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This paper focuses on the consensus problem for high-order multiagent systems (MAS) with directed network and asymmetric
time-varying time-delays. It is proved that the high-order multiagent system can reach consensus when the network topology
contains a spanning tree and time-delay is bounded.Themain contribution of this paper is that a Lyapunov-like design framework
for the explicit selection of protocol parameters is provided.The Lyapunov-like design guarantees the robust consensus of the high-
order multiagent system with respect to asymmetric time-delays and is independent of the exact knowledge of the topology when
the communication linkages among agents are undirected and connected.

1. Introduction

In the last few years, substantial research effort from a
number of researchers has been poured on the study of
consensus problems for multiagent systems (MAS) due to its
powerful engineering applications, such as formation control
of autonomous vehicles, collective behavior of flocks, and
distributed decision making in sensor networks, to name
a few. The pioneering contributions in systems and control
community have been made by [1, 2]. Until now, it has been
proved that the consensus problem for single-integratorMAS
can always be solved under certain mild conditions on the
network topology [3–5].

Due to the complexity of real systems, the study on
single-integrator MAS can not meet the needs of practical
applications.Thus, recently, widespread interest in MAS with
agents modeled by general dynamics has been excited among
researchers, such as double-integrator model [6, 7] and high-
order-integrator model. Specifically, high-order-integrator
(or high-order) MAS have been studied in [8], where the
proposed consensus protocol involves the relative informa-
tion of all-order derivatives of agents’s state. Reference [9] has
further extended the partial results of [8] and derived a linear-
matrix-inequality-based protocol design. Reference [10] has

provided a scheme to choose the coupling strength for fixed
and connected topology.

In most practical networks, communication time-delays
caused by limited transmission speed and distance cannot be
neglected. Within the literature on consensus for MAS with
time-delays, recent years have witnessed the introduction of
numerous distributed protocols. According to the induce-
ments of time-delays, these protocols can be categorized into
the ones in which delays only affect the state information of
the agents’ neighbors [11], the ones in which delays affect both
the agents’ own state information and their neighbors’ state
information [4, 7, 12–16], the ones containing distributed
delays [17], and so forth. In particular, [4] has shown that the
consensus of single-integrator MAS might be destabilized by
large delays. By using Laplace transform technique, [7] has
proved that second-order multiagent systems with bounded
and constant time-delays can reach consensus. Based on
nonexpansiveness of constant delay operator and Gersh-
gorin’s circle theorem, [11] has derived a local controller for
high-orderMASwith diverse constant time-delays. However,
time-varying communication delays are very common in
MAS due to the mobility of agents and the disturbance from
environment.Hence, it is necessary to study the consensus for
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high-orderMASwith time-varying communication delays by
exploring other method of protocol design.

In this paper, we investigate the consensus problem for
high-order MAS with directed interactions and asymmetric
time-varying communication delays. By asymmetric com-
munication delays, we mean that the delay in communi-
cation channel from the agent to its neighbor differs from
the one in the reversed channel if there are bidirectional
communication linkages between them. We assume that
the agent can only observe the information of the first
state variable of its neighbors, and we propose a distributed
protocol by applying both the instantaneous information of
the agent’s own and the time-delayed relative information
with respect to its neighbors. Based on a reduced-order
time delay system, we derive some sufficient conditions
characterized by linear matrix inequalities (LMIs), accord-
ing to Lyapunov-Krasovskii functional approach. The main
contribution of this paper is that we establish a Lyapunov-
like design framework for the explicit selection of protocol
parameters. The protocol design framework can not only
guarantee the solvability of the LMIs aforementioned but also
is independent of the exact knowledge of the topology when
the communication linkages among agents are undirected
and connected. This implies that the Lyapunov-like protocol
design guarantees the robust consensus of high-order MAS
with respect to asymmetric time-varying communication
delays. Compared with the protocol design in [9], our design
is not based onLMIbut only needs to solve a simple Lyapunov
equation and a simple algebraic inequality. In contrast to
the literature on single-/double-integrator MAS, the results
here are not simple extensions of the results therein since the
protocol parameters have important effect on the consensus
convergence of high-order MAS.

The remainder of this paper is organized as follows.
Section 2 states the problem formulation and Section 3
presents the main results. Section 4 carries out some numer-
ical examples and the last section provides some concluding
remarks.

Notations. We let R be the set of real numbers. R𝑛 is the
𝑛-dimensional real vector space. R

𝑛
is the set of 𝑛-by-𝑛

matrices with elements in R. 𝐼
𝑛

∈ R
𝑛
is an identity matrix.

Given a matrix 𝑋 ∈ R
𝑛
, 𝜎(𝑋) denotes its spectrum (set

of eigenvalues); 𝑋 < 0 means that 𝑋 is negative definite.
diag{𝑎

1
, . . . , 𝑎

𝑛
} defines a diagonal matrix with diagonal

elements being 𝑎
1
, . . . , 𝑎

𝑛
. Sometimes 0

𝑚−1
∈ R
𝑚−1

is used
to denote zero matrix. Consider 1

𝑁
= [1 ⋅ ⋅ ⋅ 1]

𝑇

∈ R𝑁.
𝑁 = {1, . . . , 𝑁} and 𝑚 − 1 = {1, . . . , 𝑚 − 1} are two index
sets. ⊗ denotes the Kronecker product.

2. Problem Formulation

Consider a dynamical systemof𝑁 autonomous agents, which
are labelled 1 through 𝑁. Each agent is modelled as the
following𝑚th order integrator:

𝜉
(𝑚)

𝑖
= 𝑢
𝑖
, 𝑡 ≥ 0, 𝑖 ∈ 𝑁,

𝜉
𝑖
(0) = 𝜉

𝑖0
, . . . , 𝜉

(𝑚−1)

𝑖
(0) = 𝜉

(𝑚−1)

𝑖0
,

(1)

where 𝑚 ≥ 1 is a positive integer and denotes the order of
the differential equations; 𝜉

𝑖
∈ R, and 𝜉

(𝑘)

𝑖
, 𝑘 = 1, . . . , 𝑚, is

the 𝑘th order derivative of 𝜉
𝑖
; 𝑢
𝑖
∈ R is the control input;

𝑥
𝑖
(0) := [𝜉

𝑖0
⋅ ⋅ ⋅ 𝜉
(𝑚−1)

𝑖0
]
𝑇 is the initial state of agent 𝑖.

The interaction/communication topology among agents
can be conveniently modeled by weighted directed graph
G(A) = {V,E,A}, where V = {V

1
, . . . , V

𝑁
} is the vertex

set, E ⊂ V × V is the arc set, and A = [𝑎
𝑖𝑗
] ∈ R

𝑁
is

the adjacency matrix with 𝑎
𝑖𝑗

≥ 0. An arc of G, denoted by
(V
𝑖
, V
𝑗
), is an ordered pair of distinct vertices of V; V

𝑖
and V
𝑗

are called the tail and the head of the arc, respectively. An arc
(V
𝑖
, V
𝑗
) ∈ E if and only if 𝑎

𝑗𝑖
> 0. If (V

𝑖
, V
𝑗
) ∈ E, then we say

that V
𝑖
is a neighbor of V

𝑗
. Denote the collection of neighbors

of V
𝑖
by N
𝑖
= {V
𝑗
: (V
𝑗
, V
𝑖
) ∈ E}. In this paper, we assume

that (V
𝑖
, V
𝑖
) ∉ E and each element ofE is unique. Each vertex

in G(A) represents an agent of the dynamical system (1);
(V
𝑖
, V
𝑗
) ∈ E indicates that there is a communication linkage

from agent 𝑖 to agent 𝑗; the element 𝑎
𝑗𝑖
in A is the weight of

the linkage.
A path from V

𝑖
to V
𝑗
means that there is a sequence of

distinct arcs inE, (V
𝑖
, V
1
), (V
1
, V
2
), . . . , (V

𝑘
, V
𝑗
). A directed tree

is a directed graph, where every vertex has exactly one tail
except for one special vertex without any tail. We say a graph
contains a spanning tree if there exists a subset of arcsE ⊂ E
such that the graph G = (V,E) is a directed tree. A graph
is said to be balanced if for each vertex V

𝑖
the weights of its

linkages satisfy∑𝑁
𝑗=1

𝑎
𝑖𝑗
= ∑
𝑁

𝑗=1
𝑎
𝑗𝑖
, 𝑖 ∈ 𝑁. A graph is said to be

undirected if the associated adjacencymatrixA is symmetric.
Then it is easy to see that any undirected graph is balanced.
A directed graph is called strongly connected if there exists
a path between any two distinct vertices of the graph; for
undirected graph it is called connected. An undirected graph
is called complete if for any 𝑖 ̸= 𝑗, (V

𝑖
, V
𝑗
) ∈ E. The Laplacian

matrixL = [𝑙
𝑖𝑗
] ∈ R
𝑁
ofG(A) is defined as

𝑙
𝑖𝑗
=

{

{

{

−𝑎
𝑖𝑗
, 𝑖 ̸= 𝑗

∑

V𝑗∈N𝑖

𝑎
𝑖𝑗
, 𝑖 = 𝑗. (2)

Let D = diag{𝑑
1
, . . . , 𝑑

𝑁
} with 𝑑

𝑖
= ∑V𝑗∈N𝑖 𝑎𝑖𝑗, 𝑖 ∈ 𝑁. Then

D and 𝑑
𝑖
are called the in-degree matrix ofG(A) and the in-

degree of vertex V
𝑖
, respectively. From the definition, it is not

hard to obtain that L = D − A and L1
𝑁

= 0. Spectral
properties of the Laplacian matrix can be found in [5, 18].
Hence the details are omitted.

For the system (1), the consensus protocol is described by

𝑢
𝑖
(𝑡) = −

𝑚−1

∑

𝑘=1

𝑐
𝑘
𝜉
(𝑘)

𝑖
(𝑡)

− ∑

𝑗∈N𝑖

𝜅
0
𝑎
𝑖𝑗
[𝜉
𝑖
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) − 𝜉

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))] ,

(3)

where 𝑐
𝑘

> 0, 𝑘 ∈ 𝑚 − 1 and 𝜅
0

> 0 are, respectively,
the feedback gains of absolute and relative information (for
convenience, we refer to the gains 𝑐

𝑘
, 𝑘 ∈ 𝑚 − 1, and 𝜅

0
,

as the protocol parameters); piecewise continuous function
𝜏
𝑖𝑗
(𝑡) is the time-varying delay affecting the communication
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linkage from agent 𝑗 to agent 𝑖 at time 𝑡. Notice that, different
from [4, 14, 19, 20], the delays in transmissions from agent 𝑖 to
agent 𝑗 and from agent 𝑗 to agent 𝑖 (if there are bidirectional
communication linkages between them) can be asymmetric;
that is, 𝜏

𝑖𝑗
(⋅) ̸= 𝜏

𝑗𝑖
(⋅).

Remark 1. In protocol (3), the agent 𝑖 is able to measure
its own instantaneous state information and equipped with
memories to store the signals 𝜉

𝑖
(⋅) which can be used at some

future time and needs only to receive the time-delayed signals
𝜉
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) of its neighbors. The control input 𝑢

𝑖
(𝑡) can be

implemented by computing the instantaneous information
of all-order derivatives of 𝜉

𝑖
(𝑡) and the time-delayed relative

information 𝜉
𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) − 𝜉

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)). The determination

of 𝜏
𝑖𝑗
(𝑡) can be carried out by assuming that the stored signals

𝜉
𝑖
(⋅) of each agent are time-stamped and neighbor 𝑗 transmits

not only the time-delayed signal 𝜉
𝑗
(𝑡−𝜏
𝑖𝑗
(𝑡)) but also the time

stamp. The above situation can be found in [13, 15] and also
satisfied easily in practice.

Let 𝑥
𝑖
(𝑡) = [𝜉

𝑖
(𝑡) ⋅ ⋅ ⋅ 𝜉

(𝑚−1)

𝑖
(𝑡)]
𝑇 and 𝑥(0) =

[𝑥
1
(0)
𝑇

⋅ ⋅ ⋅ 𝑥
𝑁
(0)
𝑇

]
𝑇 be the state of agent 𝑖 and the

stacked vector of the agents’ initial states, respectively. In this
paper, we are devoted to solving the following consensus
problem for the MAS (1).

Definition 2. Consider theMAS (1) with some given protocol
𝑢
𝑖
(𝑡). If, for any initial state 𝑥(0), the states of agents satisfy

𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡) → 0 as 𝑡 → ∞ for all 𝑖, 𝑗 ∈ 𝑁, then we say

that the system solves a consensus problem asymptotically.
In addition, if there exists 𝜉∗ ∈ R𝑚 such that, for any initial
state 𝑥(0), 𝑥

𝑖
(𝑡) → 𝜉

∗ as 𝑡 → ∞, for all 𝑖 ∈ 𝑁, then we say
𝜉
∗ is the consensus state of the system.

In order to develop themain results, some helpful lemmas
are introduced as follows.

Suppose that G
𝑐
is a complete undirected graph of 𝑁

vertices andL
𝑐
is the associated Laplacian matrix. From the

definition, we haveL
𝑐
1
𝑁

= 0, 1𝑇
𝑁
L
𝑐
= 0, and the rank ofL

𝑐

is𝑁−1. Let𝑈
𝑐
be an orthogonal matrix such that𝑈𝑇

𝑐
L
𝑐
𝑈
𝑐
=

diag{0, 𝐽


}, where 𝐽


∈ R
𝑁−1

is a diagonal matrix. Define
𝑈
𝑐
= []
1
]
2

⋅ ⋅ ⋅ ]
𝑁
] with ]

𝑖
∈ R𝑁, 𝑖 ∈ 𝑁. It follows that

]
1

= (1/√𝑁)1
𝑁
. For convenience, we let �̂� = []

2
⋅ ⋅ ⋅ ]
𝑁
].

Then �̂�
𝑇

�̂� = 𝐼
𝑁−1

and �̂�
𝑇]
1
= 0. Based on this observation

and the property of Laplacianmatrix, we can obtain the result
below.

Lemma 3. Suppose that G is a graph with the associated
Laplacian matrix L. Then 𝑈

𝑇

𝑐
L𝑈
𝑐
is in the form of [ 0 𝑙𝑇

0 �̂�

],
where �̂� ∈ R

𝑁−1
and 𝑙 ∈ R𝑁−1; 𝜎(�̂�) ⊂ 𝜎(L). In addition, ifG

is balanced, then 𝑙 = 0; ifG is strongly connected and balanced,
then �̂�

𝑇

+ �̂� is positive definite.

Proof. See the Appendix: Proofs of Lemmas.

The following result can be considered as a special case of
Jensen’s integral inequality given in [21].

Lemma 4 (see [21]). For any differentiable vector function
𝑦(𝑡) ∈ R𝑛 and any positive definite matrix 𝑃 ∈ R

𝑛
, the

following inequality holds:

𝜏
−1

[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏 (𝑡))]
𝑇

𝑃 [𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏 (𝑡))]

≤ ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑦
𝑇

(𝑠) 𝑃 ̇𝑦 (𝑠) 𝑑𝑠, 𝑡 ≥ 0,

(4)

where 𝜏 > 0 and 0 ≤ 𝜏(𝑡) ≤ 𝜏.

Lemma 5 (Schur complement, see [22]). Let𝑋, 𝑌,𝑍 be some
given matrices with appropriate dimensions and let 𝑋, 𝑍 be
symmetric; then [

𝑋 𝑌

𝑌
𝑇
𝑍
] < 0 if and only if𝑋 < 0,𝑍−𝑌

𝑇

𝑋
−1

𝑌 <

0, or 𝑍 < 0, 𝑋 − 𝑌𝑍
−1

𝑌
𝑇

< 0.

3. Main Results

In this section, we first provide an equivalent condition for
the consensus convergence of the systems (1) and (3) based on
an orthogonal state transformation and a reduced-order time
delay system.Thenwe give a Lyapunov-like parameter design
for the protocol and prove that themaximumallowable upper
bounds of time-varying delays can be determined by solving
some optimization problems.

Suppose that the interaction topology of the system (1)
is modelled by G(A); the associated Laplacian matrix is L.
Then the dynamics of agent 𝑖 can be written as

�̇�
𝑖
(𝑡) = 𝐸

𝑚
𝑥
𝑖
(𝑡) − ∑

𝑗∈N𝑖

𝜅
0
𝑎
𝑖𝑗

× 𝐹
𝑚
[𝑥
𝑖
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) − 𝑥

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))] ,

(5)

where

𝐸
𝑚

= [

0 𝐼
𝑚−1

0 𝜃
𝑇 ] , 𝐹

𝑚
= [

0 0
𝑚−1

1 0
] ,

𝜃 = [−𝑐
1

−𝑐
2

⋅ ⋅ ⋅ −𝑐
𝑚−1

]

𝑇

.

(6)

Denote 𝑥(𝑡) = [𝑥
𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑡)]
𝑇 by the stacked vector of

the agents’ states. The closed-loop dynamics of the systems
(1) and (3) are in the form of

�̇� (𝑡) = (𝐼
𝑁

⊗ 𝐸
𝑚
) 𝑥 (𝑡) −

𝑀

∑

𝑘=1

(𝜅
0
L
𝑘
⊗ 𝐹
𝑚
) 𝑥 (𝑡 − 𝜏

𝑘
(𝑡)) ,

(7)

where 𝑀 denotes the number of different time-delays over
the communication channels of the system (it is easy to get
that 𝑀 ≤ 𝑁(𝑁 − 1)); 𝜏

𝑘
(𝑡) ∈ {𝜏

𝑖𝑗
(𝑡) : 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗} for

𝑘 = 1, . . . ,𝑀;L
𝑘
= [𝑙
𝑘

𝑖𝑗
] ∈ R
𝑁
is defined as

𝑙
𝑘

𝑖𝑗
=

{
{
{
{

{
{
{
{

{

−𝑎
𝑖𝑗
, 𝑗 ̸= 𝑖, 𝜏

𝑖𝑗
(⋅) = 𝜏

𝑘
(⋅) ,

0, 𝑗 ̸= 𝑖, 𝜏
𝑖𝑗
(⋅) ̸= 𝜏

𝑘
(⋅) ,

−

𝑁

∑

𝑛=1

𝑙
𝑘

𝑖𝑛
, 𝑗 = 𝑖.

(8)
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Next, we assume that the time-delays in (7) satisfy

0 ≤ 𝜏
𝑘
(𝑡) ≤ 𝜏

𝑘
, 𝑡 ≥ 0, 𝑘 = 1, . . . ,𝑀, (9)

where 𝜏
𝑘

> 0. Define 𝜏
0

= max{𝜏
𝑘

: 𝑘 = 1, . . . ,𝑀}. The
initial state of the system (7) is assumed to be 𝜙(𝑡) = 𝑥(0),
𝑡 ∈ [−𝜏

0
, 0].

Remark 6. The matrix L
𝑘
in (7) amounts to consider a

Laplacian matrix that is associated with a subgraph of G(A)

with all linkages affected by the same time-delay. Hence,
L
𝑘
1
𝑁

= 0 and ∑
𝑀

𝑘=1
L
𝑘

= L. According to Lemma 3,
we can let 𝑈𝑇

𝑐
L
𝑘
𝑈
𝑐

= [
0 𝑙
𝑇
𝑘

0 �̂�𝑘

], 𝑈𝑇
𝑐
L𝑈
𝑐

= [
0 𝑙
𝑇

0 �̂�

], where 𝑈
𝑐

is given as therein. Then ∑
𝑀

𝑘=1
�̂�
𝑘

= �̂�. Furthermore, it is
important to point out that even when the topology G(A)

is undirected, L
𝑘
is unnecessarily symmetric due to 𝜏

𝑖𝑗
(⋅) ̸=

𝜏
𝑗𝑖
(⋅). Consequently, the results of [4, 14, 19, 20] are invalid to

deal with the consensus problem for MAS with asymmetric
communication delays.

Applying the orthogonal linear transformation 𝑥(𝑡) =

(𝑈
𝑐

⊗ 𝐼
𝑚
)𝑦(𝑡) to the system (7) and denoting 𝑦(𝑡) =

[𝑦
𝑇

1
(𝑡) 𝑦
𝑇

2
(𝑡)]
𝑇 with 𝑦

1
(𝑡) ∈ R𝑚 and 𝑦

2
(𝑡) ∈ R(𝑁−1)𝑚, we

have

̇𝑦
1
(𝑡) = 𝐸

𝑚
𝑦
1
(𝑡) −

𝑀

∑

𝑘=1

(𝜅
0
𝑙
𝑇

𝑘
⊗ 𝐹
𝑚
) 𝑦
2
(𝑡 − 𝜏
𝑘
(𝑡)) , (10)

̇𝑦
2
(𝑡) = (𝐼

𝑁−1
⊗ 𝐸
𝑚
) 𝑦
2
(𝑡) −

𝑀

∑

𝑘=1

(𝜅
0
�̂�
𝑘
⊗ 𝐹
𝑚
) 𝑦
2
(𝑡 − 𝜏
𝑘
(𝑡)) ,

(11)

where 𝑙
𝑘
and �̂�

𝑘
are defined as in Remark 6. It can be seen

that the system (11) is independent of the dynamics of 𝑦
1
(𝑡)

and has the order (𝑁−1)𝑚; the system (10) can be regarded as
a forced system with the forcedmotion caused by the delayed
state of 𝑦

2
(𝑡). From 𝑈

𝑐
= [(1/√𝑁)1

𝑁
�̂�] and some direct

computation, it follows that

𝑥 (𝑡) = (𝑈
𝑐
⊗ 𝐼
𝑚
) 𝑦 (𝑡) =

1

√𝑁

1
𝑁

⊗ 𝑦
1
(𝑡) + (�̂� ⊗ 𝐼

𝑚
) 𝑦
2
(𝑡) .

(12)

In addition, Proposition 7 will indicate that 𝑦
2
(𝑡) can be

considered as the disagreement state of the system (7). Note
that, for the time delay system in (10) and (11), we assume
that the initial state is 𝜑(𝑡) = (𝑈

𝑇

𝑐
⊗ 𝐼
𝑚
)𝑥(0) ≜ [𝑦

𝑇

10
𝑦
𝑇

20
]
𝑇,

𝑡 ∈ [−𝜏
0
, 0], where 𝑦

10
∈ R𝑚, 𝑦

20
∈ R(𝑁−1)𝑚, and 𝜏

0
is given

in (7).
We are now in a position to present an equivalent

condition for the consensus convergence of the system (7).

Proposition 7. Consider the system (7) with topology G(A).
The system solves a consensus problem asymptotically if and
only if each solution of the reduced-order system (11) converges
to zero.

Proof. Necessity. Suppose that 𝑦
2
(𝑡) is any solution of the

system (11) with initial state 𝜑
2
(𝑡) = 𝑦

20
∈ R(𝑁−1)𝑚,

𝑡 ∈ [−𝜏
0
, 0]. Let 𝑦

1
(𝑡) ∈ R𝑚 be continuously differentiable

and satisfy the dynamics (10) with initial state 𝑦
10
. From (12),

it follows that 𝑥(𝑡) = (1/√𝑁)1
𝑁

⊗ 𝑦
1
(𝑡) + (�̂� ⊗ 𝐼

𝑚
)𝑦
2
(𝑡)

is a solution of the system (7) with initial state 𝜙(𝑡) =

(𝑈
𝑐
⊗ 𝐼
𝑚
)[𝑦
𝑇

10
𝑦
𝑇

20
]
𝑇, 𝑡 ∈ [−𝜏

0
, 0]. Denote (�̂� ⊗ 𝐼

𝑚
)𝑦
2
(𝑡) =

[𝑧
𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑧

𝑇

𝑁
(𝑡)]
𝑇 with 𝑧

𝑖
(𝑡) ∈ R𝑚, 𝑖 ∈ 𝑁. Then (12) implies

that 𝑧
𝑗
(𝑡)−𝑧
1
(𝑡) = 𝑥

𝑗
(𝑡)−𝑥
1
(𝑡), 𝑗 = 2, . . . , 𝑁, where𝑥

𝑗
(𝑡) is the

state of agent 𝑗. If the system (7) solves a consensus problem
asymptotically, then 𝑥

𝑗
(𝑡) − 𝑥

1
(𝑡) → 0 as 𝑡 → ∞, 𝑗 =

2, . . . , 𝑁. Hence 𝑧
𝑗
(𝑡) − 𝑧

1
(𝑡) → 0 as 𝑡 → ∞, 𝑗 = 2, . . . , 𝑁,

which is equivalent to (�̂� ⊗ 𝐼
𝑚
)𝑦
2
(𝑡) = [𝑧

𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑧

𝑇

𝑁
(𝑡)]
𝑇

→

1
𝑁

⊗ 𝑧
1
(𝑡). Due to �̂�

𝑇

�̂� = 𝐼
𝑁−1

and �̂�
𝑇1
𝑁

= 0, 𝑦
2
(𝑡) =

(�̂�
𝑇

⊗ 𝐼
𝑚
)(�̂� ⊗ 𝐼

𝑚
)𝑦
2
(𝑡) → (�̂�

𝑇

⊗ 𝐼
𝑚
)(1
𝑁

⊗ 𝑧
1
(𝑡)) = 0. Hence

each solution of the system (11) converges to zero.

Sufficiency. Suppose that each solution of the system (11)
converges to zero, and 𝑥(𝑡) is the solution of the system
(7) with any initial state 𝜑(𝑡) = 𝑥(0), 𝑡 ∈ [−𝜏

0
, 0]. Let

𝑦(𝑡) = (𝑈
𝑇

𝑐
⊗ 𝐼
𝑚
)𝑥(𝑡) ≜ [𝑦

𝑇

1
(𝑡) 𝑦
𝑇

2
(𝑡)]
𝑇, where 𝑦

1
(𝑡) ∈ R𝑚,

𝑦
2
(𝑡) ∈ R(𝑁−1)𝑚. Then 𝑦(𝑡) is a solution of the systems (10)

and (11) with initial state 𝜑(𝑡) = (𝑈
𝑇

𝑐
⊗ 𝐼
𝑚
)𝑥(0), 𝑡 ∈ [−𝜏

0
, 0].

The assumption implies that 𝑦
2
(𝑡) → 0 as 𝑡 → ∞. Due

to (12), lim
𝑡→∞

𝑥
𝑖
(𝑡) = (1/√𝑁)lim

𝑡→∞
𝑦
1
(𝑡), 𝑖 ∈ 𝑁 in

which 𝑦
1
(𝑡) evolves according to (10). This indicates that the

system (7) solves a consensus problem asymptotically with
the consensus state (1/√𝑁)lim

𝑡→∞
𝑦
1
(𝑡).

Remark 8. It should be pointed out that the orthogonal linear
transformation 𝑥(𝑡) = (𝑈

𝑐
⊗ 𝐼
𝑚
)𝑦(𝑡) is not uniquely defined

by 𝑈
𝑐
. Actually, any orthogonal matrix with the first column

being (1/√𝑁)1
𝑁
also can derive the result of Proposition 7.

In addition, the above orthogonal linear transformation
can be seen as an improvement of the transformation on
disagreement space which was displayed in Lemma 5.2 of
[20].

Remark 9. In contrast to the transformation (7) of [15]
and the tree-type transformation of [16], the order of the
reduced-order system (11) induced by the orthogonal linear
transformation 𝑥(𝑡) = (𝑈

𝑐
⊗ 𝐼
𝑚
)𝑦(𝑡) is lower than those of

the reduced-order systems induced by them (in the context
that all of the three transformations are applied to the system
(7)). It is easy to see that the order of the reduced-order
system (11) is 𝑁𝑚 − 𝑚, whereas the order of the reduced-
order system which is derived from the transformation (7)
of [15] (or the tree-type transformation of [16]) is 𝑁𝑚 −

1. Seen from the linear-matrix-inequality-based sufficient
conditionswhichwill be given inTheorem 12, our orthogonal
linear transformation can derive lower-order linear matrix
inequalities. This will reduce the computation cost to some
extent when estimating themaximumallowable upper bound
𝜏
0
of time-varying delays.

Before presenting the main result, the following lemmas
are introduced to give the parameter design of protocol (3).
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Lemma 10. Consider 𝐸
𝑚
and 𝐹

𝑚
in (5). Suppose that 𝐸

𝑚
has

only one zero eigenvalue and other nonzero eigenvalues have
negative real parts, and 𝜅

0
> 0 is a constant. Let 𝑄

1
=

diag{0, 𝑞
2
, . . . , 𝑞

𝑚
} with 𝑞

𝑖
> 0, 𝑖 = 2, . . . , 𝑚; 𝑃

𝑚
= [𝑝
𝑖𝑗
] ∈

R
𝑚

is a positive definite solution of the Lyapunov equation
𝐸
𝑇

𝑚
𝑃
𝑚

+ 𝑃
𝑚
𝐸
𝑚

= −𝑄
1
; 𝑧 = 𝛼 + √−1𝛽 is a complex number

with 𝛼 > 0; 𝐷
𝑧
= [
𝛼 𝛽

−𝛽 𝛼
]. Then (𝐼

2
⊗ 𝐸
𝑚

− 𝜅
0
𝐷
𝑧
⊗ 𝐹
𝑚
)
𝑇

(𝐼
2
⊗

𝑃
𝑚
) + (𝐼
2
⊗ 𝑃
𝑚
)(𝐼
2
⊗ 𝐸
𝑚

− 𝜅
0
𝐷
𝑧
⊗ 𝐹
𝑚
) < 0 if and only if

𝜅
0
<

2𝛼𝑝
1𝑚

(𝛼
2
+ 𝛽
2
)∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
)

. (13)

In particular, when 𝛽 = 0, (𝐸
𝑚

− 𝜅
0
𝛼𝐹
𝑚
)
𝑇

𝑃
𝑚

+ 𝑃
𝑚
(𝐸
𝑚

−

𝜅
0
𝛼𝐹
𝑚
) < 0 if and only if 𝜅

0
< 2𝑝
1𝑚

/𝛼∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
).

Proof. See the Appendix: Proofs of Lemmas.

Lemma 11. Suppose that G(A) contains a spanning tree; the
associated Laplacian matrix is L, 𝑈

𝑇

𝑐
L𝑈
𝑐

= [
0 𝑙
𝑇

0 �̂�

]; the
parameters 𝑐

𝑖
, 𝑖 ∈ 𝑚 − 1 are chosen such that 𝐸

𝑚
has only one

zero eigenvalue and other nonzero eigenvalues have negative
real parts; 𝑄

1
= diag{0, 𝑞

2
, . . . , 𝑞

𝑚
} with 𝑞

𝑖
> 0, 𝑖 = 2, . . . , 𝑚,

and 𝑃
𝑚

= [𝑝
𝑖𝑗
] ∈ R

𝑚
is a positive definite solution of the

Lyapunov equation 𝐸
𝑇

𝑚
𝑃
𝑚

+ 𝑃
𝑚
𝐸
𝑚

= −𝑄
1
. If

0 < 𝜅
0
< min{

2𝑟𝑝
1𝑚

(𝑟
2
+ 𝑑
2
)∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
)

,

4𝑝
1𝑚

5𝑑∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
)

} ,

(14)

then 𝐼
𝑁−1

⊗ 𝐸
𝑚

− 𝜅
0
�̂� ⊗ 𝐹

𝑚
is Huiwitz stable, where 𝑟 =

min{Re(𝜆) : 𝜆 ∈ 𝜎(L) \ {0}} and 𝑑 = max
𝑖∈𝑁

{𝑑
𝑖
} is the

maximum vertex in-degree overG(A).

Proof. See the Appendix: Proofs of Lemmas.

By choosing the parameters 𝑐
𝑖
, 𝑖 ∈ 𝑚 − 1 and 𝜅

0
as in

Lemma 11 andmaking use of Proposition 7, we can obtain the
following theorem.

Theorem 12. Consider the system (7) with fixed topology
G(A). Suppose that G(A) contains a spanning tree; the
associated Laplacian matrix L has the form of 𝑈

𝑇

𝑐
L𝑈
𝑐

=

[
0 𝑙
𝑇

0 �̂�

], where 𝑈
𝑐
is given as in Lemma 3; the parameters 𝑐

𝑖
,

𝑖 ∈ 𝑚 − 1 and 𝜅
0
are chosen as in Lemma 11. Then the system

solves a consensus problem asymptotically if the time-varying
delays satisfy 𝜏

𝑖𝑗
(𝑡) ≤ 𝜏

0
, where 𝜏

0
is obtained from the following

optimization problem:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜏
0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
[

[

𝐺
𝑇

𝑃 + 𝑃𝐺 𝑃𝐻 Φ
13

∗ 0 Φ
23

∗ ∗ 0

]

]

< 𝜏
−1

0
diag {0, Φ

0
, Φ
0
} ,

𝑃 > 0, 𝑄
𝑘
> 0, 𝑘 = 1, . . . ,𝑀,

(15)

where

𝐺 = 𝐼
𝑁−1

⊗ 𝐸
𝑚

− 𝜅
0
�̂� ⊗ 𝐹
𝑚
,

𝐻 = [𝜅
0
�̂�
1
⊗ 𝐹
𝑚
⋅ ⋅ ⋅ 𝜅
0
�̂�
𝑀

⊗ 𝐹
𝑚
] ,

Φ
13

= [𝐺
𝑇

𝑄
1
⋅ ⋅ ⋅ 𝐺
𝑇

𝑄
𝑀
] ,

Φ
23

= [𝐻
𝑇

𝑄
1
⋅ ⋅ ⋅ 𝐻

𝑇

𝑄
𝑀
] ,

Φ
0
= diag {𝑄

1
, . . . , 𝑄

𝑀
} ,

(16)

and “∗” represents the elements below the main diagonal of a
symmetric matrix.

Proof. We first show that there must exist some positive
definite matrices 𝑃 and 𝑄

𝑘
such that the first LMI in (15)

is solvable. From the selection of protocol parameters and
Lemma 11, we know that 𝐺 is Hurwitz stable. Hence there
is a positive definite matrix �̃� such that 𝐺𝑇�̃� + �̃�𝐺 < 0. By
Lemma 5, the first LMI in (15) is equivalent to

[

𝐺
𝑇

𝑃 + 𝑃𝐺 𝑃𝐻

∗ −𝜏
−1

0
Φ
0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≜Σ1

+ (1𝑇
𝑀

⊗ [

𝐺
𝑇

𝐻
𝑇
]) 𝜏
0
Φ
0

× (1
𝑀

⊗ [𝐺 𝐻]) < 0,

(17)

and Σ
1
< 0 is equivalent to 𝐺

𝑇

𝑃 + 𝑃𝐺 + 𝜏
0
𝑃𝐻Φ
−1

0
𝐻
𝑇

𝑃 < 0.
Consequently, if we choose 𝑃 = �̃�, 𝑄

𝑘
= 𝐼
(𝑁−1)𝑚

, 𝑘 =

1, . . . ,𝑀, then for some sufficiently small 𝜏
0
, 𝐺𝑇�̃� + �̃�𝐺 +

𝜏
0
�̃�𝐻𝐻

𝑇

�̃� < 0 holds. This means that 𝑃 = �̃� and 𝑄
𝑘

=

𝐼
(𝑁−1)𝑚

satisfy the LMIs in (15).
According to Proposition 7, it suffices to prove that the

zero solution of the reduced-order system (11) is asymptoti-
cally stable under the condition (15). To do this, consider the
following Lyapunov-Krasovskii functional candidate:

𝑉 (𝑦
2
(𝑡)) = 𝑦

𝑇

2
(𝑡) 𝑃𝑦

2
(𝑡)

+

𝑀

∑

𝑘=1

∫

0

−𝜏𝑘

∫

𝑡

𝑡+𝜃

̇𝑦
𝑇

2
(𝑠) 𝑄
𝑘

̇𝑦
2
(𝑠) 𝑑𝑠 𝑑𝜃.

(18)
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Note that Remark 6 implies that ∑𝑀
𝑘=1

�̂�
𝑘
= �̂�. Then the time

derivative of 𝑉(𝑦
2
(𝑡)) along the trajectory of (11) is

�̇� (𝑦
2
(𝑡)) = 2𝑦

𝑇

2
(𝑡) 𝑃 ̇𝑦

2
(𝑡)

+

𝑀

∑

𝑘=1

[𝜏
𝑘

̇𝑦
𝑇

2
(𝑡) 𝑄
𝑘

̇𝑦
𝑇

2
(𝑡)

− ∫

0

−𝜏𝑘

̇𝑦
𝑇

2
(𝑡 + 𝜃)𝑄

𝑘
̇𝑦
2
(𝑡 + 𝜃) 𝑑𝜃]

= 2𝑦
𝑇

2
(𝑡) 𝑃𝐺𝑦

2
(𝑡)

+ 2𝑦
𝑇

2
(𝑡) 𝑃 [

𝑀

∑

𝑘=1

𝜅
0
(�̂�
𝑘
⊗ 𝐹
𝑚
)

× (𝑦
2
(𝑡) − 𝑦

2
(𝑡 − 𝜏
𝑘
(𝑡))) ]

+

𝑀

∑

𝑘=1

[𝜏
𝑘

̇𝑦
𝑇

2
(𝑡) 𝑄
𝑘

̇𝑦
2
(𝑡)

− ∫

0

−𝜏𝑘

̇𝑦
𝑇

2
(𝑡 + 𝜃)𝑄

𝑘
̇𝑦
2
(𝑡 + 𝜃) 𝑑𝜃]

≤ 2𝑦
𝑇

2
(𝑡) 𝑃𝐺𝑦

2
(𝑡)

+ 2𝑦
𝑇

2
(𝑡) 𝑃 [

𝑀

∑

𝑘=1

𝜅
0
(�̂�
𝑘
⊗ 𝐹
𝑚
)

× (𝑦
2
(𝑡) − 𝑦

2
(𝑡 − 𝜏
𝑘
(𝑡))) ]

+

𝑀

∑

𝑘=1

[𝜏
𝑘

̇𝑦
𝑇

2
(𝑡) 𝑄
𝑘

̇𝑦
2
(𝑡)

− ∫

𝑡

𝑡−𝜏𝑘(𝑡)

̇𝑦
𝑇

2
(𝑠) 𝑄
𝑘

̇𝑦
2
(𝑠) 𝑑𝑠]

≤ 2𝑦
𝑇

2
(𝑡) 𝑃𝐺𝑦

2
(𝑡)

+ 2𝑦
𝑇

2
(𝑡) 𝑃 [

𝑀

∑

𝑘=1

𝜅
0
(�̂�
𝑘
⊗ 𝐹
𝑚
)

× (𝑦
2
(𝑡) − 𝑦

2
(𝑡 − 𝜏
𝑘
(𝑡))) ]

+

𝑀

∑

𝑘=1

{𝜏
𝑘

̇𝑦
𝑇

2
(𝑡) 𝑄
𝑘

̇𝑦
2
(𝑡)

− 𝜏
−1

𝑘
[𝑦
2
(𝑡) − 𝑦

2
(𝑡 − 𝜏
𝑘
(𝑡))]
𝑇

× 𝑄
𝑘
[𝑦
2
(𝑡) − 𝑦

2
(𝑡 − 𝜏
𝑘
(𝑡))] } ,

(19)

where 𝐺 is given as in (15). Let 𝑧
𝑘
(𝑡) = 𝑦

2
(𝑡) − 𝑦

2
(𝑡 − 𝜏
𝑘
(𝑡))

and replace ̇𝑦
2
(𝑡) with the right-hand term of (11). It follows

that

�̇� (𝑦
2
(𝑡)) ≤ 2𝑦

𝑇

2
(𝑡) 𝑃𝐺𝑦

2
(𝑡)

+ 2𝑦
𝑇

2
(𝑡) 𝑃 [

𝑀

∑

𝑘=1

𝜅
0
(�̂�
𝑘
⊗ 𝐹
𝑚
) 𝑧
𝑘
(𝑡)]

−

𝑀

∑

𝑘=1

𝜏
−1

0
𝑧
𝑇

𝑘
(𝑡) 𝑄
𝑘
𝑧
𝑘
(𝑡)

+

𝑀

∑

𝑘=1

{𝜏
0
[𝐺𝑦
2
(𝑡)

+

𝑀

∑

𝑘=1

𝜅
0
(�̂�
𝑘
⊗ 𝐹
𝑚
)𝑧
𝑘
(𝑡)]

𝑇

× 𝑄
𝑘
[𝐺𝑦
2
(𝑡)

+

𝑀

∑

𝑘=1

𝜅
0
(�̂�
𝑘
⊗ 𝐹
𝑚
) 𝑧
𝑘
(𝑡)]}

= [𝑦
𝑇

2
(𝑡) 𝑍
𝑇

(𝑡)]

×

{
{

{
{

{

[

𝐺
𝑇

𝑃 + 𝑃𝐺 𝑃𝐻

∗ −𝜏
−1

0
Φ
0

]

+ [

𝐺
𝑇

⋅ ⋅ ⋅ 𝐺
𝑇

𝐻
𝑇

⋅ ⋅ ⋅ 𝐻
𝑇
] 𝜏
0
Φ
0

[

[

[

𝐺 𝐻

...
...

𝐺 𝐻

]

]

]

}
}

}
}

}

[

𝑦
2
(𝑡)

𝑍 (𝑡)
]

= [𝑦
𝑇

2
(𝑡) 𝑍
𝑇

(𝑡)]

× {[

𝐺
𝑇

𝑃 + 𝑃𝐺 𝑃𝐻

∗ −𝜏
−1

0
Φ
0

]

− [

Φ
13

Φ
23

] (−𝜏
−1

0
Φ
0
)

−1

[Φ
𝑇

13
Φ
𝑇

23
]} [

𝑦
2
(𝑡)

𝑍 (𝑡)
] ,

(20)

where 𝑍(𝑡) = [𝑧
𝑇

1
(𝑡) ⋅ ⋅ ⋅ 𝑧

𝑇

𝑀
(𝑡)]
𝑇; 𝐻, Φ

0
, Φ
13
, and Φ

23
are

given as in (15). From Lemma 5 and (15), we have �̇�(𝑦
2
(𝑡)) <

0. Hence there exists a positive real number 𝑎
0
such that

�̇� (𝑦
2
(𝑡)) < −𝑎

0
[𝑦
𝑇

2
(𝑡) 𝑦
2
(𝑡) + 𝑍

𝑇

(𝑡) 𝑍 (𝑡)]

< −𝑎
0
𝑦
𝑇

2
(𝑡) 𝑦
2
(𝑡) .

(21)

This proves that the zero solution of the reduced-order system
(11) is asymptotically stable. Thus the conclusion holds.
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Remark 13. From the proof of Theorem 12, it can be seen
that the parameter design of protocol (3) in the theorem
(i.e., the selection of 𝑐

𝑖
, 𝑖 ∈ 𝑚 − 1, and 𝜅

0
) guarantees

the solvability of the LMIs in (15). According to the nature
of the parameter design (see Lemma 11), we refer to it as a
Lyapunov-like parameter design.

In Lemma 11, when G(A) is undirected and connected,
�̂� is positive definite. Hence 𝜆

𝑖
∈ 𝜎(L) \ {0}, 𝑖 =

2, . . . , 𝑁, are positive real numbers, 𝑟 = min{𝜆
2
, . . . , 𝜆

𝑁
}

and 𝑟 ≤ 𝜆
𝑖

≤ 2𝑑. In this case, for any 𝜅
0

: 0 <

𝜅
0

< min{2𝑝
1𝑚

/𝑟∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
), 𝑝
1𝑚

/𝑑∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
)} =

𝑝
1𝑚

/𝑑∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
), 𝐺 = 𝐼

𝑁−1
⊗ 𝐸
𝑚

− 𝜅
0
�̂� ⊗ 𝐹

𝑚
is Hurwitz

stable. From Lemma 10, it follows that when 0 < 𝜅
0

<

𝑝
1𝑚

/𝑑∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
), (𝐸
𝑚
−𝜅
0
𝜆
𝑖
𝐹
𝑚
)
𝑇

𝑃
𝑚
+𝑃
𝑚
(𝐸
𝑚
−𝜅
0
𝜆
𝑖
𝐹
𝑚
) < 0

for any 𝜆
𝑖
∈ 𝜎(L) \ {0}. Since �̂� is positive definite, there is

an orthogonal matrix 𝑆 such that 𝑆𝑇�̂�𝑆 = diag{𝜆
2
, . . . , 𝜆

𝑁
}.

Thus when 0 < 𝜅
0

< 𝑝
1𝑚

/𝑑∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
), 𝐺𝑇(𝐼

𝑁−1
⊗ 𝑃
𝑚
) +

(𝐼
𝑁−1

⊗ 𝑃
𝑚
)𝐺 = (𝑆 ⊗ 𝐼

𝑚
)[(𝐼
𝑁−1

⊗ 𝐸
𝑚

− 𝜅
0
diag{𝜆

2
, . . . , 𝜆

𝑁
} ⊗

𝐹
𝑚
)
𝑇

(𝐼
𝑁−1

⊗𝑃
𝑚
)+ (𝐼
𝑁−1

⊗𝑃
𝑚
)(𝐼
𝑁−1

⊗𝐸
𝑚
−𝜅
0
diag{𝜆

2
, . . . , 𝜆

𝑁
}⊗

𝐹
𝑚
)](𝑆
𝑇

⊗𝐼
𝑚
) < 0. In the light of the proof ofTheorem 12, the

inequalities in (15) hold by taking𝑃 = 𝐼
𝑁−1

⊗𝑃
𝑚
,𝑄
𝑘
= 𝐼
(𝑁−1)𝑚

,
and sufficiently small 𝜏

0
.This result can be summarized as the

following corollary.

Corollary 14. Consider the system (7) with fixed topology
G(A). Suppose that G(A) is undirected and connected; the
parameters 𝑐

𝑖
, 𝑖 ∈ 𝑚 − 1, are chosen such that 𝐸

𝑚
has only one

zero eigenvalue and other nonzero eigenvalues have negative
real parts; 𝑄

1
= diag{0, 𝑞

2
, . . . , 𝑞

𝑚
} with 𝑞

𝑖
> 0, 𝑖 = 2, . . . , 𝑚,

and 𝑃
𝑚

= [𝑝
𝑖𝑗
] ∈ R

𝑚
is a positive definite solution of the

Lyapunov equation 𝐸
𝑇

𝑚
𝑃
𝑚

+ 𝑃
𝑚
𝐸
𝑚

= −𝑄
1
; 𝜅
0
satisfies

0 < 𝜅
0
<

𝑝
1𝑚

𝑑∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
)

, (22)

where 𝑑 = max
𝑖∈𝑁

{𝑑
𝑖
} is the maximum vertex in-degree

over G(A). Then the system solves a consensus problem
asymptotically if the time-varying delays satisfy 𝜏

𝑖𝑗
(𝑡) ≤ 𝜏

0
,

where 𝜏
0
is obtained from (15) with 𝑃 = 𝐼

𝑁−1
⊗ 𝑃
𝑚

and
𝑄
𝑘
= 𝐼
(𝑁−1)𝑚

.

Remark 15. Corollary 14 indicates that the selection of
parameters 𝑐

𝑖
, 𝑖 ∈ 𝑚 − 1, and 𝜅

0
is independent of the

eigenvalues of Laplacian matrix but only depends on the
maximum vertex in-degree of the graph. It will reduce greatly
the computation and storage costs for the protocol design
of practical MAS. Therefore, we can say that the parameter
design in Theorem 12 is independent of the precise interac-
tion topology when the underlying graph is connected and
guarantees the robust consensus with respect to asymmetric
time-varying delays for the high-order MAS (7).

Remark 16. It is worth pointing out that the results of [19]
can not be applied to the high-order MAS straightforwardly,
since the parameters 𝑐

𝑗
, 𝑗 ∈ 𝑚 − 1, and 𝜅

0
have important

effect on the consensus of the system.Whereas the Lyapunov-
like parameter design given in Theorem 12 can solve the
consensus problem for the high-order MAS (7) very well.

Remark 17. Compared with the existing results, the main
contribution of this paper is giving the Lyapunov-like param-
eter design which is easy to implement, independent of
the precise interaction topology for the case of connected
graphs, and robust with respect to asymmetric time-varying
delays. Moreover, the parameter design can guarantee the
existence of solution of the linear matrix inequalities given
in Theorem 12, although it seems that the estimations of 𝜏

0

are conservative. More excellent estimation on the maximum
allowable upper bound of time-varying delays is a commonly
unsolved problem. This requires us to explore other analysis
techniques which could reduce the dependence of that
estimation on the knowledge of network topology.

4. Numerical Examples

Consider the system (7) of six agents with dynamics
described by a triple-order integrator. The interaction topol-
ogy among agents is depicted by a cycle with the arcs (V

1
, V
2
),

(V
2
, V
3
), (V
3
, V
4
), (V
4
, V
5
), (V
5
, V
6
), (V
6
, V
1
). Assume that the

weights of the arcs are 𝑎
21

= 𝑎
32

= 𝑎
43

= 𝑎
54

= 𝑎
65

= 𝑎
16

=

1 and the communication delays affecting on the linkages
are different from each other. Then the maximum vertex in-
degree of the graph is 𝑑 = 1, and the minimum real part
of nonzero eigenvalues of the associated Laplacian matrix is
𝑟 = 1/2.

In what follows, we design the protocol parameters 𝑐
1
, 𝑐
2
,

and 𝜅
0
according toTheorem 12 (or Lemma 11).

It is not hard to obtain that the characteristic polynomial
of 𝐸
3
in the system (7) is 𝑠(𝑠

2

+ 𝑐
2
𝑠 + 𝑐

1
). Then any

positive numbers 𝑐
1
and 𝑐
2
make 𝐸

3
satisfy the assumption

in Lemma 11. Let 𝑃
3

= [𝑝
𝑖𝑗
] ∈ R

3
and 𝑄

1
= diag{0, 𝑞

2
, 𝑞
3
}

with 𝑞
2

> 0, 𝑞
3

> 0. By solving 𝐸
𝑇

3
𝑃
3
+ 𝑃
3
𝐸
3

= −𝑄
1
,

we have 𝑝
11

= 𝑐
1
𝑝
13
, 𝑝
12

= 𝑐
2
𝑝
13
, 𝑝
22

= (𝑐
2

2
/𝑐
1
)𝑝
13

+

(𝑐
2
/2𝑐
1
+ 1/2𝑐

2
)𝑞
2
+ (𝑐
1
/2𝑐
2
)𝑞
3
, 𝑝
23

= (𝑐
2
/𝑐
1
)𝑝
13

+ (1/2𝑐
1
)𝑞
2
,

and 𝑝
33

= (1/𝑐
1
)𝑝
13

+ (1/2𝑐
1
𝑐
2
)𝑞
2
+ (1/2𝑐

2
)𝑞
3
. As a result,

the 1-by-1, 2-by-2, and 3-by-3 leading principle minors of
𝑃
3
are, respectively, 𝑐

1
𝑝
13
, 𝑐
1
𝑝
13
(((𝑐
2
+ 1)/2𝑐

1
)𝑞
2
+ (𝑐
1
/2𝑐
2
)𝑞
3
),

and (1/4)𝑝
13
[𝑞
2
𝑞
3
+ (1/𝑐

2

2
)(𝑞
2
+ 𝑐
1
𝑞
3
)
2

]. Hence 𝑃
3
is positive

definite for any 𝑝
13

> 0. If we take 𝑞
2

= 2𝑐
2
𝑝
13
, 𝑞
3

=

(4𝑐
2
/𝑐
1
)𝑝
13

with 𝑝
13

> 0, then the condition (14) becomes
0 < 𝜅

0
< min{𝑟𝑐2

1
𝑐
2
/(𝑟
2

+ 𝑑
2

)(2𝑐
1
+ 𝑐
2

2
), 2𝑐
2

1
𝑐
2
/5𝑑(2𝑐

1
+ 𝑐
2

2
)}.

Thus when 𝑐
1

= 24 and 𝑐
2

= 8, the constraint on 𝜅
0
can be

calculated as 0 < 𝜅
0
< 576/35 ≃ 16.4571. We choose 𝑐

1
= 24,

𝑐
2
= 8, and 𝜅

0
= 5 for the simulation.

With the parameters chosen as above and by solving
the optimization problem in (15), we can obtain that the
maximum allowable upper bound of time-delays is 𝜏

0
=

1.2305. Assume that 𝜏
21
(𝑡) ≤ 0.4, 𝜏

32
(𝑡) ≤ 0.6, 𝜏

43
(𝑡) ≤ 0.9,

𝜏
54
(𝑡) ≤ 0.7, 𝜏

65
(𝑡) ≤ 0.5, and 𝜏

16
(𝑡) ≤ 0.8, all of which are

piecewise constant functions of time 𝑡. The states of agents
in the system (7) asymptotically reach consensus as shown in
Figure 1.

5. Conclusions

This paper has studied the consensus problem for high-order
MAS with directed network and asymmetric time-varying
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communication delays. An equivalent condition for the
consensus convergence has been established based on an
orthogonal linear transformation. A Lyapunov-like protocol
design has been given, which is robust with respect to asym-
metric time-varying communication delays and directed
interactions.Themaximumallowable upper bounds of delays
have been determined by solving some optimization prob-
lems. Finally, numerical examples have been worked out to
demonstrate the effectiveness of the theoretical results.

Appendix

Proofs of Lemmas

Proof of Lemma 3. From the property of 𝑈
𝑐
, let 𝑈

𝑐
=

[(1/√𝑁)1
𝑁

]
2

⋅ ⋅ ⋅ ]
𝑁
] and �̂� = []

2
⋅ ⋅ ⋅ ]
𝑁
]. Then

L1
𝑁

= 0 implies that

𝑈
𝑇

𝑐
L𝑈
𝑐
=

[

[

[

[

[

[

[

1

√𝑁

1𝑇
𝑁

]𝑇
2

...
]𝑇
𝑁

]

]

]

]

]

]

]

[0 L]
2

⋅ ⋅ ⋅ L]
𝑁
]

=

[

[

[

[

[

[

[

0

1

√𝑁

1𝑇
𝑁
L]
2

⋅ ⋅ ⋅

1

√𝑁

1𝑇
𝑁
L]
𝑁

0 ]𝑇
2
L]
2

⋅ ⋅ ⋅ ]𝑇
2
L]
𝑁

...
... ⋅ ⋅ ⋅

...
0 ]𝑇

𝑁
L]
2

⋅ ⋅ ⋅ ]𝑇
𝑁
L]
𝑁

]

]

]

]

]

]

]

.

(A.1)

Denote that 𝑙 = [(1/√𝑁)1𝑇
𝑁
L]
2

⋅ ⋅ ⋅ (1/√𝑁)1𝑇
𝑁
L]
𝑁
]
𝑇 and

�̂� = �̂�
𝑇L�̂�. Then 𝑈

𝑇

𝑐
L𝑈
𝑐
is in the form of [ 0 𝑙𝑇

0 �̂�

]. Due to
the fact that 𝑈𝑇

𝑐
= 𝑈
−1

𝑐
and similarity transformation does

not change the eigenvalues of matrix, 𝜎(L) = {0} ∪ 𝜎(�̂�). It
follows that 𝜎(�̂�) ⊂ 𝜎(L). If G is balanced, then 1𝑇

𝑁
L = 0.

Thus 𝑙 = [(1/√𝑁)1𝑇
𝑁
L]
2

⋅ ⋅ ⋅ (1/√𝑁)1𝑇
𝑁
L]
𝑁
]
𝑇

= 0. If G
is strongly connected and balanced, according to Theorem
7 in [4], we obtain that (L𝑇 + L)/2 is a valid Laplacian
matrix of an undirected graph. Then the strong connectivity
of G implies that the corresponding graph of (L𝑇 + L)/2 is
connected. Hence (L𝑇+L)/2 is positive semidefinite and its
rank is𝑁− 1. This proves that �̂�𝑇 + �̂� is positive definite.

Proof of Lemma 10. Denote 𝑥 = [𝑥
1

⋅ ⋅ ⋅ 𝑥
𝑚
]
𝑇

∈ R𝑚. Since
𝑥
𝑇

𝑃
𝑚
𝐸
𝑚
𝑥 is a scalar, we can write −𝑥

𝑇

𝑄
1
𝑥 = −(𝑞

2
𝑥
2

2
+ ⋅ ⋅ ⋅ +

𝑞
𝑚
𝑥
2

𝑚
) = 𝑥
𝑇

(𝐸
𝑇

𝑚
𝑃
𝑚

+ 𝑃
𝑚
𝐸
𝑚
)𝑥 = 2𝑥

𝑇

𝑃
𝑚
𝐸
𝑚
𝑥 = 2[𝑥

2
(𝑝
11
𝑥
1
+

⋅ ⋅ ⋅ + 𝑝
𝑚1

𝑥
𝑚
) + ⋅ ⋅ ⋅ + 𝑥

𝑚
(𝑝
1(𝑚−1)

𝑥
1
+ ⋅ ⋅ ⋅ + 𝑝

𝑚(𝑚−1)
𝑥
𝑚
) +

(−𝑐
1
𝑥
2
− 𝑐
2
𝑥
3
− ⋅ ⋅ ⋅ − 𝑐

𝑚−1
𝑥
𝑚
)(𝑝
1𝑚

𝑥
1
+ ⋅ ⋅ ⋅ + 𝑝

𝑚𝑚
𝑥
𝑚
)]. The

coefficient of the term 𝑥
1
𝑥
2
in 2𝑥
𝑇

𝑃
𝑚
𝐸
𝑚
𝑥 is 2(𝑝

11
− 𝑐
1
𝑝
1𝑚

).
From the equality of the left-hand and right-hand coefficients
in −𝑥

𝑇

𝑄
1
𝑥 = 𝑥

𝑇

(𝐸
𝑇

𝑚
𝑃
𝑚

+ 𝑃
𝑚
𝐸
𝑚
)𝑥, we have 𝑝

11
= 𝑐
1
𝑝
1𝑚
.

Notice that 𝑝
11

> 0 due to 𝑃
𝑚
being positive definite. Then

𝑐
1
> 0 implies that 𝑝

1𝑚
> 0.

Let𝑄
2
= −(𝐼
2
⊗𝐸
𝑚
−𝜅
0
𝐷
𝑧
⊗𝐹
𝑚
)
𝑇

(𝐼
2
⊗𝑃
𝑚
)− (𝐼
2
⊗𝑃
𝑚
)(𝐼
2
⊗

𝐸
𝑚

− 𝜅
0
𝐷
𝑧
⊗ 𝐹
𝑚
). In what follows, we only need to prove

that 𝑄
2
is positive definite when 𝜅

0
satisfies (13). By directly

computing, we obtain

𝑄
2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

2𝜅
0
𝛼𝑝
1𝑚

𝜅
0
𝛼𝑝
2𝑚

⋅ ⋅ ⋅ 𝜅
0
𝛼𝑝
𝑚𝑚

... 0 −𝜅
0
𝛽𝑝
2𝑚

⋅ ⋅ ⋅ −𝜅
0
𝛽𝑝
𝑚𝑚

𝜅
0
𝛼𝑝
2𝑚

𝑞
2

⋅ ⋅ ⋅ 0

... 𝜅
0
𝛽𝑝
2𝑚

0 ⋅ ⋅ ⋅ 0

d
... d

𝜅
0
𝛼𝑝
𝑚𝑚

0 ⋅ ⋅ ⋅ 𝑞
𝑚

... 𝜅
0
𝛽𝑝
𝑚𝑚

0 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 𝜅
0
𝛽𝑝
2𝑚

⋅ ⋅ ⋅ 𝜅
0
𝛽𝑝
𝑚𝑚

... 2𝜅
0
𝛼𝑝
1𝑚

𝜅
0
𝛼𝑝
2𝑚

⋅ ⋅ ⋅ 𝜅
0
𝛼𝑝
𝑚𝑚

−𝜅
0
𝛽𝑝
2𝑚

0 ⋅ ⋅ ⋅ 0

... 𝜅
0
𝛼𝑝
2𝑚

𝑞
2

⋅ ⋅ ⋅ 0

d
... d

−𝜅
0
𝛽𝑝
𝑚𝑚

0 ⋅ ⋅ ⋅ 0

... 𝜅
0
𝛼𝑝
𝑚𝑚

0 ⋅ ⋅ ⋅ 𝑞
𝑚

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (A.2)

Denote the 𝑘-by-𝑘 leading principle minor of 𝑄
2
by 𝑄
2
(𝑘).

For 𝑄
2
(1), . . . , 𝑄

2
(𝑚), it follows by expanding them with

respect to their last rows, respectively, that

𝑄
2
(1) = 𝜅

0
𝛼 (2𝑝
1𝑚

) ,

𝑄
2
(𝑘) = 𝜅

0
𝛼(

𝑘

∏

𝑖=2

𝑞
𝑖
)[2𝑝

1𝑚
− 𝜅
0
𝛼(

𝑘

∑

𝑖=2

𝑝
2

𝑖𝑚

𝑞
𝑖

)] ,

𝑘 = 2, . . . , 𝑚.

(A.3)
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For 𝑄
2
(𝑚 + 𝑘), 𝑘 = 1, . . . , 𝑚, we first multiply the first row

and the first column by −𝛽/𝛼 and add to the (𝑚 + 1)th
row and the (𝑚 + 1)th column, respectively. Then multiply,
respectively, the second, third,. . .,𝑚th, and (𝑚+ 1)th column
by −𝜅
0
𝛼𝑝
2𝑚

/𝑞
2
, −𝜅
0
𝛼𝑝
3𝑚

/𝑞
3
, . . . , −𝜅

0
𝛼𝑝
𝑚𝑚

/𝑞
𝑚
, and 𝛼𝛽/(𝛼

2

+

𝛽
2

); add all of them to the first column. At last, expanding
the resultant determinant with respect to the first column and
making use of the results of 𝑄

2
(𝑘), 𝑘 = 1, . . . , 𝑚, we have

𝑄
2
(𝑚 + 1)

= 2𝜅
2

0
𝛼𝑝
1𝑚

𝑚

∏

𝑖=2

𝑞
𝑖
[2𝛼𝑝
1𝑚

− 𝜅
0
(𝛼
2

+ 𝛽
2

)(

𝑚

∑

𝑖=2

𝑝
2

𝑖𝑚

𝑞
𝑖

)] ,

𝑄
2
(𝑚 + 𝑘)

= 𝜅
2

0

𝑚

∏

𝑖=2

𝑞
𝑖
[2𝛼𝑝
1𝑚

− 𝜅
0
(𝛼
2

+ 𝛽
2

)(

𝑚

∑

𝑖=2

𝑝
2

𝑖𝑚

𝑞
𝑖

)]

×

𝑘

∏

𝑖=2

𝑞
𝑖
[2𝛼𝑝
1𝑚

− 𝜅
0
(𝛼
2

+ 𝛽
2

)(

𝑘

∑

𝑖=2

𝑝
2

𝑖𝑚

𝑞
𝑖

)] ,

𝑘 = 2, . . . , 𝑚.

(A.4)

Hence 𝑄
2
is positive definite if and only if 𝑄

2
(𝑘) > 0 for all

𝑘 = 1, . . . , 2𝑚. From the assumption, it is easy to see that
𝑄
2
(1) > 0. Since 𝑃

𝑚
is positive definite, 𝑝

𝑚𝑚
> 0. As a

result, ∑𝑚
𝑖=2

(𝑝
2

𝑖𝑚
/𝑞
𝑖
) > 0. In addition, it is not hard to get

∑
𝑘

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
) = 0 if and only if 𝑝

2𝑚
= ⋅ ⋅ ⋅ = 𝑝

𝑘𝑚
= 0. Consider

𝑄
2
(2), . . . , 𝑄

2
(𝑚). Suppose that 𝑘



∈ {2, . . . , 𝑚 − 1} which
satisfies 𝑝

2𝑚
= ⋅ ⋅ ⋅ = 𝑝

𝑘

𝑚

= 0 and 𝑝
(𝑘

+1)𝑚

̸= 0. Then we have
∑
𝑘

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
) = 0 for 𝑘 = 2, . . . , 𝑘

 and ∑
𝑘

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
) > 0 for

𝑘 = 𝑘


+ 1, . . . , 𝑚. Consequently, 𝑄
2
(2) > 0, . . . , 𝑄

2
(𝑘


) > 0

for any 𝜅
0

> 0, and 𝑄
2
(𝑘


+ 1) > 0, . . . , 𝑄
2
(𝑚) > 0 if and

only if 𝜅
0

< 2𝑝
1𝑚

/𝛼∑
𝑚

𝑖=2
(𝑝
2

𝑖𝑚
/𝑞
𝑖
). Next, consider 𝑄

2
(𝑚 +

1), . . . , 𝑄
2
(2𝑚). It is evident that 𝑄

2
(𝑚 + 1) > 0 if and only if

𝜅
0
satisfies (13). Following the similar guidelines of the proof

of 𝑄
2
(2), . . . , 𝑄

2
(𝑚), we have 𝑄

2
(𝑚 + 2) > 0, . . . , 𝑄

2
(2𝑚) > 0

if and only if 𝜅
0
satisfies (13). By summing up the discussion

above and making use of the fact that 𝛼/(𝛼2 + 𝛽
2

) ≤ 1/𝛼,
we obtain the first conclusion.The second conclusion follows
directly from the first one.

To prove Lemma 11, we introduce the following result.

Lemma A.1 (see Theorem 4.6 in [20]). Consider 𝐸
𝑚

and
𝐹
𝑚
in (5). Suppose graph G(A) contains a spanning tree; the

associated Laplacian matrix is L, 𝑈𝑇
𝑐
L𝑈
𝑐

= [
0 𝑙
𝑇

0 �̂�

] (𝑈
𝑐
is

given as in Lemma 3); the parameters 𝑐
𝑖
, 𝑖 ∈ 𝑚 − 1, are chosen

such that 𝐸
𝑚
has only one zero eigenvalue and other nonzero
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Figure 1: Trajectories of the first, the second, and the third state
components of six agents with a directed circle and asymmetric
time-varying delays.

eigenvalues have negative real parts. If there exist some positive
definite matrices 𝑃, 𝑄 and a positive real number 𝜅

0
such that

[𝐼
2
⊗ 𝐸
𝑚

− 𝜅
0
(𝐷
1
⊗ 𝐹
𝑚
)]
𝑇

𝑃

+ 𝑃 [𝐼
2
⊗ 𝐸
𝑚

− 𝜅
0
(𝐷
1
⊗ 𝐹
𝑚
)] < 0,

[𝐼
2
⊗ 𝐸
𝑚

− 𝜅
0
(𝐷
2
⊗ 𝐹
𝑚
)]
𝑇

𝑄

+ 𝑄 [𝐼
2
⊗ 𝐸
𝑚

− 𝜅
0
(𝐷
2
⊗ 𝐹
𝑚
)] < 0,

(A.5)

then 𝐼
𝑁−1

⊗ 𝐸
𝑚

− 𝜅
0
�̂� ⊗ 𝐹

𝑚
is Hurwitz stable, where 𝐷

1
=

[
𝑟 𝑑

−𝑑 𝑟
], 𝐷
2

= [
2𝑑 𝑑

−𝑑 2𝑑
], 𝑟 = min{Re(𝜆) : 0 ̸= 𝜆 ∈ 𝜎(L)},

𝑑 = max
𝑖∈𝑁

{𝑑
𝑖
} is the maximum vertex in-degree overG(A).

Proof of Lemma 11. We only need to prove that the inequali-
ties in (A.5) hold. Take 𝑃 = 𝑄 = 𝐼

2
⊗ 𝑃
𝑚
. From Lemma 10,

(14) implies (A.5). The proof is completed.
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