) € C(R™) be a
radial function such that 0 < w < 1,suppy c {1/2 < |f§| <2},
and )., 1//3(2_%) =1, |§| # 0. Define the multiplier operator

S by Sif &) =y fD.



Lemma 11. For any j € Z, define the operator T; by T, f =
o * f, and ¢ is monotonic and satisfies condition (1) or (2):
@ l¢(lyDl < Clyl;

(2) 1p(lyDI = Clyl, Ip(@)p®)| < Clg(ab)| for Va,b > 0,
and |$(IyD)] < Clyl", ky > Liflyl > 1, [g(yD)l <
Clyl?, 0 <k, < Lif|yl < 1.

Let b € BMO(R™"), and denote by [b,Sl_jTjSlz_j] the

commutator ofSl_jTjSlz_j. Suppose Q € L'(S™™") satisfying (2).
Then for any fixed0 < T < 1/2,1 < p < 00,

> [bsTisi ] f®

jez I 22)
2‘rl zrkll ZTkzl
<C|b max { —, , ,2 .
Iiomax |22 25, 2 2 g,

Proof. We prove it by using arguments which are essentially
the same as those in the proof of Lemma 3.7 in [20]. Two
things must be modified:

(i) instead of Lemma 3.6 in [20], we use Lemma 9;

Ty pONI L and7,(9) = Xjer (8, )(Gya0) is
the paraproduct of Bony [25] between two functions

f and g. In the estimate of M;, we will use the
following formulas:

[Gi-ab T3] (8387 ) (36 %)
= Gisb (5, %01) T5 (887 ) (36 %)
~T; ((Gizsb) (8381 1)) (% %)

= i<lyl<2it |yln

X (Gizsb (%, %,1) = Gisb
x (x =y, x50 = ¢ (17])))

‘ Aislz—jf (x =y %01 = (¥]) dy

j |2 ()|
2i<|y|<2i*! |y|n

X |Gi_3b (x, X,11) = Gi3b
x (x =y, 2% = ¢ ([¥))]

JASEf (e =y — B (19D)| dys
(23)
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by Lemma 10,

|Gi—3b (%, %41) = Gisb (X = ¥, X,y — (l)’l))|

27 .
< C—|(n ¢ (YD) Mlizaro (24)

2i‘r T
= A + ¢ (1)) 1lsvio-

If ¢ satisfies condition (1), we have

|Gi—3b (%, %41) = Gisb (x = 3, %01 — @ (I)’|))|

21‘1 .
<y Blyvio-

(25)

Thus

|[Gi—3b’ Tj] (Aislz—jf) (x, ‘xn+1)|
< C7||b||BM0

Q
XJ. | | (Z)IW
2/<|y|<2/t |y|

X |Ai512—jf (xX=yxp = ¢ (|}’|))| dy

(i+j)T

<C 16130

y J 20
2/<|y|<2it! |y|

XA f (= 3% = $ (17])] dy

2(i+j)r
=C

" IbllemoT iy, ('Aislz—jf') (%, %01 -

(26)
If ¢ satisfies condition (2), we have

|Gi—3b (x, xn+1) -G;3b (x =) Xy — ¢ (l)’l))l
Czi‘r . b
<C— |67 (¥ DI 1Bllero 27)

T

6" (|y DI 1Bllpo-
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Thus if |y| > 1,
'[Gi—sb’ Tj] (Aislz—jf) (x, xn+1)'

T 2(i+j)
C|¢(—T)l 16ll5Mmo

y J 2O
2i<|y|<2/t! |y|

X |ASTf (x = 35 X0 = ¢ (1]))] dy

2(1+])k17

<C [LIINVYATE |A Sl Jf' X, Xpi1) >

(28)
andif |y| < 1,
|[Gi—3b’ Tj] (Aislz—jf) (x, xn+1)|

2(I+J)k2T (29)

<C 1llzno T, 'A S Jf' (% Xp41) -
O

3. The Proof of Theorems 1 and 2

Proof of Theorem 1. Let & = (¢, &,.1) € R™! and let 1//(2) €
CS°(R™") be a radial function such that 0 < y < 1, suppy C

{1/2 < €] <2}, and

2y (279 =1 fg+o (30)
lez

Define the multiplier operator S; by
SFE)=v(2"|E) s (31)

Let the measure ¢; on R™! be defined by

JR"“ f(y’ynﬂ)daj
( /) (32)
J fe(y) - B —— Xpi<lyl<2y Ay

forall j € Z. Since

a(y')
0% f = JR" Fx =y %00 - ¢(|y]) WX{szlylszf”}dy’
Q y’
T¢>,Qf: f(x—y,an _¢(IY| ( )d)”
R" "
(33)
we get
Toaf = ). 0;% f. (34)

jezZ

Define the operator Tj f(x)
R™*! and the multiplier

T (F - T< f(F
Tif (€)= T35 (8)
From the above notation, it is easy to see that

[0.Tgal f@® =) Y [B.STSL] F B

leZ jez

=Y Y [bsuTslf® )

lez jez

=YVif(®,

lezZ

= aj*f(i),wherea'é = (x,%,,1) €

v )7 @) (). 69

where

Vif @) = ) [bSTS] £ (. )

jez

Then by the Minkowski inequality, we get

“ [b’ T¢>Q] f L2(R™1)
[log V2] 00 (38)
<| 2 vf X S
I=—c0 [2(RM) I=[log V2]+1 L2(R™1)
For || Z[bg V2l VlfIILz(RM), we recall
2 0-E+¢(Is)E, yd
6}(& El) = LH QO Lj =i(s6-E+ (IS, d ).
(39)
By Lemma 2.3 of [16], we have
|57 (£, < CllQl [27¢]. (40)
Denote by V;0; the before n components truncation of Vo;
that is,
V:o; ( % aa;> (41)
g == .
w7 \og e,
Since
a(y) o
G (EE) = | ol e @ E900E) gy,
= |yl
(42)
we get
|v£a | < C21Q . (43)

Set m;(&) = 73(§), m}(§) =
Tif(©)

m;(E)y (27" |E]). Recall that T; by
= mi.(g) f (E). Straightforward computations lead to

|78, < Cloi2' (44)



6
Since
supp {rm; (27E)} < {[&] < 2"}, (43)
we get
Ve, (278)] .. < Cl2. (46)

Let T;, be the operator defined by 7:";7(2) = mé.(zfjf) f (Z).
Denote by TJI.’b,1 f =1b T;] f and TJl.)b)0 f = TJZ. f. Similarly,
denote by T;‘,b,lf = [b, T}]f and T;)b’of = ij Thus via the

Plancherel theorem and Lemma 8 it is stated that for any fixed
0<v<1ke{o1},

[Tt

1 < Ol ooy 1902 | £ o0

I< [log \/5]

(47)

Dilation-invariance says that

500 f

1 < ClBlyo ) 12U 2" £ 20

I< [log \/5]

(48)

By the proof of Theorem 1 in [20], we can get

IVifllz < Clbllgyogee 2 1905 |12

I < [log V2].

So, we have
llog V2]

> vif

I=—00

[log V2]

1
<C Y 2"Iblgmogry
LZ(RVI+1) I=-00

Flliz gy

|z

For || Z;flﬂlog Vil Vlf”Lz(R””)’ by Lemma 2.3 of [16], if ¢
satisfies the hypotheses in Theorem 1, we have

7 (& &u)| < Clog™ ™ ([2/¢] + 2),

< C"b”BMO(R”“)

|Vea;| < c2/.
(51)

When ¢(|t]) = [t], if n = 2, we also have the above estimates

(see [14]). Set m;(§) = 7;(8), m}(&) = m;(E)y(27"[E]). Recall
! N V- . .

lTj Ct;y Tj f€) = m j(E) f(&). Straightforward computations
ead to

“mlj (2‘f§)||Lw < Clog_o‘_1 (2 + 21) s
[t D). < e
supp {m; (27E)} < {[¢] <27}

Let T;. be the operator defined by Tj;f(f) = mi-(ij‘Eu) f (E).
Denote by T]l.’b’1 f =1b Té] f and T]l.,b)o f = TJZ. f. Similarly,
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denote by T]l.,b’l f=1b T]l.] f and T]l.,b’o f= T; f. Thus via the
Plancherel theorem and Lemma 8 it is stated that for any fixed
0<v<1ke{o1},

[0 1,: = Clbliniogmylog ™" (24 2) Il
I>1+ [log \/E] .
Dilation-invariance says that

|75k f],: < Clblyomnlog ™ (24 2') | £l o

lzl+[log\/§].

By the proof of Theorem 1 in [20], we can get

[Vifll2 < Cllbllgyoreylog ™™ (24+2) | £l 2

(55)
I>1+ [log \/E] .
So take v — 1, and we have
(o)
> S
I=1+[log V2] 2R
& (56)
(—a-1)v+1
< C”b"BMO(R"“) Z e "f"Lz([R"“)
I=1+[log V2]
< Clbllsyog | £l 2@
Then, by (50) and (56) we obtain Theorem 1. O
Proof of Theorem 2. By (36), we have
" [b’ T¢>,0] f“u’(uv)
[log V2] 00 (57)
<\ 2 wf | X oS
I=—00 LP(R3) I=[log V2]+1 LP(R3)

For | 18 PV, fl e recall TLF(R) = TS, ; f(%); then,
Vif(%) = ZjeZ[b> Sl_jT]-Slz_j]f(k'). o(|t]) = |t], and applying
Lemma 11, we get for 1 < p < 0o

IVifll,» < Clibllgpoge

Interpolating between (49) and (58) with n = 2, as the proof
of Theorem 1 in [20], we can get

fl 1< [log \/5] . (58)

[log V2]
Y Vif < Clbllpyoms) |l @e)- (59)
I==0c0 LP(R3)

For | Z?:On[logﬁ] Vlf||L,,(R3)> ¢(t]) = |t|, and applying

Lemma 11, we get for any fixed 0 < 7 < 1/2,1 < p < 00,

2‘rl
Nl 121+ [log v2].
(60)

IViflle < Clbllgmowe)
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Take 7 = 1/I; then, we get

IVifle < Cllblsyoen |/l 121+ [log V2] (6D

For ¢(|t]) = [t|, (55) can be established only when n = 2, so
interpolating between (55) and (61) with n = 2, as the proof
of Theorem 1 in [20], we get

o0
Z V. f < Clibllgvows) | o @)- (62)
I=1+[log V2] LP(R?)
Then, by (59) and (62) we obtain Theorem 2. -

4. The proof of Theorems 4 and 7

We begin with a lemma, which plays an important role in
proving Theorem 4.

Lemma 12. Let b(x) € BMO(R"), % = (x,x,,,,) € R™, and
B(X) = b(x); then, B(X) € BMO(R™") and ||Bllgyiomm1) =
161 spto(@n-

Proof. We know
18lspo®ny = sup Pl J |b (x) - bg| dx, (63)

where b, = (1/]Q]) IQ b(x)dx and Q is the square in R” whose
edges are parallel to the axis. So

[ B||BMO(Rn+1) = sup
QCR”H

' J |B (%) - ~| dx, (64)

where Q is the square in R™*" whose edges are parallel to the
axis. Consider

Lj B(%)d%

- J Jb(x)dxdan
Q

1 J b )d J~m+ad
= x)dx X,
a |Q| Q ( m 1

(65)

1
- & JQb(x)dx ~ b,

where Q is the projection on R" of Q and a is the side length
of Q. Then

I Bllsmoey = sup J |B(x) B5 'dx
GCRHH |
m+a
= s b(x)—by|dxdx,,
Qcm€+1a|Q| J JQ| Ql !
= su b(x)-b dxj dx,,
Qcmﬁlalelj bG-boldx | - dx
= su b(x) - by|dx
QcREIIQIJ | al
1
= sup - | 169~ kol e = lhsiogen.
Qcrr Q)
(66)
O

Proof of Theorem 4. By Lemma 12, B € BMO(R"™"). Using
the method in [5], for f € LP(R") and N € N, let
Fy(x,x,,,) = f(x)e_ix"+1X[_N,N](an). Then by mean value
theorem of integrals and Lemma 12, we have

2N JRn b(x)J Iy(|y ) Flxmy) @y
ot = $ (1Y) dy
X xen) (% = ¢ ([9]) dy pdx
SRGY)

“J.Je

b(x)j |y(|y) Flre—y)e™

X X[-N,N] (xn+1 - ¢ (lyl)) dy (67)

[ TR

=i(x,41=¢(1y1)
X e i(x,—¢(y X[—N,N]

p
-¢(y]) dy| dxdx,,,

x (xn+1

- ” [B T¢0] FN"LP(R"“)

<ClIBI?

15 A

f "LP(R”)
Dividing both sides by 2N and letting N — 00, we obtain

1[0 To] oy < Clblsvomn | fliony  (68)
Thus, we obtain Theorem 4. O

BMO(R"1)

= C2NIbfygoe)




Proof of Theorem 7. Theorem 7 can be proved by using argu-
ments which are essentially the same as the proof of Theorem
1in [20]. Only the following two things must be modified.

(i) Instead oij(x) and ij(x), we use

ig(x) Q ()

Kj,‘b (X) =e |x|n X{2f<|x|s2f”}’
Tj:‘Pf (x) = Kj,(b * f (x) (69)
Q(X) ip(x
:J. e f (x - y)dy.
diclyl<aitt x|

(ii) Since Q(0) is odd and ¢(0¢) is even with respect to 0,
we get Q(0)e®® is odd and Is"-l Q0)e*®do(0) =
0. So we use the estimates in [21]: Consider

IR, ®)| < Clo |27g].

‘ (70)
|I?j)¢ (f)| < Clog™! |2]€ + 2|

in the proof, and we omit the details.
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