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We have shown that the fourth component of Einstein’s complex for the Kantowski-Sachs space-
time is not identically zero. We have calculated the total energy of this space-time by using the
energy-momentum definitions of Møller in the theory of general relativity and the tetrad theory of
gravity.

1. Introduction

Since the birth of the theory of general relativity, this theory has been accepted as a
superb theory of space-time and gravitation, as many physical aspects of nature have been
experimentally verified in this theory. However, this theory is still incomplete theory; namely,
it lacks definition of energy and momentum. In this theory many physicists have introduced
different types of energy-momentum complexes [1–5], each of them being a pseudotensor,
to solve this problem. The nontensorial property of these complexes is inherent in the way
they have been defined and so much so it is quite difficult to conceive of a proper definition
of energy and momentum of a given system. The recent attempt to solve this problem is to
replace the theory of general relativity by another theory, concentrated on the gauge theories
for the translation group, the so called teleparallel equivalent of general relativity. We were
hoping that the theory of teleparallel gravity would solve this problem. Unfortunately, the
localization of energy and momentum in this theory is still an open, unsolved, and disputed
problem as in the theory of general relativity.

Møller modified the theory of general relativity by constructing a gravitational theory
based on Weitzenböck space-time. This modification was to overcome the problem of the
energy-momentum complex that appears in Riemannian space. In a series of paper [6–8],
he was able to obtain a general expression for a satisfactory energy-momentum complex in
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the absolute parallelism space. In this theory the field variable are 16 tetrad components ha
μ,

from which the Riemannian metric arises as

gμν = ηabh
a
μh

b
v. (1.1)

The basic purpose of this paper is to obtain the total energy of the Kantowski-Sachs
space-time by using the energy-momentum definitions of Møller in the theory of general
relativity and the tetrad theory of gravity.

The standard representation of Kantowski and Sachs space-times is given by [9]

ds2 = dt2 −A2(t)dr2 − B2(t)
(
dθ2 + sin2 θdφ2

)
, (1.2)

where the functions A(t) and B(t) are function in t and determined from the field equations.
For more detailed descriptions of the geometry and physics of this space-time (see

[9–11]).

2. Fourth Component of Einstein’s Complex

Prasanna has shown that space-times with purely time-dependent metric potentials have
their components of total energy and momentum for any finite volume (T4

i + t4i ) identically
zero. He had used the Einstein complex for the general Riemannian metric

ds2 = gij
(
x0
)
dxidxj (2.1)

and concluded the following: for space-times with metric potentials gij being functions of
time variable alone and independent of space variable, the components (T4

i + t4i ) vanish
identically as a consequence of conservation law.

Unfortunately the conclusion above is not the solution to the problem considered,
in the sense that it does not give the same result, for all metrics have form of (2.1), using
Einstein complex. If (2.1) is given in spherical coordinates, then Prasanna’s conclusion is
correct by using Møller’s complex but not correct for all metrics by using Einstein’s complex.
Because Møller’s complex could be utilized to any coordinate system, Einstein’s complex
gives meaningful result if it is evaluated in Cartesian coordinates. In the present paper we
have found that the total energy for the Kantowski-Sachs space-time is identically zero by
using Møller’s complex, but not zero by using Einstein’s complex.

In a recent paper [12], Gad and Fouad have found the energy and momentum
distribution of Kantowski-Scahs space-time, using Einstein, Bergmann-Thomson, Landau-
Lifshitz, and Papapetrou energy momentum complexes. In this section we restrict our
attention to the Einstein’s complex which is defined by [13]

θk
i = Tk

i + tki = u
[kj]
i,j , (2.2)
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with

u
[kj]
i =

1
16π

gin√−g
[
−g

(
gkngjm − gjngkm

)]
,m
. (2.3)

The energy and momentum in the Einstein’s prescription are given by

Pi =
∫∫∫

θ0
i dx

1 dx2 dx3. (2.4)

The Einstein energy-momentum complex satisfies the local conservation law

∂θk
i

∂xk
= 0. (2.5)

The energy density for the space-time under consideration, in the Cartesian coordinates,
obtained in [12] is

θ0
0 =

1
8πAr4

(
A2r2 − B2

)
, (2.6)

and the total energy is

EEin = P0 =
1

2Ar

(
A2r2 + B2

)
. (2.7)

Following the approach in [12], we obtain the following components of θk
0 :

θ1
0 = − x

8πA2r4

[
ȦA2r2 + B

(
2AḂ − BȦ

)]
,

θ2
0 = − y

8πA2r4

[
ȦA2r2 + B

(
2AḂ − BȦ

)]
,

θ3
0 = − z

8πA2r4

[
ȦA2r2 + B

(
2AḂ − BȦ

)]
.

(2.8)

The components (2.6) and (2.8) satisfy the conservation law (2.5).
Hence from (2.6) and (2.8), we have θi

0 = Ti
0 + ti0 /= 0; consequently θ0

0 = T0
0 + t00 is not

identically zero.

3. Energy in the Theory of General Relativity

In the general theory of relativity, the energy-momentum complex of Møller in a four-
dimensional background is given as [6]

Ik
i =

1
8π

χkl
i,l , (3.1)
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where the antisymmetric superpotential χkl
i is

χkl
i = −χlk

i =
√−g

(
∂gin
∂xm

− ∂gim
∂xn

)
gkmgnl, (3.2)

I0
0 is the energy density and I0

α are the momentum density components. Also, the energy-
momentum complex Ik

i satisfies the local conservation laws:

∂Ik
i

∂xk
= 0. (3.3)

The energy and momentum components are given by

Pi =
∫∫∫

I0
i dx

1 dx2 dx3 =
1
8π

∫ ∫ ∫
∂χ0l

i

∂xl
dx1 dx2 dx3. (3.4)

For the line element (1.2), the only nonvanishing components of χkl
i are

χ01
1 = −B

2(t)
A(t)

sin θ,

χ02
2 = −A(t) sin θ,

χ03
3 = −A(t)

sin θ
.

(3.5)

Using these components in (3.1), we get the energy and momentum densities as follows

I0
0 = 0,

I0
1 = I0

3 = 0, I0
2 = −A(t) cos θ.

(3.6)

From (3.4) and (3.5) and applying the Gauss theorem, we obtain the total energy and
momentum components in the following form:

P0 = E = 0,

Pα = 0.
(3.7)

4. Energy in the Tetrad Theory of Gravity

The superpotential of Møller in the tetrad theory of gravity is given by (see [7, 8, 14])

U
νβ
μ =

√−g
2κ

P
τνβ
χρσ

[
Φρgσχgμτ − λgτμγ

χρσ − (1 − 2λ)gτμγσρχ
]
, (4.1)
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where

P
τνβ
χρσ = δτ

χg
νβ
ρσ + δτ

ρg
νβ
σχ − δτ

σg
νβ
χσ, (4.2)

with g
νβ
ρσ being a tensor defined by

g
νβ
ρσ = δν

ρδ
β
σ − δν

σδ
β
ρ, (4.3)

γabc is the con-torsion tensor given by

γμνβ = hiμh
i
ν;β (4.4)

and Φμ is the basic vector defined by

Φμ = γρμρ, (4.5)

The energy in this theory is expressed by the following surface integral:

E = lim
r→∞

∫

r=const.
U0α

0 nαdS, (4.6)

where nα is the unit three vector normal to the surface element dS.
The tetrad components of the space-time (1.2), using (1.1), are as follows

ha
μ = [1, A(t), B(t), B(t) sin θ],

ha
μ =

[
1, A−1(t), B−1(t),

B−1(t)
sin θ

]
.

(4.7)

Using these components in (4.4), we get the nonvanishing components of γμνβ as follows

γ011 = −γ101 = −A(t)Ȧ(t),

γ022 = −γ202 = −B(t)Ḃ(t),

γ033 = −γ303 = −B(t)Ḃ(t)sin2 θ,

γ233 = −γ323 = −B2(t) sin θ cos θ.

(4.8)

Consequently, the only nonvanishing components of basic vector field are

Φ0 = −2
{
Ȧ(t)
A(t)

+
Ḃ(t)
B(t)

}
,

Φ2 =
cot θ
B2(t)

.

(4.9)
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Using (4.8) and (4.9) in (4.1) and (4.6), we get

E = 0. (4.10)

5. Summary and Discussion

In this paper we have shown that the fourth component of Einstein’s complex for the
Kantowski-Sachs space-time is not identically zero. This gives a counterexample to the result
obtained by Prasanna [15]. We calculated the total energy of Kantowski-Sachs space-time
using Møller’s tetrad theory of gravity. We found that the total energy is zero in this space-
time. This result does not agree with the previous results obtained in both theories of general
relativity [12] and teleparallel gravity [16], using Einstein, Bergmann-Thomson, and Landau-
Lifshitz energy-momentum complexes. In both theories the energy and momentum densities
for this space-time are finite and reasonable. We notice that the results obtained by using
Einstein, Bergmann-Thomson, and Papapetrou are in conflict with that given by Møller’s
values for the energy and momentum densities if r tends to infinity, while Landau-Lifshitz’s
values are not in conflict.
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