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To solve the problem of the high peak-to-average power ratio (PAPR) in Orthogonal Frequency Division Multiplexing (OFDM)
for the underwater acoustic communication system, the paper offers a method of reducing PAPR which combines the amplitude
limiting and the improved nonlinear transformation. Traditional amplitude limiting technique can reduce PAPR in OFDM system
effectively, at the cost of reducing the bit error rate (BER). However the companding transformation has far less computation
complexity than SLM or PTS technologies and can improve the BER performance compared to the amplitude limiting technique
simultaneously. The paper combines these two kinds of techniques, takes full use of advantages of the two method, and puts
forward a low-complexity scheme choosing parameters that aremore appropriate to the underwater acoustic field, with the result of
improved BERperformance even in lower SNR. Both simulation and experiment results show that the newmethodwhich combines
clipping and companding transformation can effectively reduce the PAPR in the underwater acoustic OFDM communication
system and improve the BER performance simultaneously.

1. Introduction

Recently, the main research direction of underwater acoustic
communication includes high-speed underwater acoustic
communication at near distance and low-speed acoustic
communication at remote distance [1–3]. High-speed acous-
tic communication adopts coherent communication tech-
nique and multicarrier modulation. OFDM is a kind of mul-
ticarrier modulation technique with high spectral efficiency
[4–6], and it is widely used in the limited bandwidth under-
water acoustic communication. However, OFDM has the
defect of high PAPR, which will restrict the linear dynamic
range of transmitter’s power amplifier and generate clipping
distortion which in turn influences the BER performance of
the whole system. It will also reduce the accuracy of A/D and
D/A convertor and even break the subcarrier’s orthogonality
in OFDM system [7].

International and domestic research on reducing PAPR
mainly divides into following several classes [8–14]: coding

technique, probability technique, and signal predistortion
technique. The advantage of coding technique is with no
signal distortion, while its defect is the high computation
cost and the complexity of coding and decoding opera-
tion, so coding technique is better for the situation that
the subcarriers are less. Probability technique can reduce
PAPR effectively, but the computation cost is high and will
increase with the growth of the subcarrier number. Signal
predisposition technique can reduce PAPR effectively and
directly, and the computation cost will not increase with the
growth of the number of subcarriers, but it has serious in-
band interference and out-band noise. Reference [4] provides
a method to reduce PAPR with no sideband information, but
the computation cost is high. It is necessary to reduce the
complexity of the reducing PAPR arithmetic, because of the
underwater acoustic channel’s characters [15, 16]. Above all
the techniques, signal predisposition technique’s advantage is
the simpleness of arithmetic, and the computation cost will
not increase with the growth of subcarriers [17]; therefore
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it is the most suitable for underwater acoustic OFDM
communication system. In signal predisposition technique,
clipping is the simplest way to realize and is widely used in
previous underwater acoustic OFDM communication. But
it is a kind of nonlinear process, which will bring serious
in-band interference and out-band noise. At the meantime
companding is also with less complexity and can reduce the
high PAPR with better BER performance at the same time
[18].The paper is based on this point, according to [7], aiming
at the underwater acoustic channel’s time-varying andmulti-
path to improve the performance of the underwater acoustic
OFDM communication system, choosing parameters that
are suitable for the underwater acoustic channel and the
parameters can adjust according to the requirements of the
application, achieving a compromise between the SNR and
BER, and the effectiveness of the arithmetic is proved in the
simulation of multipath fading underwater acoustic channel
and the water tank experiment.

2. Definition and Description of the
Communication System

2.1. OFDM Model and Definition of PAPR in Underwater
Acoustic Communication. The discrete OFDM signal can be
expressed as
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where 𝑠
𝑛
is the data in time-domain after IFFT. The comple-

mentary cumulative distribution function (CCDF) of signals
that satisfy the Nyquist sampling rate is

𝑃 (PAPR > 𝑧) = 1 − 𝑃 (PAPR ≤ 𝑧) = 1 − 𝐹 (𝑧)𝑁

= 1 − (1 − 𝑒
−𝑧
)

𝑁

.

(3)

𝐹(𝑧) is the cumulative distribution function.

2.2. Companding Transformation Decreases the PAPR of
OFDM. Companding transformation technique belongs to
amplitude limiting technique, whose core idea is to process
the signal which has a higher peak power nonlinearly, so
that the power will not run out of the dynamic range
of the amplifier and avoid the large PAPR [19, 20]. The
technique’s advantage is simple and its complexity will not
increasewith the amount of carrier; in addition, it can process
inverse transformation at the receiving terminal, which is
more suitable for underwater acoustic’s complex and limited
bandwidth channel.

2.2.1. Traditional Companding Transformation. Companding
technique will process the signal nonlinearly before it comes
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Figure 1: Characteristic curve of companding technology.

into the amplifier, amplifying small signal and keeping large
signal invariant; therefore the decrease of PAPR is at the cost
of increasing the system’s average power [21–27].

The traditional companding arithmetic function is as
follows:

𝑠
𝑐𝑛
= 𝐶 (𝑠

𝑛
) =

𝐴 ln (1 + (𝜇/𝐴) 
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where 𝐴 is the peak value of an OFDM signal, 𝜇 is a
companding parameter, 𝑠

𝑛
is a discrete OFDM signal, 𝑠

𝑐𝑛

is the OFDM signal after companding, and sgn(⋅) is the
sign function. The signal received at receiving terminal is
demodulated companding signal 𝑟
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:
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(5)

where 𝐴 is the peak value of the received signal 𝑟
𝑛
.

What is presented in Figure 1 is input/output companding
character curve; the figure shows the change of PAPR along
with 𝜇. When 𝜇 reaches 50, there is no decreasing trend
of PAPR with increasing of 𝜇, and BER of the system will
decrease obviously by increasing of 𝜇; therefore there is no
need to choose a large 𝜇.

2.2.2. Improved Companding Arithmetic. The parameters of
traditional radio communication companding function uti-
lize the peak value of signal. However, the heavy multipath
fading of the underwater acoustic channel, which is influ-
enced by the burst noise coming frommarine organisms and
ships, leads to the unreliability of the peak value detection
at the receiving terminal; therefore the traditional parameter
selecting method is not suitable anymore.
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Figure 2: Framework of improved companding technology in PAPR reducing for OFDM system.

The improved companding function can be expressed as
follows:
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where 𝑠
𝑛
is the signal before companding, 𝑠
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is the signal

after companding, signals less than𝐴 are expressed as 𝑠
𝑛1
, 𝑠
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behalves signals which are greater than or equal to 𝐴, where
𝐴 is the preset threshold and 𝑉 = mean(𝑠
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average value of the signal that exceeds the threshold.
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produced by the channel, and then the inverse transformation
in the receiving terminal is:
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Substituting 𝑟
𝑛1
and 𝑟
𝑛2
into expression (7),
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The improved companding transformation technique block
is presented in Figure 2.

2.2.3. BER and the Analysis of Parameters. Researches on
the influences of the system’s BER performance caused by
companding transformation are presented in this segment.
Because the arithmetic that this paper adopted is the process-
ing of a part of signal, when using QPSK to modulate signals,
the BER of signals which have not been companding satisfies
the equation 𝑃
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where𝑄 is the quantized interval and𝐿 is the quantized bit. In
the quantification function, the value of 𝐴 is generally taken
as peak value. Signal after inverse companding is
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In most cases, the quantized noise is tiny; therefore the high
order part in the expression can be ignored, and the inverse
companding function can be approximated as
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Signals after inverse companding are sent to FFT module
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The second item and third item, respectively, express quantiz-
ing noise after FFT at receiving terminal and channel noise.
The variance of Gaussian channel noise, 𝜎
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If expression is true, then
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AdoptingQPSKmodulation, BER satisfies𝑃
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where 𝜎
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is the noise variance,

and the noise variance consists of quantizing noise and
channel noise. Expression (15) and expression (16) show that
varying of 𝜇 influences channel noise and quantizing noise.
𝑄(𝑥) is the 𝑄 function. In 𝑠
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where 𝐴 is the average value of the signal.

3. Simulation and the Water Tank Experiment

3.1. Simulation Result Analysis. The communication frequent
band is 6–12 kHz, the length of FFT is 8192, sample frequent is
48 kHz, adopting QPSK modulation, and amount of subcar-
riers is 1025. The shallow sea channel is generated by channel
simulation software, the depth is 50 meters, the depth of the
transducer and hydrophone, respectively, is 22 meters and 10
meters, and the horizontal distance is 2 km.

Figure 3 shows the simulation channel impulse response,
and the maximum multipath delay is 12ms. Figure 4 repre-
sents the eigenray of the multipath channel from which the
travel path can be observed.

Figure 5 presents the CCDF of these severalmethods.The
improved algorithm can decrease the PAPR effectively.When
the CCDF reaches 10−1 order, the improved arithmetic PAPR
has decreased by 2.5 dB compared to clipping; meanwhile,
PAPR has decreased by 1.5 dB compared to C transformation.
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It also compared the proposed method with Selection Map-
ping Technique (SLM) and Partial Transmission Sequence
(PTS). The two PTS (Partial Transmission Sequence) curves
on behalf of two block partition ways are as follows: PTS1
represents the adjacent partition, and interlacing partition
style is showed by PTS2. In general the random partition
way’s capability of reducing PAPR is among the above two
division methods; therefore take the above two PTS partition
methods, for example. Contrast with SLM and PTS reducing
PAPR method, the performance of the proposed method
is close to SLM, better than PTS2. But as we know, both
SLM and PTS algorithms need to transmit side information,
wasting the channel resources, which is precious in under-
water acoustic communication. The different reducing PAPR
performance in two PTS methods, mainly because of the

sources, which transmitted in the system, is with high PAPR
and has not been fully interleaved.

Figure 6 represents absolute amplitude of OFDM sig-
nal before and after processing, with the condition that
transformed signal’s average power is invariable; this paper
compares severalmethods’ capacities of decreasing the PAPR.
Figures 6(b), 6(c), 6(d), and 6(e) represent the clipping, C
transformation, SLM, and improved method.

The influence of different decreasing PAPR method on
system BER performance is presented in Figure 7. Clipping
has the largest interference. When SNR is 20 dB, the BER
of the improved method is 10−1 lower than companding
transformation.When SNR is lower than 12 dB, the proposed
algorithm’s BER performance is nearly equivalent to SLM.
As simulation result shows, the improved arithmetic can
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Figure 6: Amplitude of OFDM signals before and after processing.

improve the performance of the system and decrease PAPR
simultaneously. It can also improve the system’s transmission
efficiency compared to SLM and PTS and with less computa-
tional complexity.

3.2. Water Tank Experiment Result Analysis. In 2015, at
Harbin Engineering University, the experiment was done in
the channel water tank. There are sands at the bottom of the

water tank, valid depth is about 4 meters, the length is 45
meters, and width is 6 meters, with the silence wedge around.
Transducer is at 1 meter underneath the surface, hydrophone
is at 1.5 meters underneath the surface, and the horizontal
distance is about 14 meters.

At first, we produce a transmission signal usingMATLAB
software and translate it into a WAV file, transmitting the
signal from computer’s sound card. The signal goes through
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Figure 7: Influence of different method on OFDM system.
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Figure 8: Impulses response of tank channel.

the power amplifier, transmitted by a transducer, passing the
underwater acoustic channel, received by the hydrophone.
The signal is collected and stored by a computer for distant
processing.

Figure 8 is the channel impulses response of the water
tank that reflects the experimental channel environment.

Figure 9 represents the demodulation result of a different
method to decrease PAPR inOFDMexperiment.The average
statistics BER of clipping arithmetic, C transformation, SLM
algorithm, and the improved arithmetic are, respectively,
8.8 × 10

−3, 7.5 × 10−3, 9.4 × 10−4, and 8.9 × 10−4. The result
shows that the improved arithmetic can decrease PAPR with
BER decreasing. The experiment proved that the improved
arithmetic is in accordance with the simulation result.

4. Conclusion

At present, the technique to decrease PAPR is at the cost of
increasing power, increasing BER, decreasing the data rate,

and adding computational complexity. In practical, we need
to choose a suitable method according to each influence
factor of anOFDM system. In an underwater acoustic OFDM
system, the transmitting of data is in severe surroundings.The
band-width is limited in the acoustic channel, so it enlarges
the influence of delay spread and frequency selective fading
compared to wireless channels. This requires the method
which decreases the PAPR to be of low complexity and to
keep the signal recovered exactly with less influence in the
meantime. The paper takes advantage of amplitude limiting
arithmetic and C transformation, combining them to apply
underwater acoustic OFDM communication system. After
the simulation comparison of amplitude limiting arithmetic,
C transformation, and improved arithmetic, we get the result
that the improved arithmetic can both decrease PAPR and
improve the performance of the system, with the advantage
of low computation complexity and being easy to realize.The
computation complexitywill not be influenced by the amount
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Figure 9: Send and receive figure: (a) original, (b) clipping, (c) C companding, (d) SLM, and (e) the improved method.

of subcarriers, so it is suitable to apply in underwater acoustic
communication system with a limited band-width.
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