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We prove that the inequality 𝑇𝑄(𝑎, 𝑏) > 𝐿𝑝(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 3/2, where 𝑇𝑄(𝑎, 𝑏) =

(2/𝜋) ∫
𝜋/2

0
𝑎
cos2𝜃

𝑏
sin2𝜃

𝑑𝜃, 𝐿𝑝(𝑎, 𝑏) = [(𝑏
𝑝
− 𝑎
𝑝
)/(𝑝(𝑏 − 𝑎))]

1/𝑝
(𝑝 ̸= 0), and 𝐿0(𝑎, 𝑏) =

√𝑎𝑏 are, respectively, the Toader-Qi and
𝑝-order logarithmic means of 𝑎 and 𝑏. As applications, we find two fine inequalities chains for certain bivariate means.

1. Introduction

Let 𝑝 ∈ R and 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. Then the Toader-Qi
mean 𝑇𝑄(𝑎, 𝑏) [1–3] and 𝑝-order logarithmic mean 𝐿𝑝(𝑎, 𝑏)
are defined by

𝑇𝑄 (𝑎, 𝑏) =
2

𝜋
∫

𝜋/2

0

𝑎
cos2𝜃

𝑏
sin2𝜃

𝑑𝜃, (1)

𝐿𝑝 (𝑎, 𝑏) = [
𝑏
𝑝
− 𝑎
𝑝

𝑝 (log 𝑏 − log 𝑎)
]

1/𝑝

(𝑝 ̸= 0) ,

𝐿0 (𝑎, 𝑏) = lim
𝑝→0

𝐿𝑝 (𝑎, 𝑏) =
√𝑎𝑏,

(2)

respectively. In particular, 𝐿1(𝑎, 𝑏) = 𝐿(𝑎, 𝑏) is the classical
logarithmic mean of 𝑎 and 𝑏.

It is well-known that the 𝑝-order logarithmic mean
𝐿𝑝(𝑎, 𝑏) is continuous and strictly increasing with respect
to 𝑝 ∈ R for fixed 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. Recently, the
Toader-Qi and 𝑝-order logarithmic means have been the
subject of intensive research. In particular, many remarkable
inequalities for theToader-Qi and𝑝-order logarithmicmeans
can be found in the literature [2–7].

In [2], Qi et al. proved that the identity

𝑇𝑄 (𝑎, 𝑏) = √𝑎𝑏𝐼0 (
1

2
log 𝑏

𝑎
) (3)

and the inequalities

𝐿 (𝑎, 𝑏) < 𝑇𝑄 (𝑎, 𝑏) <
𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

2

<
2𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

3
< 𝐼 (𝑎, 𝑏)

(4)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where

𝐼0 (𝑡) =

∞

∑

𝑛=0

𝑡
2𝑛

22𝑛 (𝑛!)
2

(5)

is the modified Bessel function of the first kind [8] and
𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2, 𝐺(𝑎, 𝑏) = √𝑎𝑏 and 𝐼(𝑎, 𝑏) =

(𝑏
𝑏
/𝑎
𝑎
)
1/(𝑏−𝑎)

/𝑒 are, respectively, the classical arithmetic, geo-
metric, and identric means of 𝑎 and 𝑏.

In [3], Yang proved that the double inequalities

√
2𝐴 (𝑎, 𝑏) 𝐿 (𝑎, 𝑏)

𝜋
< 𝑇𝑄 (𝑎, 𝑏) < √𝐴 (𝑎, 𝑏) 𝐿 (𝑎, 𝑏), (6)

𝐴
1/4

(𝑎, 𝑏) 𝐿
3/4

(𝑎, 𝑏) < 𝑇𝑄 (𝑎, 𝑏)

<
1

4
𝐴 (𝑎, 𝑏) +

3

4
𝐿 (𝑎, 𝑏)

(7)

and conjectured that the inequalities

𝑇𝑄 (𝑎, 𝑏) < 𝐼
1/2

(𝑎, 𝑏) 𝐿
1/2

(𝑎, 𝑏) , (8)

𝑇𝑄 (𝑎, 𝑏) > 𝐿3/2 (𝑎, 𝑏) (9)
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hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. Inequality (8) was proved by
Yang et al. in [9].

Let 𝑏 > 𝑎 > 0 and 𝑡 = (log 𝑏 − log 𝑎)/2 > 0. Then from
(1)–(3) we clearly see that

𝐿𝑝 (𝑎, 𝑏) =
√𝑎𝑏 [

sinh (𝑝𝑡)
𝑝𝑡

]

1/𝑝

(𝑝 ̸= 0) ,

𝑇𝑄 (𝑎, 𝑏) =
2√𝑎𝑏

𝜋
∫

𝜋/2

0

𝑒
𝑡cos(2𝜃)

𝑑𝜃 = √𝑎𝑏𝐼0 (𝑡)

=
2√𝑎𝑏

𝜋
∫

𝜋/2

0

cosh (𝑡 cos 𝜃) 𝑑𝜃

=
2√𝑎𝑏

𝜋
∫

𝜋/2

0

cosh (𝑡 sin 𝜃) 𝑑𝜃.

(10)

Themain purpose of this paper is to give a positive answer
to the conjecture given by (9). As applications, we present
two fine inequalities chains for certain bivariate means and
a lower bound for the kernel function of the Szász-Mirakjan-
Durrmeyer operator.

2. Lemmas

In order to prove our main result we need several lemmas,
which we present in this section.

Lemma 1 (see [10]). The double inequality

1

(𝑥 + 𝑎)
1−𝑎

<
Γ (𝑥 + 𝑎)

Γ (𝑥 + 1)
<

1

𝑥1−𝑎
(11)

holds for all 𝑥 > 0 and 𝑎 ∈ (0, 1), where Γ(𝑥) = ∫
∞

0
𝑒
−𝑡
𝑡
𝑥−1

𝑑𝑡

is the classical Euler gamma function.

Lemma 2 (see [3]). Let 𝐼0(𝑡) be defined by (5). Then the
identity

𝐼
2

0
(𝑡) =

∞

∑

𝑛=0

(2𝑛)!

22𝑛 (𝑛!)
4
𝑡
2𝑛 (12)

holds for all 𝑡 ∈ R.

Lemma 3 (see [3]). TheWallis ratio

𝑊𝑛 =
(2𝑛 − 1)!!

(2𝑛)!!
=

(2𝑛)!

22𝑛 (𝑛!)
2
=

Γ (𝑛 + 1/2)

Γ (1/2) Γ (𝑛 + 1)
(13)

is strictly decreasing and log-convex with respect to all integers
𝑛 ≥ 0.

Lemma 4. The identity

𝑛

∑

𝑘=0

𝑎
2𝑘

(2𝑘)! (2𝑛 − 2𝑘)!
=
(𝑎 + 1)

2𝑛
+ (𝑎 − 1)

2𝑛

2 (2𝑛)!
(14)

holds for all 𝑎 ∈ R and 𝑛 ∈ N.

Proof. Let ( 𝑛𝑘 ) = 𝑛!/𝑘!(𝑛−𝑘)! be the number of combinations
of 𝑛 objects taken 𝑘 at a time. Then from the well-known
binomial theorem we have

(𝑎 + 1)
2𝑛
=

2𝑛

∑

𝑘=0

(

2𝑛

𝑘
) 𝑎
𝑘

=

𝑛

∑

𝑘=0

(

2𝑛

2𝑘
) 𝑎
2𝑘
+

𝑛

∑

𝑘=1

(

2𝑛

2𝑘 − 1
) 𝑎
2𝑘−1

,

(𝑎 − 1)
2𝑛
=

2𝑛

∑

𝑘=0

(

2𝑛

𝑘
) (−1)

2𝑛−𝑘
𝑎
𝑘

=

𝑛

∑

𝑘=0

(

2𝑛

2𝑘
) 𝑎
2𝑘
−

𝑛

∑

𝑘=1

(

2𝑛

2𝑘 − 1
) 𝑎
2𝑘−1

.

(15)

Equation (15) leads to

(𝑎 + 1)
2𝑛
+ (𝑎 − 1)

2𝑛

2
=

𝑛

∑

𝑘=0

(

2𝑛

2𝑘
) 𝑎
2𝑘

=

𝑛

∑

𝑘=0

(2𝑛)!𝑎
2𝑘

(2𝑘)! (2𝑛 − 2𝑘)!
.

(16)

Lemma 5. Let 𝑘, 𝑛 ∈ N with 𝑘 ≤ 𝑛 and

𝑢𝑘,𝑛 =
(2𝑘)!

22𝑛 (𝑘!)
4
[(𝑛 − 𝑘)!]

2
. (17)

Then

𝑢𝑘,𝑛 >
2√2

𝜋√𝜋 (𝑛 + 1)√2𝑛 + 1

2
2𝑘

(2𝑘)! (2𝑛 − 2𝑘)!
(18)

for all 𝑛 ≥ 8.

Proof. Let 𝑊𝑛 be defined by (13). Then it follows from
Lemmas 1 and 3 together with (17) and Γ(1/2) = √𝜋 that

𝑢𝑘,𝑛 = 𝑊
2

𝑘
𝑊𝑛−𝑘

2
2𝑘

(2𝑘)! (2𝑛 − 2𝑘)!
≥ 𝑊𝑘𝑊

2

𝑛/2

⋅
2
2𝑘

(2𝑘)! (2𝑛 − 2𝑘)!
≥ 𝑊𝑛𝑊

2

𝑛/2

2
2𝑘

(2𝑘)! (2𝑛 − 2𝑘)!

=
1

𝜋√𝜋

Γ (𝑛 + 1/2)

Γ (𝑛 + 1)
[
Γ (𝑛/2 + 1/2)

Γ (𝑛/2 + 1)
]

2

⋅
2
2𝑘

(2𝑘)! (2𝑛 − 2𝑘)!
>

1

𝜋√𝜋

⋅
1

√𝑛 + 1/2

[
1

√𝑛/2 + 1/2

]

2
2
2𝑘

(2𝑘)! (2𝑛 − 2𝑘)!

=
2√2

𝜋√𝜋 (𝑛 + 1)√2𝑛 + 1

2
2𝑘

(2𝑘)! (2𝑛 − 2𝑘)!

(19)

for all 𝑛 ≥ 8 and 0 ≤ 𝑘 ≤ 𝑛.
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3. Main Result

Theorem 6. The inequality

𝑇𝑄 (𝑎, 𝑏) > 𝐿𝑝 (𝑎, 𝑏) (20)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 3/2.

Proof. Since both the Toader-Qi mean 𝑇𝑄(𝑎, 𝑏) and 𝑝-order
logarithmic mean 𝐿𝑝(𝑎, 𝑏) are symmetric and homogeneous
and 𝑇𝑄(𝑎, 𝑏) > 𝐿(𝑎, 𝑏) and 𝐿𝑝(𝑎, 𝑏) is strictly increasing with
respect to 𝑝 ∈ R for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, without loss
of generality, we assume that 𝑝 > 1 and 𝑏 > 𝑎 > 0. Let 𝑡 =
(log 𝑏 − log 𝑎)/2 > 0. Then it follows from (10) that inequality
(20) is equivalent to

𝐼0 (𝑡) > [
sinh (𝑝𝑡)

𝑝𝑡
]

1/𝑝

(21)

for all 𝑡 > 0.
If inequality (21) holds for all 𝑡 > 0. Then (5) and (21) lead

to

lim
𝑡→0+

𝐼0 (𝑡) − [sinh (𝑝𝑡) /𝑝𝑡]
1/𝑝

𝑡2
= −

1

6
(𝑝 −

3

2
) ≥ 0, (22)

which gives 𝑝 ≤ 3/2.
Next, we only need to prove that inequality (21) holds for

𝑝 = 3/2 and all 𝑡 > 0; that is

𝐼
3

0
(𝑡) > [

sinh (3𝑡/2)
3𝑡/2

]

2

. (23)

It follows from (5) and Lemma 2 that

𝐼
3

0
(𝑡) = (

∞

∑

𝑛=0

𝑡
2𝑛

22𝑛 (𝑛!)
2
)

3

=

∞

∑

𝑛=0

(2𝑛)!𝑡
2𝑛

22𝑛 (𝑛!)
4

∞

∑

𝑛=0

𝑡
2𝑛

22𝑛 (𝑛!)
2

=

∞

∑

𝑛=0

(

𝑛

∑

𝑘=0

(2𝑘)!

22𝑘 (𝑘!)
4

1

22(𝑛−𝑘) [(𝑛 − 𝑘)!]
2
) 𝑡
2𝑛

=

∞

∑

𝑛=0

(

𝑛

∑

𝑘=0

𝑢𝑘,𝑛) 𝑡
2𝑛
,

(24)

where 𝑢𝑘,𝑛 is defined as in (17).
Note that

[
sinh (3𝑡/2)

3𝑡/2
]

2

=
2 [cosh (3𝑡) − 1]

9𝑡2
= 2

∞

∑

𝑛=0

3
2𝑛
𝑡
2𝑛

(2𝑛 + 2)!
. (25)

Let

V𝑛 =
𝑛

∑

𝑘=0

𝑢𝑘,𝑛 −
2 × 3
2𝑛

(2𝑛 + 2)!
. (26)

Then simple computations lead to
V0 = V1 = 0,

V2 =
3

320
,

V3 =
113

26880
,

V4 =
2057

2867200
,

V5 =
1741

25231360
,

V6 =
4335377

991895224320
,

V7 =
2186227

11021058048000
.

(27)

From Lemmas 4 and 5 together with (24)–(26), we have

𝐼
3

0
(𝑡) − [

sinh (3𝑡/2)
3𝑡/2

]

2

=

∞

∑

𝑛=0

V𝑛𝑡
2𝑛
,

V𝑛 >
2√2

𝜋√𝜋 (𝑛 + 1)√2𝑛 + 1

3
2𝑛
+ 1

2 (2𝑛)!
−

2 × 3
2𝑛

(2𝑛 + 2)!

=

[√2 (2𝑛 + 1) − 𝜋√𝜋] 3
2𝑛
+ √2 (2𝑛 + 1)

𝜋√𝜋 (𝑛 + 1) (2𝑛 + 1)!
> 0

(28)

for all 𝑛 ≥ 8.
Therefore, inequality (23) follows from (27) and (28).

Remark 7. Theorem 6 gives a positive answer to the conjec-
ture given by (9).

Remark 8. It follows from (23) that the inequality

𝐼
3

0
(𝑡) >

2 [cosh (3𝑡) − 1]
9𝑡2

(29)

holds for all 𝑡 ̸= 0.

4. Applications

For 𝑎, 𝑏 > 0, the Toader mean 𝑇(𝑎, 𝑏) [1] and arithmetic-
geometric mean AGM(𝑎, 𝑏) [11] are, respectively, defined by

𝑇 (𝑎, 𝑏) =
2

𝜋
∫

𝜋/2

0

√𝑎2cos2𝜃 + 𝑏2sin2𝜃 𝑑𝜃,

AGM (𝑎, 𝑏) = lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑏𝑛,

(30)

where 𝑎𝑛 and 𝑏𝑛 are given by
𝑎0 = 𝑎,

𝑏0 = 𝑏,

𝑎𝑛+1 =
(𝑎𝑛 + 𝑏𝑛)

2
= 𝐴 (𝑎𝑛, 𝑏𝑛) ,

𝑏𝑛+1 = √𝑎𝑛𝑏𝑛 = 𝐺 (𝑎𝑛, 𝑏𝑛) .

(31)
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Let 𝑇𝑝(𝑎, 𝑏) = 𝑇
1/𝑝
(𝑎
𝑝
, 𝑏
𝑝
) and 𝐼𝑞(𝑎, 𝑏) = 𝐼

1/𝑞
(𝑎
𝑞
, 𝑏
𝑞
) be

the 𝑝-order Toader and 𝑞-order identric means of 𝑎 and 𝑏,
respectively. Then Theorem 6 leads to two fine inequalities
chains for certain bivariate means.

Theorem 9. The inequalities

𝐿 (𝑎, 𝑏) < 𝐴𝐺𝑀(𝑎, 𝑏) < 𝐴
1/4

(𝑎, 𝑏) 𝐿
3/4

(𝑎, 𝑏)

< 𝐿3/2 (𝑎, 𝑏) < 𝑇𝑄 (𝑎, 𝑏)

<
1

4
𝐴 (𝑎, 𝑏) +

3

4
𝐿 (𝑎, 𝑏)

<
1

2
𝐿 (𝑎, 𝑏) +

1

2
𝐼 (𝑎, 𝑏)

<
1

2
𝐴 (𝑎, 𝑏) +

1

2
𝐺 (𝑎, 𝑏) < 𝑇1/3 (𝑎, 𝑏)

< 𝐼3/4 (𝑎, 𝑏) ,

𝐿 (𝑎, 𝑏) < 𝐴𝐺𝑀(𝑎, 𝑏) < 𝐴
1/4

(𝑎, 𝑏) 𝐿
3/4

(𝑎, 𝑏)

< 𝐿3/2 (𝑎, 𝑏) < 𝑇𝑄 (𝑎, 𝑏)

< 𝐿
1/2

(𝑎, 𝑏) 𝐼
1/2

(𝑎, 𝑏) <
1

2
𝐿 (𝑎, 𝑏) +

1

2
𝐼 (𝑎, 𝑏)

<
1

2
𝐴 (𝑎, 𝑏) +

1

2
𝐺 (𝑎, 𝑏) < 𝑇1/3 (𝑎, 𝑏)

< 𝐼3/4 (𝑎, 𝑏)

(32)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

Proof. The following inequalities can be found in the litera-
ture [3, 4, 7, 12–14]:

𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

2
< 𝑇1/3 (𝑎, 𝑏) < 𝐼3/4 (𝑎, 𝑏) , (33)

𝐿 (𝑎, 𝑏) < AGM (𝑎, 𝑏)

< 𝐿
3/4

(𝑎, 𝑏) 𝐴
1/4

(𝑎, 𝑏)

< 𝐿3/2 (𝑎, 𝑏) ,

(34)

𝐼 (𝑎, 𝑏) >
𝐿 (𝑎, 𝑏) + 𝐴 (𝑎, 𝑏)

2
,

𝐿 (𝑎, 𝑏) + 𝐼 (𝑎, 𝑏) < 𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

(35)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
It follows from (35) that

𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

2
>
𝐼 (𝑎, 𝑏) + 𝐿 (𝑎, 𝑏)

2

>
3

4
𝐿 (𝑎, 𝑏) +

1

4
𝐴 (𝑎, 𝑏)

(36)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Therefore, inequality (32) follows easily from (7), (8), (33),

(34), (36), andTheorem 6.

Remark 10. Let 𝑏 > 𝑎 > 0 and 𝑡 = (log 𝑏 − log 𝑎)/2 > 0. Then
simple computations lead to

𝐿 (𝑎, 𝑏)

√𝑎𝑏

=
sinh (𝑡)

𝑡
,

𝐼 (𝑎, 𝑏)

√𝑎𝑏

= 𝑒
𝑡 cosh(𝑡)/ sinh(𝑡)−1

,

𝐴 (𝑎, 𝑏)

√𝑎𝑏

= cosh (𝑡) .

(37)

Note that

lim
𝑡→0+

(sinh (𝑡) /𝑡) 𝑒𝑡 cosh(𝑡)/ sinh(𝑡)−1 − (3 sinh (𝑡) /4𝑡 + cosh (𝑡) /4)2

𝑡4
=

1

720
,

lim
𝑡→∞

[
sinh (𝑡)

𝑡
𝑒
𝑡 cosh(𝑡)/ sinh(𝑡)−1

− (
3 sinh (𝑡)

4𝑡
+
cosh (𝑡)

4
)

2

] = −∞.

(38)

Inequalities (37) and (38) imply that there exist small
enough 𝛿 > 0 and large enough𝑀 > 1 such that

𝐼
1/2

(𝑎, 𝑏) 𝐿
1/2

(𝑎, 𝑏) >
1

4
𝐴 (𝑎, 𝑏) +

3

4
𝐿 (𝑎, 𝑏) (39)

for all 𝑏 > 𝑎 > 0 with 𝑏/𝑎 ∈ (1, 1 + 𝛿) and

𝐼
1/2

(𝑎, 𝑏) 𝐿
1/2

(𝑎, 𝑏) <
1

4
𝐴 (𝑎, 𝑏) +

3

4
𝐿 (𝑎, 𝑏) (40)

for all 𝑏 > 𝑎 > 0 with 𝑏/𝑎 ∈ (𝑀,∞).

Let 𝑥 ∈ [0,∞), 𝑛 > 0, 𝑘 ≥ 0, 𝑝𝑛,𝑘(𝑥) = (𝑛𝑥)
𝑘
𝑒
−𝑛𝑥

/𝑘!,
and 𝑓 ∈ 𝐿𝑝([0,∞)) (1 ≤ 𝑝 ≤ ∞). Then the kernel function
𝑇𝑛(𝑥, 𝑦) of the Szász-Mirakjan-Durrmeyer operator [15]

𝑀𝑛 (𝑓; 𝑥) =

∞

∑

𝑘=0

⟨𝑓, 𝑝𝑛,𝑘⟩

⟨1, 𝑝𝑛,𝑘⟩
𝑝𝑛,𝑘 (𝑥)

= 𝑛 ⟨𝑓, 𝑇𝑛 (𝑥, ⋅)⟩ ∫

∞

0

𝑇𝑛 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦

(41)
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is given by

𝑇𝑛 (𝑥, 𝑦) =

∞

∑

𝑘=0

𝑝𝑛,𝑘 (𝑥) 𝑝𝑛,𝑘 (𝑦) = 𝑒
−𝑛(𝑥+𝑦)

𝐼0 (2𝑛√𝑥𝑦) . (42)

Berdysheva [16] proved that𝑇𝑛(𝑥, 𝑦) is completelymono-
tonic with respect to 𝑛 > 0 for fixed 𝑥, 𝑦 ∈ [0,∞) and

𝑇𝑛 (𝑥, 𝑦) ≤ 𝑒
−𝑛(√𝑥−√𝑦)

2 (43)

for all 𝑥, 𝑦 ∈ [0,∞).

From Remark 8 and (42), we get a lower bound for the
kernel function 𝑇𝑛(𝑥, 𝑦) immediately.

Corollary 11. The inequality

𝑇𝑛 (𝑥, 𝑦) > 𝑒
−𝑛(𝑥+𝑦)

[
cosh (6𝑛√𝑥𝑦) − 1

18𝑛2𝑥𝑦
]

1/3

(44)

holds for all 𝑥, 𝑦 ∈ (0,∞).
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