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To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product
from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale
investigation methods, including electron probe microanalysis (EPMA) and X-ray absorption spectroscopy. In this study, sodium
arsenate crystals (Na

3
AsO
4
12H
2
O) were mixed with cement production raw materials and calcined to produce cement clinker.

Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the
cement paste. As content in calcium silicate hydrates gel (C-S-H) was in low level, but higher than that in other cement mineral
phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases.
Linear combination fitting (LCF) of the X-ray absorption near edge structure spectra revealed that As in the cement paste was
predominantly As(V) and mainly existed as Mg

3
(AsO

4
)
2
, Ca
3
(AsO

4
)
2
, and Na

2
HAsO

4
.

1. Introduction

In many developing countries, the use of cement kilns to
coprocess wastes containing heavy metals is thriving and
plays an exceedingly important role in solid waste, especially
hazardous waste disposal [1–3]. Coprocessed wastes include
electroplating sludge, contaminated soil, chromium slag,
sludge, hazardous combustible liquid wastes, and garbage [2].
During coprocessing, almost all nonvolatile and semivolatile
heavy metals are transferred into cement clinker which
causes the heavy metal concentration in the cement to
increase significantly. These heavy metals in cement will be
released into the environment gradually and cause a new
environmental risk, and this risk is being taken seriously [4].

The release behaviors of heavy metals from cements and
cementitious materials, as well as the release mechanisms
and influence factors, have been studied to evaluate the
environmental risk [5–10]. Actually, the distribution and
the specific species of heavy metals in cement products
are crucial for evaluating the environmental pollution risk

because these affect the release behaviors of heavy metals
greatly.

Most pieces of research previously conducted were
focused on the distribution and the specific species of heavy
metals in cement-based solidified/stabilized wastes [11–13].
Jing et al. have analyzed the arsenic species and components
in cement-based solidified/stabilized wastes [14, 15]. Some
studies revealed that the immobilization of arsenic with
cement and lime is generally attributed to the formation
of insoluble calcium arsenic compounds, such as CaHAsO

3

for arsenite containing wastes [16] and Ca
3
(AsO
4
)
2
for S/S

treated As(V)-bearing samples [17, 18].
Although the distribution and the specific species of

heavy metals in cement-based solidified/stabilized wastes
were conducted, the study on the coprocessing cement
product was limited. As the physical and chemical properties
will be changed during calcination processes, the distribution
and the specific species of heavy metals in the coprocessing
cement product will be different from that in cement-based
solidified/stabilized wastes [19]. Therefore, it is essential to
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Table 1: Chemical composition of raw materials (%).

Items SiO2 Fe2O3 Al2O3 CaO MgO LOSS
Limestone 0.18 0.04 0.04 55.64 0.05 43.40
Clay 62.14 9.10 16.17 1.63 0 7.30
Ion powder 34.98 50.56 4.95 1.34 0.84 4.52

Table 2: Design and materials in experiment.

Items As
Ni content in the raw material1/(mg⋅kg−1) 81.6
Chemical reagents added Na3AsO4⋅12H2O
Adding ratio1/% 0.3
Adding amount in the raw material1/g⋅kg−1 17
1Calculated by w.

study the distribution and the specific species of heavymetals
in the cement product from cement kiln coprocessing of
wastes.

In this paper, a microscale investigation of arsenic in
cement clinker and paste made with cement from simulated
coprocessing wastes using cement kiln was conducted. Elec-
tron probe microanalysis (EPMA) was used to determine
the As distribution and its associations with cement mineral
phases, while X-ray absorption near edge structure (XANES)
spectroscopy was used to obtain detailed information on the
As valence state and major compounds in the cement clinker
and paste. This information will be useful for evaluating the
environmental pollution risk.

2. Materials and Methods

2.1. Raw Material Characterization. Raw cement materials,
including limestone, clay, and iron powder, were obtained
from a local cement plant, and their chemical compositions
are listed in Table 1. The As contents in the raw materials,
the amount of chemical reagents added in the experiment,
and their corresponding ratios for cement production, which
were calculated based on the arsenic content, are listed in
Table 2.

2.2. Sample Preparation. Na
3
AsO
4
⋅12H
2
O was evenly mixed

with the cement raw materials in accordance with the ratios
listed in Table 2. A mass fraction of 1% distilled water was
added to the mixture. After stirring regularly, disk samples
(ø80mm × 15mm thick) were prepared.The disks were oven
dried at 105∘C and then calcined at 1450∘C for 1 h. Finally,
the disks were rapidly cooled to room temperature in air. A
portion of the clinkers were taken out and stored for XANES
analysis.

A mass fraction of 5% gypsum was added to the remain-
ing clinkers. Then the mixture was ground to fine cement
consisting of particles with specific surface area of 310m2/kg.
Later, cement paste test pieces (20 × 20 × 10mm) were
made at a water to cement ratio of 0.3. They were first cured
at 20∘C and 96% relative humidity for 24 hour and then
demolded. Finally, they were cured at (20 ± 2)∘C and 95%

relative humidity for 28 d prior to testing. Some of the cured
cement test pieces were crushed in a jaw crusher until 95% of
the sample was <125 𝜇m in size for XANES analysis.

2.3. Electron Probe Microanalysis. The remaining cement
paste test pieces were placed in an oven at 60∘C for 1-2 h. Once
dry, the sample was soaked in epoxide-resin glue, and the
temperature was increased to 50–60∘C so that the epoxide-
resin glue filled the spaces within the sample.Then the sample
was placed in a vessel under a low vacuum to remove any air
and cured in an oven at 60∘C for 4 h. A diamond sawwas used
to cut smaller samples from the original sample, and then
these cut samples were ground and polished for analysis by
EPMA.

The microstructures were identified with the help
of energy-dispersive X-ray spectroscopy (EDS, Oxford
ISIS300), which is used to determine elemental composition.
A JEOL JXA8800REPMAanalyzerwas also used.The voltage
employed was 15 keV, and the electron beam current was 2 ×
10

−8 A. BSE images and X-ray images (elemental distribution
images) were acquired. National EPMA oxides and silicate
standard samples were used.

The overall features of the cement mineral phase were
first observed with the low power lens (scale of 200𝜇m),
and then typical mineral phases were transferred to the
middle lens (scale of 50–100 𝜇m) for EPMA surface, line, and
point analyses. Some mineral phases with fine particles were
transferred to the high power lens (scale of 20 𝜇m) for these
analyses.

2.4. XANES Measurements. Arsenic K-edge XANES spectra
were collected at the Beijing Synchrotron Radiation Facility
(BSRF). The typical energy of the storage ring was 2.5 GeV
with the current decreasing from 250 to 160mA during
runs. Mg

3
(AsO
4
)
2
, Ca
3
(AsO
4
)
2
, Na
2
HAsO

4
, Na
3
AsO
4
, and

NaAsO
2
were recorded as standards in transmission mode

(TM). Two samples, clinker and cement paste, weremeasured
in fluorescencemode (FM). All standards were ground to fine
grains and pressed to form wafers (ø1mm). Data analyses
of the experimental XANES spectra were performed with
FEFF8.0 [20].

3. Results and Discussion

3.1. Distribution and Association with Specific Mineral Phases.
The elemental distribution image of As obtained with EPMA
using the low-power lens is shown in Figure 1. Bright areas
corresponding to high concentrations of As were very small
and could not be distinguished easily.What also can be found
is that the As is generally distributed throughout the cement
paste.

BSE-imaging allows minerals of different compositions
to be identified. Figure 2(a) shows a typical calcium silicate
hydrates (C-S-H) gel feature.The elemental distribution map
(Figure 2(b)) showed that the arsenic content was slightly
associated with the C-S-H gels. Line analysis (Figure 3) of
other typical C-S-H gel features confirmed this correlation.
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Figure 1: X-ray image of As in cement paste.

Figure 4(a) shows the BSE image of a typical portlandite
(CH crystal), and Figure 4(b) is the X-ray intensity curve
along the line in Figure 4(a). This indicates that the arsenic
content in the CH crystal is very low. The EDS analyses
(Table 3) of random spots on the CH crystal confirmed this.

The EDS analyses (Table 4) of random spots on the inter-
mediate phases, including calcium aluminates and calcium
ferrites, indicated that their arsenic content was low.

A tentative explanation for the weak associations of
arsenicwith cementmineral phases is thatmost arsenic forms
some arsenates dispersed on the surfaces of hydrates. These
arsenates were mostly not incorporated into the hydrates in
the calcination and hydration processes, and they became
independent mineral phases adhered on the surfaces of
hydrates.The association of arsenic with C-S-H phase maybe
due to the high binding ability to arsenic compounds of C-S-
H gels.

3.2. Specific Species of Arsenic. Arsenic K-edge XANES spec-
tra of the samples and two standards are shown in Figure 5.
The initial sharp peak in the XANES spectra arises from a
transition of the excited photoelectron from the 1s level to
vacant 4p levels. Huffman et al. [21] found that the energy
of the s–p peak increased along with the valence state of the
arsenic. Manning et al. [22, 23] indicated that the excitation
energy for As(III) was well separated from that of As(V) by
about 4 eV. In the present study, the peak energies for the
cement paste and clinker were the same as that of sodium
arsenate, in which the arsenic has a valence state of +5, and
higher than that of sodium arsenite, in which the arsenic has
a valence state of +3. This indicates that the arsenic in the
cement paste and clinker has a valence state of +5.

The spectra of cement paste and clinker showed sim-
ilar general trends. However, there were some interesting
differences. For example, the s–p peak for the clinker was
obviouslymore intense andnarrower than that for the cement
paste (Figure 5). Additionally, some secondary structures
were visible from 11880–11900 eV for the clinker, but not
evident for the cement paste. This suggests that the arsenic
compounds in the clinker are crystalline.

Table 3: EPMA point analysis data of CH crystal in cement paste.

Number Element content (%)
Al Si Ca Fe As

1 0.09 0.85 60.47 0.65 0
2 0.05 0.79 56.78 0.66 0.03
3 0.15 1.07 57.69 0.45 0.28
4 0 2.56 36.32 0.62 0.52
5 0.20 2.71 37.78 0.68 0.42
6 0.13 1.16 54.44 0.79 0
7 0.27 1.49 57.05 0.66 0
8 0.27 1.25 56.79 0.59 0
9 0.43 3.06 54.23 0.70 0

Table 4: EPMA point analysis data of middle phases containing Fe,
Al in cement paste.

Number Element content (%)
Al Si Ca Fe As

1 17.21 6.12 50.80 15.16 0
2 19.70 4.39 50.19 16.69 0
3 20.27 4.06 48.71 17.08 0
4 20.77 4.15 47.93 16.82 0
5 19.28 4.03 50.23 17.96 0
6 21.70 4.18 48.05 17.42 0
7 20.54 4.21 50.54 16.60 0
8 19.35 4.06 51.66 15.25 0
9 21.39 4.36 47.57 16.97 0
10 20.91 4.30 47.39 15.14 0

Using the spectra of standards, LCF has been successfully
applied to identify and quantify the main components of
cement-immobilized materials [14]. In this work, LCF was
performed on the XANES data, and the fitting range was
144 eV around the absorption edge (about 11846–11990 eV).
The fitting results are shown in Figure 6.

The main component in the cement paste was
Mg
3
(AsO
4
)
2

with a mass fraction of 55%. The other
major components were Na

2
HAsO

4
and Ca

3
(AsO
4
)
2
with

mass fractions of 25% and 19.4%, respectively. By contrast,
the content of Na

3
AsO
4
, which was the initial chemical

added during production of the cement sample, was very low
in the final product. Because Mg

3
(AsO
4
)
2
and Ca

3
(AsO
4
)
2

are stable compounds, most of the arsenic present in
coprocessed cement can be immobilized.

4. Conclusions

Most of the arsenic in cement clinker and paste was
present as more stable compounds, such as Mg

3
(AsO
4
)
2

and Ca
3
(AsO
4
)
2
, which is formed in the cement production

process.
Arsenic compounds in the clinker were similar to those

in the cement paste, but they were crystalline instead of
amorphous. This indicates that these compounds are mainly
generated in the calcination process, and the hydration
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Figure 2: Typical feature of C-S-H gels in cement paste and the corresponding X-ray image of As.
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Figure 3: EPMA line analysis of two blocks of C-S-H gels in cement paste and relevant results of As.
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Figure 4: EPMA line analysis of CH crystal in cement paste and corresponding results of As.
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Figure 5: As K-edge XANES spectra for the samples and two
standard compounds.
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Figure 6: Near edge spectra of the cement paste compared with a
sum of 55% Mg

3
(AsO

4
)
2
, 25% Na

2
HAsO

4
, 19.4% Ca

3
(AsO

4
), and

0.5% Na
3
AsO
4
. The small differences between the two spectra are

likely due to the disordered environment.

reaction contributes little to their formation. These stable
compounds result in the immobilization of arsenic in copro-
cessed products.

Arsenic compounds mainly disperse on the surfaces of
the hydrates, only the C-S-H phase contained arsenic among
the cement mineral phases, which may be due to the high
binding ability to arsenic compounds of C-S-H gels.
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