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The role of different receptors in natural-killer- (NK-) cell-mediated cytotoxicity against multiple myeloma (MM) cells is
unknown. We investigated if an enhancement of NK-cell-mediated cytotoxicity against MM could be reached by blocking of the
inhibitory leukocyte immunoglobulin-like receptor 1 (LIR-1). Our investigations revealed high levels of LIR-1 expression not only
on the NK cell line NK-92, but also on myeloma cells (MOLP-8, RPMI8226) as well as on a lymphoblastoid cell line (LBCL; IM-9).
Subsequent cytotoxicity assays were designed to show the isolated effects of LIR-1 blocking on either the effector or the tumor side
to rule out receptor-receptor interactions. Although NK-92 was shown to be capable of myeloma cell lysis, inhibition of LIR-1 on
NK-92 did not enhance cytotoxicity. Targeting the receptor on MM and LBCL did not also alter NK-92- mediated lysis. We come
to the conclusion that LIR-1 alone does not directly influence NK-cell-mediated cytotoxicity against myeloma. To our knowledge,
this work provides the first investigation of the inhibitory capability of LIR-1 in NK-92-mediated cytotoxicity against MM and the
first functional evaluation of LIR-1 on MM and LBCL.

1. Introduction

Understanding of NK cell function has undergone a long
process since their identification in 1975 [1]. NK cells have
initially been regarded as part of the innate immune system,
not allowing any modulation of action with respect to their
changing microenvironment. Their pattern of inhibitory
and activating receptors was considered to be sufficient to
adequately detect tumor cells by the lack of human leukocyte
antigen (HLA) class I molecules. Those tumor cells were
killed instantly and without any obvious need of coactivation
by other cells of the immune system [2]. This unique
feature among lymphocytes has now been understood to
be only the basic function of response, which is completed
by diverse interactions with especially dendritic cells (DC)
and T cells [3]. NK cells do extensively communicate with
their surroundings, and their still-not-fully-deciphered set of

receptors detects changes in the normal surface pattern on all
types of tissues.

NK cell receptors are functionally divided into activating
and inhibitory receptors. Their main ligands are major his-
tocompatibility complex I (MHC-I) molecules, while some
of the receptors can directly recognize specific antigens on
bacteria or damaged cells. Mainly three different subclasses
of NK-cell receptors (NKRs) can be distinguished.

LIR and killer immunoglobulin-like receptors (KIRs) are
type I transmembrane proteins of the immunoglobulin-like
receptor superfamily (IgSF). Both recognize classical HLA
class I molecules, while LIR can also interact with nonclas-
sical HLA class I and bacteria with low binding affinities
[2, 4–6]. The second group of natural cytotoxicity receptors
(NCRs) also belongs to type I transmembrane proteins but
has poorly defined ligands. Type II transmembrane proteins
of the C-lectin type superfamily include natural killer cell
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lectin-like receptor group 2 (NKG2) receptors that form
heterodimers with CD94 [2].

LIRs are expressed on subsets of NK cells and T cells,
as well as on monocytes, B cells, and DC, with the widest
distribution for LIR-1 [7–10].

LIR-1 is an inhibitory receptor also known as im-
munoglobulin-like transcript 2 (ILT-2)/CD85j or leukocyte
immunoglobulin-like receptor, subfamily B member 1 (LIL-
RB1) [7]. It has first been detected in searching for the
counterpart of UL18, a cytomegalovirus encoded HLA class
I homolog that is expressed on infected cells [8, 11, 12].

MM is an incurable disease that is characterized by
the clonal proliferation of terminally differentiated plasma
cells [13, 14]. Stem cell transplantation (SCT) is so far the
only option to achieve long time remission of the disease
[15]. To improve the outcome of MM patients, approaches
like immunomodulation and cellular therapy are under
investigation. NK cells are an attractive candidate for im-
mune therapy. They kill tumor cells without antigen-specific
priming [2] and are the the predominant lymphocyte subset
within the first 90 days after transplantation [16–19]. LIR-1
is one of the main inhibitory NK cell receptors in this early
phase after SCT [10, 16, 20].

We therefore investigated the influence of LIR-1 on
myeloma defeat. Hereby, we studied the effects of LIR-1
blocking of NK-92 as well as on a panel of tumor cell lines
including MM. To our knowledge, these experiments provide
the first data concerning the influence of isolated LIR-1
inhibition on NK cells with respect to myeloma cell lysis.
Moreover, they provide the first functional study of LIR-1
on MM and on other tumor entities, taking into account its
broad distribution among tissues.

2. Material and Methods

2.1. Cells. Unless otherwise stated, all media and supple-
ments were obtained from Life Technologies. Natural killer
cell line NK-92 was cultured in alpha-MEM supplemented
with Earl’s Salts and L-Glutamine, 12.5% equine serum,
12.5% fetal calf serum, 0.2 mM inositol (Sigma-Aldrich),
0.1 mM 2-mercaptoethanol (Sigma-Aldrich), 0.02 mM folic
acid (Sigma-Aldrich), and 1% PenStrep. Cells were splitted
every third day and received 200 U/mL rhIL-2 (CellSystems)
with the fresh medium. Myeloma cell line MOLP-8 was
cultured in RPMI1640 with 20% FCS and 1% PenStrep
while IM-9, RPMI 8226, HL60, and K562 received the same
medium and antibiotics but only 10% FCS. COS-7 cells were
cultured in DMEM with 10% FCS and 1% PenStrep. JEG-3
was grown in Ham’s F12 with 10% FCS and 1% PenStrep.

2.2. Flow Cytometry. Monoclonal antibodies (mAb) were
phycoerythrin- (PE-) conjugated CD2 (RPA-2.10, BDP
harmingen), CD159a (Z199, Beckman Coulter), CD85j
(HP-F1, Beckman Coulter); Pacific Blue-conjugated CD16
(MOPC-21, BD Pharmingen); fluorescein isothiocyanate-
(FITC-) conjugated CD25 (B1.49.9, Beckman Coulter) and
anti-IgG (goat polyclonal anti-mouse IgG, Abcam); allo-
phycocyanin (APC)-stained CD56 (B159, BD Pharmingen)

as well as appropriate isotype controls. Unconjugated anti-
HLA-I (HP-1F7) was obtained from Santa Cruz, anti-HLA-
G (MEM-G/09) and -E (MEM-E/08) were obtained from
Abcam. 7-Amino-Actinomycin D (7AAD, BD Pharmingen)
was used to analyze dead cells. 20 μL Anti-A, B reagent was
used in each sample to block unspecific bindings (Ortho-
Clinical Diagnostics). Cells were incubated with the antibody
or isotype control for 30 minutes at 4◦C, washed with PBS
and, if appropriate, stained with a secondary antibody
followed by an additional washing step. All samples were
additionally stained with 7AAD. Fluorescence was measured
on a BD FACSCanto II flow cytometer and BD FACSDIVA
Software v.6.1.3 (Becton Dickinson) was used for data
analysis.

2.3. Transfection of COS-7 Cells with LIR-1. As a positive
control for western blot experiments, COS-7 cells were trans-
fected with pCMV6-AC vector encoding for LIR-1 (OriGene)
or pCMV6-XL5 as a mock control (OriGene), using FuGene
HD Transfection Reagent (Promega) [21, 22]. All steps were
performed according to the manufacturer’s instructions.
The vector was multiplied by transformation of E.coli cells
(One Shot TOP10/P3 competent cells) with subsequent
purification of the plasmids (Qiagen EndoFree Plasmid Maxi
Kit).

2.4. Western Blot Analysis. Western blot was used to analyze
expressed surface molecules of effector and target cells [23,
24]. Proteins were separated by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) under reducing
conditions. Gels (Life Technologies) were blotted onto
nitrocellulose membranes (Whatman). Membranes were
blocked for one hour with TBS-T buffer (0.05 M Tris-HCL,
0.15 M sodium chloride, 0.1% Tween 20) containing 3%
nonfat dry milk. Incubation with the anti-LIR-1 (VMP55,
Santa Cruz) was done overnight at 4◦C under gentle agi-
tation. After extensive washing with TBS-T, secondary one-
hour incubation with horseradish-peroxidase-conjugated
goat anti-mouse IgG (R&D Systems) was completed with
additional washing. Membranes were stained with enhanced
chemiluminescence agent (GE Healthcare) and exposed to
X-ray film (GE Healthcare). To confirm equal loading of all
gel chambers, membranes were stripped from the specific
antibody using Re-Blot solution (Millipore), followed by
additional staining of β-Actin (ACTB, C4, Santa Cruz).

2.5. Cytotoxicity Assays. Cytolysis was determined in 4-
hour chromium-release assays (CRAs) according to standard
protocols [25–27]. Briefly, NK-92 and target cells were
seeded out in fresh medium one day before functional
assays. The next day target cells were labeled with 100 μCi
sodium-51-chromate (51Cr) for 1.5 hours at 37◦C in a
humidified incubator with 5% CO2. Two washing steps were
performed with PBS (Life Technologies) and assay medium
(RPMI1640, 10% FCS, 1% PenStrep; Life Technologies),
respectively. Cells were resuspended to a dilution of 5 × 103

cells/100 μL. NK-92 and tumor cells were coincubated at
various effector : target (E : T) ratios in U-bottom microtiter
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Figure 1: Expression of surface antigens. (a). Flow cytometric phenotyping of all cell lines was done with mABs against LIR-1, CD56, CD16,
CNKG2A, CD2, and CD25 as shown for NK-92. (b). Surface antigen expression on NK-92 and tumor cell lines. Values given as % positive
staining after subtraction of isotype control.
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Figure 2: LIR-1 expression on NK-92 and target cells. Western
blot analysis of LIR-1 expression on NK-92 cells and tumor cell
lines. Untreated as well as LIR-1 or mock transfected COS-7 cells
negative and positive controls, respectively. After film development,
the membrane was stripped and reincubated with ACTB antibodies
as a loading control. 4 μg anti-LIR-1 and 10 μg anti-ACTB (1 : 1000)
were used for antigen detection. Lanes contended 35 μg of total
protein. As also shown by flow cytometric analysis, NK-92 as well
as IM-9 and MOLP-8 expresses high levels of LIR-1, whereas no
detection of LIR-1 was possible on HL60 and K562 cells.

plates at a total of 200 μL assay medium. Maximum lysis or
spontaneous release (SR) of 51Cr were induced by adding 5%
Triton-X or assay medium to 100 μL target cells, respectively.
All samples were plated out in triplicates. Prior to the 4-
hour incubation period, plates were carefully centrifuged
to facilitate E : T contact. After incubation and additional
centrifugation, 25 μL supernatant were transferred to a 96-
well plate (Isoplate 96, PerkinElmer). To each well, 150 μL
scintillation liquid were added (Rotiszint eco plus, Carl
Roth). Plates were closed with Viewseal foils (Greiner Bio-
One). Suspension was mixed thoroughly for 15 minutes at
19◦C on an Eppendorf thermomixer and then measured
at Wallac Trilux 1450 Microbeta Counter, Windows WS V.
2.70.004, PerkinElmer). The percentage of specific lysis was
calculated as follows:[

c.p.m. experimental release− c.p.m. SR
c.p.m. maximum release− c.p.m. SR

]
× 100. (1)

Results are shown as the mean of at least three independent
experiments. In all experiments, SR was <20% [28].

2.6. Blocking Experiments. Blocking antibodies were anti-
NKG2A (CD159a, IgG2b, Z199 BeckmanCoulter) anti-LIR-
1 (CD85j, 292319, IgG2b, R&D Systems) and anti-HLA-I
(HP-1-F7, IgG1, Santa Cruz), which blocks HLA-A, -B, -
C, -E, and -G engagement [10, 29, 30]. IgG1 (11711) and
IgG2b (20116, both from R&D Systems) were used as isotype
controls. F(ab′)2 fragments (Jackson ImmunoResearch) were
used to prevent ADCC [27, 30]. Controls without F(ab′)2

are explicitly named. Toxicity of any of the used reagents was
carefully ruled out (Figure 8).

2.7. Blocking of Effector Cells. CRA were performed as
described above. Heat inactivated human serum (HS)
was obtained after informed consent from healthy volun-
teers. NK-92 cells were preincubated in RPMI1640 with 1%

PenStrep and 10% HS for 30 minutes and kept within the
same medium during additional 30 minutes of incubation
with mAb concentrations of 0.1, 1 and 10 μg/mL, respec-
tively. Target cells were prepared as described above. NK-
92 cells were washed twice to avoid interactions of the mAb
with the later on coincubated target cell line. Cells were
adjusted for a fix E : T ratio of 1.25 : 1, using 5 × 103 target
cells/100 μL as before. In some of the experiments, this step
was followed by additional preincubation with 11 μg/mL
F(ab′)2 15 minutes prior to coincubation of NK and tumor
cells. In samples classified as “untreated,” no F(ab′)2 was used
[30, 31]. SR was always <20% for all cell lines except from
MOLP-8, which showed a constantly high SR up to 36%
[28]. To rule out toxicity of the mAb, in four experiments
NK-92 were radioactively labeled (51CrNK) and treated as
the unlabeled cells in a parallel series to the blocking assays.
51CrNK showed SR < 6% for all conditions with a standard
deviation (SD) < 3%. No differences related to parameters
F(ab′)2, antibody or concentration could be detected within
statistical analysis [30].

2.8. Blocking of Tumor Cells. Target cells were incubated with
1 μg/mL of the respective mAb at a cell density of 5 × 104

cells/mL. Procedure and incubation times were the same as
described for NK cells. F(ab′)2 was used at a concentration of
1.7 μg/mL for all samples, inclusively the “untreated” control.
Tumor cell incubation with mAb led to SR of <25% for
MOLP-8 and RPMI8226 and up to 11% for all other cells.

2.9. Statistics. To control for indirect effects, statistical
interpretation was done by multivariate Analysis of Variance
(ANOVA). In all calculations, specific lysis was defined as the
dependent variable. Antibodies, concentrations of the mAb,
the targets and the use or no use of F(ab′)2 were defined
as independent variables. Wherever appropriate, interdepen-
dencies between the variables were taken into account. All
calculations were done by SPSS (IBM SPSS Statistics Version
19, Release 19.0.0).

3. Results

3.1. Characterization of NK-92 and Tumor Cell Lines. NK-
92 was found to express high levels of LIR-1 based on
flow cytometric analysis (Figure 1). We confirmed a high
expression of NKG2A and CD25, as well as small amounts
of FcγRIII (CD16) [10]. Hereby, but not regarding LIR-1
expression, NK-92 cells share important similarities with the
CD56bright subset of NK cells [32].

LIR-1 was present on myeloma cells as well as on IM-
9, but no target cell line expressed NKG2A. Western blot
analysis confirmed the pattern of LIR-1 expression, and
the strength of band representation reflected the staining
intensity detected by flow cytometry (Figure 2). LIR-1 or
mock-transfected as well as naı̈ve COS-7 served as positive
and negative controls, respectively. For evaluation of HLA
class I expression, K562 served as negative controls. All cell
lines except K562 were HLA class I positive which correlated
with earlier investigations for MM (Figure 3) [13, 33]. LIR-1
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Figure 3: Continued.
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Figure 3: HLA expression. (a). Representative flow cytometric gating strategy for analysis of HLA expression on all used cell lines (shown
for RPMI8226). All cells were stained with anti-HLA-I/-E/-G IgG1, followed by secondary goat anti-mouse IgG1 FITC. (b). HLA class I
molecules were detectable on all cell lines except for negative control K562. JEG-3 were strongly positive for HLA-6, while detection on
NK92 and HL60 was marginal. HLA-E as the ligand for NK62A lacked on all cell linesexcept on minor staining on IM-9.
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has a broad spectrum of ligands, but its binding properties
are weak. As HLA-G is the strongest binding partner, we
evaluated HLA-G expression on all cell lines [4, 6, 34, 35].
Only JEG-3 were positive for HLA-G. Thus, interaction of
LIR-1 in later-on conducted CRA was restricted to other
binding partners.

The choice of NK-92 and those distinct tumor cell lines
instead of primary cells allowed an isolated view on the
inhibitory capacities of LIR-1. No increase of cytotoxicity
due to blockade of NKG2A could be expected in subsequent
blocking assays, for no target cell line expressed the only
known NKG2A ligand HLA-E [36]. Furthermore, NK-92
has been described before to lack inhibitory KIR molecules
[37, 38].

Other inhibitory LIRs that can be found on NK cells are
only LIR-3 (ILT5) and LIR-8 as well as soluble LIR-4 for
which the ligands are not yet detected [6].

LIR-1 could therefore be considered to be the only known
major inhibitory receptor in this context and was expressed
at high levels (Figures 1 and 2). Influence of so far unknown
inhibitory receptors was ruled out by selective blockade of
LIR-1.

Due to these findings, we considered the use of NK-92
and the chosen tumor cell lines as an ideal system to study
the discrete influence of LIR-1 on modulation of NK-cell
cytotoxicity.

3.2. Myeloma Cells Are Highly Susceptible to NK-92 Mediated
Killing. Cytotoxicity of NK-92 against a panel of tumor cell
lines was investigated in CRA at different E : T ratios (Figure
4) [28]. MM cell lines and IM-9 were efficiently lysed by NK-
92, with highest results for IM-9 (E : T 10 : 1; specific lysis
69.9 ± 6.3%) followed by MOLP-8 (29.8 ± 3.9%), K652

(22.6 ± 7.6%), and RPMI8226 (21.3 ± 3.6%). HL60 was
almost resistant to lysis (4.5 ± 2.5%).

3.3. Blocking of LIR-1 on NK-92 Does Not Increase Target
Cell Lysis. To evaluate the influence of LIR-1 in myeloma
cell lysis, mAbs were used to block LIR-1 receptor-ligand
interactions. As target cells lacked the expression of the HLA-
E molecule, blocking of NKG2A was not expected to alter
the results but was conducted as a negative control. No
significant increase of tumor cell lysis could be achieved by
any of the mAbs despite high concentrations (Figure 5).

As specific lysis of target cells by NK-92 was found to
be independent from mAb concentration and type, results
are presented as means of the used concentrations (0.1/
1/10 μg/mL) or in a separate bar as means of concentration
and mAbs (CD85j, CD159a, and IgG2b) (Figure 6). For
MOLP-8, RPMI8226 and HL60, a significant influence of
F(ab′)2 towards a decreased lysis seemed to be relevant, but
it could not be taken into account.

What first might appear as a protective effect of the
applied F(ab′)2 towards a reduced lysis of target cells could
also be observed in the untreated sample and must therefore
be considered to be a side effect caused by cell culture
procedure. Only experiments with K562 were performed at
the same day with and without F(ab′)2 and the observed
specific lysis of K562 was the same for both experimental
rows. This confirms the thesis of culture side effect to be
responsible for significant changes in experimental results.

It is possible that LIR-1 influence could not be measured,
if a maximum level of NK-activation had already been
achieved before blocking of the inhibitory receptor [38, 39].
Interleukin (IL)-2 requirement during cell culture, induction
of the high potential activating receptor NKp44 by IL-2
[40], and origin of NK-92 from rapidly progressive NK cell
lymphoma [38, 41] favor a preactivated condition.

3.4. Blocking of Neither LIR-1 Nor HLA Class I on Target Cells
Increases Target Cell Lysis. As expected, HLA-A, -B, -C, -E,
and -G blockade on tumor cells did not show any influence
on lysis (Figure 7) since blocking of LIR-1 as the only
relevant inhibitory NK cell receptor on NK-92 had already
not modulated cytotoxicity. We also decided to selectively
block LIR-1 receptors on the tumor cells before coincubation
with NK-92. Though not being likely to directly change NK-
cell properties, LIR-1 expression might contribute to MM
resistance in so far unknown ways as its role in immune
regulations is still fairly unknown (discussed below). As
LIR-1 surface expression increases during B-cell and DC
maturation [42], it might be directly involved in cell-
cell interactions that promote survival and growth. In our
experiments, LIR-1 expression on target cells seemed not
responsible for a resistance to lysis (Figure 7).

3.5. mAb or F(ab′)2 Have No Toxic Effects on NK-92 under
Experimental Conditions. To rule out toxic effects of mAb,
NK-92 were labeled with 51Cr and incubated with the
respective mAb in parallel to the conducted experiments.



8 Clinical and Developmental Immunology

LIR-1

0

10

20

30

40

50

IM-9 MOLP-8 RPMI8226 HL60 K562

Sp
ec

ifi
c 

ly
si

s 
(%

)

+F(ab)2

(a)

NKG2A

Sp
ec

ifi
c 

ly
si

s 
(%

)

0

10

20

30

40

50

IM-9 MOLP-8 RPMI8226 HL60 K562

+F(ab)2

(b)

LIR-1

Sp
ec

ifi
c 

ly
si

s 
(%

)

0

10

20

30

40

50

Untreated
LIR-1 10 µg/mL
LIR-1 1 µg/mL
LIR-1 0.1 µg/mL

IgG2b 10 µg/mL 
IgG2b 1 µg/mL 
IgG2b 0.1 µg/mL 

IM-9 MOLP-8 RPMI8226 HL60 K562

−F(ab)2

(c)

NKG2A

Sp
ec

ifi
c 

ly
si

s 
(%

)

IgG2b 10 µg/mL 
IgG2b 1 µg/mL 
IgG2b 0.1 µg/mL 

0

10

20

30

40

50

NKG2A 10 µg/mL
NKG2A 1 µg/mL
NKG2A 0.1 µg/mL

Untreated

IM-9 MOLP-8 RPMI8226 HL60 K562
−F(ab)2

(d)

Figure 5: Blocking of CD85j and CD159a on NK-92 does not increase specific lysis. Blocking assays were performed as 4-hour CRA. NK-92
were preincubated with human serum and treated with the respective mAb (0.1, 1 and 10 μg/mL). E : T ratio of 1.25 : 1 was used throughout
all experiments with a total of 5× 103 target cells/200 μl. Results are shown as means of triplicates of at least three independent experiments.
(a/b): F(ab′)2 was added after the last washing step prior to coincubation with target cells and maintained within the medium throughout
the whole experimental period. (C/D): Samples without F(ab′)2. In samples classified as “untreated”, neither F(ab′)2 nor Abs were used. SR
was always <20% for all cell lines except from MOLP-8, which showed a constantly high SR up to 36%. Statistical analysis was performed by
ANOVA and did not show any significant effect of Ab use.

In four independent experiments, no harmful effect of anti-
LIR-1, anti-NKG2A or F(ab′)2 could be observed (Figure 8).

3.6. F(ab′)2 Stabilize Pattern of Tumor Lysis. Although not
significantly affecting tumor lysis, there seemed to be an
important influence of the F(ab′)2 fragments (Figure 9).
They stabilized the results even though prior evaluation of
surface molecules did only show very low amounts of CD16
(see above). Apart from outliers, use of F(ab′)2 seemed to
even out mAb effects in the blocking experiments, leading

to values that oscillate close to the origin in both directions
(a). Sparing those fragments decreased relative lysis, predom-
inantly relevant for MOLP-8 and RPMI8226 cells. Only K562
cells rendered more susceptible to NK mediated lysis with a
lack of F(ab′)2 though not at a significant level (b).

4. Discussion

The aim of the present investigations was to evaluate if
LIR-1 on NK cells inhibits NK-92 mediated cytotoxicity
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were excluded, experimental data were merged. Results were highly
significant (untreated ± F(ab′)2/Ab use ± F(ab′)2): IM-9 P =
0.317/P = 0.211; MOLP-8 P = 0.017/P = 0.002; RPMI8226 P =
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0.771). The same settings were used throughout all experiments.
In the experimental row, K652 tests were performed at the same
day and within the same panel. For all other target cells, tests
including F(ab′)2 were performed first and were followed by those
without additional treatment 1 week later. Though IM-9 renders
more susceptible to lysis to a nonsignificant degree, time is the
factor most likely to be taken into account, for targets incubated
with “untreated” NK cells showed the same changes in sensitivity
towards lysis.

against different tumor cell lines. Secondly, presence of LIR-
1 on the target cells was validated concerning its influence
NK cell mediated lysis. LIR-1 was assumed to be the only
relevant inhibitory receptor on NK-92 as stated above
(characterization of NK-92 and tumor cell lines) [38]. Sur-
prisingly, no inhibitory influence of LIR-1 on NK-92 within
cytotoxicity assays against different tumor cell lines could be
detected after treatment with specific antibodies against LIR-
1 (Figures 5–7).

By now, involvement of LIR-1 in protecting the fetus
from abortion has become common immunological knowl-
edge, and so has the adoption of this mechanism by
tumor cells by expressing the LIR-1 ligand HLA-G [43–45].
Furthermore, viruses express highly affinitive LIR-1 ligands
for protection against immune defense and LIR-1 serves as a
receptor for bacterial detection [5, 8]. Data about the specific
role of this receptor in “normal” action of lymphocytes,
especially NK cells, are more conflicting and rare. While
LIR-1 inhibition of T cell and monocyte activation has less
refer to experimental settings in which HLA-G was not
present on the target cell [46–48]. Available publications
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Figure 7: Blocking of LIR-1 and HLA on tumor cells does not lead
to increased lysis by NK-92 cells. LIR-1 (CD85j) and HLA class I
molecules of the tumor cell lines were blocked as before on the NK-
92 cells. After incubation and extended washing, standard CRA were
performed. Neither LIR-1 nor HLA blocking showed significant
increase of tumor cell lysis. All experiments were performed with
the use of F(ab′)2 to prevent ADCC. Statistical analysis performed
by ANOVA excluded any significant effect of either isotype or
Ab on target cell lysis, compared to untreated samples. Discrete
investigation of K562 treatment, performed as a comparison of
cumulated values for all Ab-incubated samples with or without
F(ab′)2, excluded any influence of additional F(ab′)2 on the results
(P = 0.218).

emphasize data that confirm an important inhibitory effect
of LIR-1, but a more questioning view might refer to the
number of experiments mentioned that did not deliver the
pronounced outcome. We will give a short overview of
available functional studies of LIR-1 on donor-derived NK
cells and NK cell lines in order to demonstrate the conflicting
knowledge that is available.

Godal et al. made an attempt in revealing the influence of
LIR-1 on dNK in cytotoxicity against HLA-G negative AML
and ALL blasts. Their results indicate that LIR-1 does only
serve as a weak inhibitory NK cell receptor in the absence of
HLA-G on tumor cells, but might be relevant in situations
with low KIR expression as seen within the first months after
stem cell transplantation (SCT) [10].

Other authors used merely HLA-transfected 721.221,
murine cells (P815) or immature dendritic cells (iDC) as
target cells, but often had the benefit of comparing results
from NK cell lines to the performance of NK cells derived
from healthy donors. In 2008, Yawata et al. conducted a series
of degranulation assays of dNK against HLA class I deficient
721.221 in order to investigate the involvement of distinct
receptors in “missing-self” recognition and were not able to
identify any involvement of LIR-1 [49]. More successful LIR-
1 mediated inhibition was achieved by Morel and Bellon who
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concentration was 11 μ/mL. Spontaneous release was <6%. As this
control panel was performed in parallel to regular NK-92 blocking
experiments, interferences by reagents, temperature, incubation
period, cell viability, or technical equipment can be excluded.

tested the cytotoxicity of dNK and NK-92 against HLA-G
and -B transfected 721.221 in CRA with subsequent use of
blocking antibodies [39]. Their prestudies found only 15%
of LIR-1 positive dNK to be stimulated by target contact
and these responsive dNK were chosen for the subsequent
studies. Comparative analysis of NK-92 and dNK in different
types of assays were conflicting.

No such conflict was observed by Favier et al., who incu-
bated dNK and the NK cell line NKL with 721.221-G1 and
used blocking Abs against LIR-1 and HLA-G [50]. The same
was true for Vitale et al. They incubated dNK with different
HLA transfected cell lines in standard CRA and increased
lysis by LIR-1 blockade, but unfortunately, no explicit pre-
vention of antibody-dependent cellular cytotoxicity (ADCC)
was mentioned [51]. At last, Colonna et al. showed the
expected LIR-1 influence in different experimental setups
with NKL, serotonin releasing RBL cells, as well as dNK
and donor derived LIR+ T cells (dTK) [21]. Interestingly, in
all assays with either dTK or dNK against 721.221-B∗2705,
anti-LIR-1 could only partially revert transfection-induced
inhibition, indicating either incomplete binding of anti-LIR-
1 to the receptor or the presence of other receptors apart from
LIR-1 that bind to the ligand.

Moreover, in reverse ADCC (rADCC) assays with dNK
against P815, only few clones were inhibited by LIR-1. Here
again, NK cell clones have shown to exhibit less predictable
outcomes than cell lines [21].

Summarizing the available data, NK cell lines seem to
be more reliable than dNK concerning LIR-1 mediated
downregulation of cytotoxicity. The results for polyclonal
dNK show high variances between the different clones that
are mostly not characterized in detail. Successful LIR-1 medi-
ated inhibition by HLA-transfected 721.221 has abundantly
been shown. Involvement of additional undetected receptors
could not always be excluded, and different types of assays
performed with the same effector and target cells could lead
to highly diverging results. Investigations of cytotoxicity of
dNK and donor-derived tumor cells are rare and no sufficient
information is available about the role of LIR-1 in the absence
of HLA-G. Current opinion about the inhibitory influence of
LIR-1 is predominantly based on investigations at the feto-
maternal interface or has been gained from settings in which
only a single HLA molecule was present on the target cells—
mostly HLA-G or -B on 721.221. The performed experiments
do not sufficiently cover the extensive binding capacities of
LIR-1 to HLA class I.

Although we are aware of problems concerning the
comparability of NK cell lines to donor-derived NK cells
(dNK), we have chosen an experimental setting that allows
studying isolated influence of LIR-1 on cytotoxicity. Our
major goal was to provide a model system to overcome the
common practice of using transfected target cell lines in
cytotoxicity assays. Being aware of the necessity of future
efforts to confirm the present findings in a brighter panel
of cells and cell lines, these results might provide a first step
towards a new understanding of LIR-1.

Available data do not sufficiently support the direct
implication of LIR-1 in NK cell inhibition. Upregulation of
the receptor does not necessarily favor immunosuppression
but might correlate with the acquisition of memory. LIR-1
surface expression increases during B cell and DC maturation
[42] as well as during cytomegalovirus infection [52] and
acquisition of T-cell memory [53, 54]. We suppose that
an increasing LIR-1 expression also correlates with the
acquisition of NK cell memory [55], supported by the
surveillance that a high LIR-1 level on NK cells leads to an
effective lysis of HIV-infected DC [56].

LIR-1 seems to have a high impact on regulating the
balance between activation and inhibition during immune
responses [42]. It might do so by cooperation with other
receptors like KIRs, which favor a clustering of MHC-I
[57]. As HLA-G is the only LIR-1 ligand that generates
covalent dimers and trimers at the cell surface, aggregation
might be a precondition to receptor’s activation. It has been
proposed that these complexes increase the avidity towards
LIR-1, explaining the discrepancy between the relatively low
affinity of LIR-1 to its ligand and the high relevance within
the context of fetal tolerance [58]. Homo- or heterotypic
complex formation of the LIR-1 receptor and its ligands
might be a key factor that regulates the degree of NK cell
inhibition. By this, LIR-1 might work as a rheostat of NK cell
activation. This hypothesis would fit the capability of LIR-1
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Figure 9: Use of F(ab′)2 after blocking NK-92 receptors seems to balance lysis pattern. Values show the % relative increase or decrease of
target cells lysis in a standard 4-hour CRA, calculated as follows: % relative change of specific lysis = [(% specific lysis “antibody”) − (%
specific lysis “untreated”)]/[% specific lysis “untreated”]. Though no concentration of the used mAbs showed a significant change in tumor
lysis, interesting differences in the resulting lysis-patterns could be detected. (a) Apart from outliers, use of F(ab′)2 evens out mAb effects in
the blocking experiments, leading to values that oscillate close to the origin in both directions. (b) Sparing F(ab′)2 decreases specific lysis,
predominantly for MOLP-8 and RPMI8226 cells.

to sense the overall HLA class I expression on human tissues.
An increase during aging as well as memory acquisition
could elevate the necessary threshold for activation during
a parallel process of increase of activating NK cell receptors
caused by repeated pathogen contacts.

5. Conclusions

Within the present study, no alteration of NK mediated
cytotoxicity against MM was observed after blockade of
LIR-1. Being the only functional inhibitory receptor within
this setting, major known side effects by, for example, KIR
have been ruled out. This unexpected outcome opens the
door to fruitful discussions about the complexity of LIR-1
interactions and its potential role within tumor defense. It
is very likely that the present presumptions about functions

of LIR-1 within immune regulation are far behind the real
impact. We hypothesize that LIR-1 has a key role as a
rheostat of NK cell modulation and is strongly involved in
the acquisition of NK cell memory.
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