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We consider the problem of learning nondeterministic finite state machines (NFSMs) from systems where their internal structures
are implicit and nondeterministic. Recently, an algorithm for inferring observable NFSMs (ONFSMs), which are the potentially
learnable subclass of NFSMs, has been proposed based on the hypothesis that the complete testing assumption is satisfied. According
to this assumption, with an input sequence (query), the complete set of all possible output sequences is given by the so-called
Teacher, so the number of times for asking the same query is not taken into account in the algorithm. In this paper, we propose
L » a refined ONFSM learning algorithm that considers the amount for repeating the same query as one parameter. Unlike the
previous work, our approach does not require all possible output sequences in one answer. Instead, it tries to observe the possible
output sequences by asking the same query many times to the Teacher. We have proved that L}, can infer the corresponding
ONFSMs of the unknown systems when the number of tries for the same query is adequate to guarantee the complete testing
assumption. Moreover, the proof shows that our algorithm will eventually terminate no matter whether the assumption is fulfilled
or not. We also present the theoretical time complexity analysis of L};,,. In addition, experimental results demonstrate the practical

efficiency of our approach.

1. Introduction

Over the past decade the use of automata learning techniques
has become widespread in the domain of formal verification
(e.g., [1-4]). The learning techniques are usually employed
for inferring a formal model such as finite state automaton
(FA) or finite state machine (FSM) (also called transducer)
of a system whose internal behavior is unknown. There are
many methods that have been reported in the literature
for automata learning (see, e.g., evolutionary based algo-
rithms [5-7], SAT-solver based algorithm [8], and ant-colony
optimization-based algorithm [9]). Among various tech-
niques, Angluin’s algorithm L* [10] has received much atten-
tion in many studies.

Research into L”, is essentially an active learning proce-
dure (i.e., learning by queries) for inferring a minimal deter-
ministic finite state automaton (DFA). As opposed to a passive

learning approach (e.g., RPNI algorithm [11]), an active
learning algorithm can choose and ask the expected queries
to the so-called Teacher who is assumed to correctly answer
them. There are two types of queries in L*: membership and
equivalence queries. A membership query is asked to investi-
gate whether a given string is actually in the language of the
target DFA. An equivalence query is asked to verify whether
a hypothesized DFA is correct.

While the bulk of research in L* has focused on deter-
ministic models, nondeterminism is not unusual in certain
systems that are composed of a number of components such
as a communication system, a component-based system, and
a service-oriented system. Such nondeterminism could arise
from the asynchronous communication between different
components, as well as from unpredictable activities such
as interleaving between components. The use of a non-
deterministic finite state machine (NFSM) is preferred because



it can specify both an input/output structure and nonde-
terminism in a more neutral manner. Although it has been
shown that learning the class of NFSMs and non-deterministic
finite automata (NFAs) may be impossible [12], the case is
not true for the whole class. For example, residual finite
state automata (RESAs) [13-15], unambiguous finite automata
(UFAs) [16], and parameterized finite state machines (PFSMs)
[17] are the subclasses that can be learned efficiently.

We consider here inference for the specific subclass of
NFSMs, called observable NFSMs (ONFSMs), which have
received much attention in a wide range of test generation
methods (e.g., [18-20]). An ONFSM could produce different
answers to a given input sequence, but its state is uniquely
determined by the observation of an input sequence and the
corresponding output sequence. This means that, with the
same pair of input and output sequences, an ONFSM cannot
change to more than one state.

The closest idea to our approach can be found in the work
of El-Fakih et al. [21], in which an algorithm for inferring
ONFSMs, namely, Ly, has been proposed based on the
hypothesis that the complete testing assumption [18] (called
all-weather conditions assumption in [21, 22]) is satisfied.
According to this assumption, they assume that the com-
plete set of all possible output sequences is given by the
Teacher when applying an input sequence. For this reason,
the number of times for repeating the same query is not taken
into account in the complexity of their algorithm. However,
it seems that how the Teacher constructs the complete set of
all possible answers is questionable.

In this paper, we propose L}, a refined algorithm for
ONFSM inference which considers the amount of applying
the same input sequence (query) as one parameter. Unlike
the previous work [21], our approach does not require all
possible output sequences in one answer. In contrast, it
tries to collect all possible output sequences by asking the
same query many times, more precisely k times, to the
Teacher. We have proved that L}, can infer the correspond-
ing ONFSMs of the unknown systems when the value of
k is adequate to satisfy the complete testing assumption.
Moreover, since sometimes the assumption may not hold
(e.g., insufficient value of k), the termination of our algo-
rithm is still guaranteed. We also present a more rigorous
analysis of the worst-case time complexity of the proposed
algorithm with respect to the cost of repeating the same
query (k). In addition, we studied its practical efficiency using
a suite of experiments. Based on the experimental results,
we found that the proposed algorithm is applicable and
scalable to infer the corresponding ONFSMs of the unknown
systems. Moreover, our optimization can effectively reduce
the number of queries when applying systems that are
known to be equivalent to some (unknown) partially specified
ONFSMs.

This paper is organized as follows. The next section recalls
the basic definitions and notions of NFSMs that will be
used throughout this paper. Section 3 describes our proposed
algorithm for inferring ONFSMs along with a simple opti-
mization. Moreover, an algorithm analysis on the correctness
and the worst-case time complexity is also presented in this
section. The experimental results are shown in Section 4.
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Finally, discussions and conclusions of this study are pre-
sented in Section 5.

2. Background

This section briefly recalls the standard notations and related
concepts that will be used later in this paper. From this
point forward, the term “finite state machines” (FSMs) will
be referred to as “Mealy machines,” which represent outputs
on their transitions.

Definition 1. A non-deterministic finite state machine
(NFSM) M is a 5-tuple (Q,1,0,9,q,), where Q, I, and O
are the nonempty finite sets of states, input symbols, and
output symbols, respectively; q, € Q is the initial state; and
8 : QxI — 299 s the transition function, where 29C is
the power set of Q x O.

At any point in time, the machine M is currently at
state g € Q and receives an input i € I; it may change
to state g € Q and produce an output 0 € O if and only if
(q', 0) € 8(qg,i). For example, Figure 1 shows an NFSM M,
that is nondeterministic in state g, under input b, formally
6(q,,b) = {(g,>x), (g3, ¥)}. This scenario means that if the
machine M, in state g, receives an input b, there are two
possible behaviours of M: either it changes to state g, and
outputs x or it changes to state g; and outputs y. As usual, the
function § can be extended to take an input sequence; that

is,8 : QxI* — 299 For example, here §(q,,b - a) =
{(qy>x -y}

Property 1 (initially connected). An NEFSM is initially con-
nected if every state g € Q can be reached from the initial state
qo» that is, for all g € Q, 3x € I" such that g € §(q, X).

Property 2 (completely specified). An NFSM is completely
specified if, for all of the states, it has transitions for every
input. Formally, for all g € Q, for all i € I, |6(g,i)| > 1.

However, if the machine is not completely specified,
called a partially specified NFSM, it can be transformed to a
completely specified NFSM by adding either a sink state or
loop back transition, with a designated error symbol for all
inputs that do not occur in the original machine.

Property 3 (observable). An NFSM is observable, called
ONEFSM, if for every state g € Q, input i € I, and output
o0 € O, it has at most one transition leaving g with input i and
output o, that is, |{g' € Q | (¢, 0) € 8(g,i)(¢,0) € 8(q,i)}| <
1.

This property ensures that, with the same input, the
machine will never move to different states with the same
output. This scenario aids us in determining the target state of
the machine by observing only its output. However, as argued
in [18, 20], the ONFSM (sometimes called the pseudononde-
terministic FSM [23, 24]) is not a deterministic machine due
to the fact that we cannot determine the output sequence for
a given input sequence.

Property 4 (reduced). An NFSM is reduced if it is initially
connected and no two states are equivalent. In other words,
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FIGURE 1: The (observable) non-deterministic finite state machine
M,.

there always exists an input sequence that can distinguish
between any two states, that is, for all ¢,q' € Qand 3% € I*,
So(q, E) 5& 8O(q,) E)

Definition 2 (language). Givenan NFSM M = (Q, 1,0, 6, q),
an associated language of M from a state g € Q, denoted
by Z),(q), is the set of input/output sequences allowed by
M from g. More formally, &,(q) = {X/y | x e " Ay €
0o(g,x)}. We use £ (M), called the language of M, to mean
the set Z,1(qo)-

In theoretical sense, the machines considered here are
“transducers,” not “acceptors.” However, the relation between
them can be seen as follows.

Remark 3. Given a non-deterministic finite automaton
(NFA) & = (S, 2, A, sy, F) where S is the nonempty finite set
of states, s, € S is the initial state, F € § is the set of final
states, and A : S x ¥ — 2% is the transition function. As
usual, one can construct a simple NFSM M = (Q, 1,0, 9, q,)
that has only two outputs, for example, 0 or 1, such that if a
string X € 2" is not in the language of &/, then M produces
the output ending with 0 when it has finished reading x as its
input. Otherwise, that means x is in the language of /.

From Remark 3, it follows that the computational power
of NFSMs is equal to the classical NFAs.

Definition 4 (reduction). Given the two NFSMs M, = (Q',
II,OI,Sl,q(l)) and M, = (QZ,IZ,OZ,SZ,qé),where I' = I*and
NESM M, is areduction of NESM M, denoted by M, < M,,
ifand only if Z(M,) € ZL(M,).

Definition 5 (equivalence). The equivalence relation between
the two NFSMs M, and M, holds if and only if M, < M, and
M, < M, thatis, Z(M,) = L(M,).

3. Inference of ONFSMs

Even though Angluin’s algorithm L* can efficiently learn an
unknown regular language U and produce a minimal DFA
that accepts U in polynomial time, its adaptations to FSMs
may not be efficient [25]. For example, the direct adaptations
can be performed through model transformation techniques

by mapping from inputs I and outputs O of the FSM to
letters of a DFA’s alphabet %, such that ¥ = I U O [26] or
> = I x O [27]. However, these methods are confronted by
complexity problems because the cost of L* is polynomial,
based on the size of X. Shahbaz and Groz [25] observed that,
by slightly modifying the structure of the observation table
and the way in which the counterexample is processed, their
proposed method, namely, L, can learn deterministic FSMs,
specifically Mealy machines, more effectively.

As usual in the setting of L*-based algorithms, a learning
algorithm, called Learner, needs to ask two types of questions
to a Minimally Adequate Teacher, called Teacher for short,
which is assumed to correctly answer the questions. The first
type of question is called a membership query in L*, which
consists of a string o from 2*. The Teacher replies either true
if o € U or false otherwise. Later, this concept is adapted
to the output query [21, 25], which consists of a string ¢
from I". The difference is that, instead of true or false, the
Teacher replies with the output string from O, which will be
processed and recorded in an observation table.

The second type of question is called an equivalence query,
which consists of a candidate DFA M, whose language the
Learner believes to be identical to U (i.e., Z(M) = U) in the
case of L*, or a candidate Mealy machine M, whose language
the Learner believes to be identical to the language of an
unknown Mealy machine My, (ie., (M) = ZL(My) in the
case of L}r\,[). The answer is true if it is a correct conjecture;
otherwise, the Teacher returns a counterexample, which is a
string in the symmetric difference of #(M) and U in L* or
Z(M) and Z(My) in L},

In our setting, the algorithm asks each output query
many times to collect all possible output sequences. Unlike
[21], there is no need to modify the Teacher to answer each
query with the complete set of all possible output sequences.
Note that, after each query, the unknown machine must be
returned to the initial state by a reset input.

In order to infer a black-box ONFSM, it is necessary to
make a complete testing assumption [18] (also called fairness
assumption [20] and all-weather conditions assumption [21,
22]).

Definition 6 (complete testing assumption). For a given
black-box ONFSM, there is some unknown number k such
that, if an input sequence is applied to the target ONFSM k
times, then all possible responses are observed.

The idea behind the assumption is to bound how many
outputs a target machine can produce given some input
sequence. As a result, we need to ask the same output query
k times for each input/output sequence to observe every
possible output sequence from an unknown ONFSM (if the
complete testing assumption holds for k).

Let M = (Q,1,0,9,q,) be an unknown ONFSM that
is initially connected, completely specified, and reduced. A
detailed description of an observation table and the proce-
dure of L}, will be described in this section.

3.1. Observation Table. Atahigher level, the observation table
is composed of two parts: an upper and a lower part. Each row
in the upper part represents a candidate state of the unknown
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TaBLE 1: Example of an observation table.
E

h a b
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bly ) b

machine, while each row in the lower part represents the
target state of a candidate state and an input. Formally, the
structure of an observation table (denoted by (S, E, T')) of the
algorithm LY;,, consists of three parts: S, E, and T, where

(i) S is the non-empty finite set of prefix-closed input/
output sequences x/y, where x € I*,y € O*,and S
always contains the empty sequence .

(ii) E is the non-empty finite set of suffix-closed input
sequences from I*.

(iii) T is a finite function that maps (SUS-I/O) x Eto a

set of output sequences from 20",

Intuitively, an observation table can be visualized as a
two-dimensional array with rows labelled by elements of S
and S-I/0O (ie., SUS-I/O) and columns labelled by elements
of E. The entry corresponding to row s in (SU S - I/O) and
column e in E equals T'(s, e), which contains the set of the
output sequences from sufﬁe|(8o(q0,s - e)), where suff“‘l(é’ )
denotes the set of k-length suffixes of every sequence from a
set . For example, let § = {y-x-x,y-x-y,y-y-y},
suff“'(cS’) = {x, y} and sufﬁzl(é’) ={x-xx-y,y yh

Definition 7 (row equivalence). Let s, t be two rows in the
table (S, E, T), that is, s,t € SUS - I/O. Then, s and t are row
equivalent, denoted by s=gt, if and only if T(s,e) = T(t,e)
for all e € E. Moreover, we used [s] to denote the equivalence
class of rows that are row equivalent to s.

For example, Table1 is an example of the observation
table used for learning the NFSM M, in Figure 1. From this
table, row € is equivalent to b/y (ie., €= b/y) but is not
equivalentto a/y (ie., e #galy).

Definition 8 (closed observation table). An observation table
is called closed if and only if, for each t € S - I/O, there exists
an s € Ssuch that s=pt.

For example, Table 1 is not closed because a/y € S - I/O
but for all s € S, s #;a/y. However, Table 2 is a closed obser-
vation table because, for each row ¢ in S - I/O, there exists a
row s in S such that s =, t.

From the closed observation table, we can construct an
ONFSM conjecture as follows.

Definition 9 (ONFSM conjecture). Given a closed observa-
tion table (S, E, T), L'y, obtains an ONFSM conjecture M =
(Q,1,0,4,qy), where
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TaBLE 2: Closed observation table.

h a : b
S

¢ {y} b4

aly b3 {5}

aly-b/x {x} {x}
S-1/0

bly {»} {r}

aly-aly {r} )

aly-bly ) b4

aly-b/x-alx {x} {x}

aly-blx-b/x bl bl

aly
N\
Yeolllic
b/x b/x
alx
FIGURE 2: The ONFSM conjecture M{" from Table 2.
(i) go = [e],

(i) Q = {gl q; = [s]for1 < i < |S|-1,foralls €
SAs+e},

(iil) 8(g,1) = {(q',o)l q = [s],q' = [s-i/o],for all s € S,
for all i € I, for all o € T(s,7)}.

The conjecture M(()l) (the superscript 1 means that it is the
conjecture from the first learning iteration of the machine
M) shown in Figure 2 is constructed from Table 2, which is
a closed observation table according to Definition 9.

Theorem 10. Let (S, E, T) be a closed observation table, and let
M be the ONFSM conjecture that is constructed from (S, E, T).
The conjecture M is consistent with the finite function T. Any
other ONFSM that is consistent with T but inequivalent to M
must have more states.

Proof. Since the observation table (S, E, T) in the setting of
L preserves the prefix-closed and suffix-closed properties
of S and T, respectively, the conjecture is proven to be
consistent with the observation table that has been given
by Niese [28]. Moreover, because the conjecture M is the
reduced ONFSM by construction, any other ONFSM that is
consistent with T but not equivalent to M must have at least
one more state. O
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3.2. The Algorithm. We now describe L};,,, which takes a set
of input symbols I and the number of repeated queries k as
input. Its pseudocode is given in Algorithm 1.

The algorithm starts by initializing an observation table
(S,E,T) with S = {e} and E = I. Then, it asks the output
queries to fill the upper part of the table, that is, T'(e, e), for
all e € E (line 1). Next, it uses the observed outputs from the
upper part to construct the output queries to fill the lower
part, namely, S - I/O, of the table, that is, T'(¢ - i/o, e), for all
i€l foralle € E,for all o € T(e, i) (line 2).

After initializing the table, L}, repeatedly checks
whether the current table is closed (line 4). If it is not closed,
then there exists row t € S-I/O such thatt #; s forall s € S.
Then, L}, finds and moves row ¢ to S (line 5). Next, ¢ - i/o is
added to S- I/O, and T(¢ - i/o, e) is determined by the output
queries foralli € I, e € E, 0 € T(t,1) (line 6).

When the table is closed, L};,, makes an ONFSM
conjecture M from the table according to Definition 8 and
asks it to the Teacher (line 8). The Teacher replies either
yes, acknowledging that the conjecture is correct, or with a
counterexample. If the Teacher says yes, then L}, termi-
nates with the correct ONFSM M (line 16). Otherwise, the
Teacher replies with a counterexample. The counterexample
is analyzed as to whether it is false (line 10). If it is a false
counterexample, then the procedure terminates; otherwise,
it will be used for extending the table accordingly (lines 12-
13). The method for processing a counterexample will be
described in the next subsection. With the extended table, the
algorithm repeats the checking loop (lines 4-6) again until
the table is closed, followed by making a new conjecture.

Note that, according to the complete testing assumption,
for each output query, L};,, must ask the same query k times
(lines 1, 2, 6, and 13) to explore every possible output from the
unknown system.

3.3. Counterexample. To the best of our knowledge, the cru-
cial improvement in the methods for processing counterex-
amples of the original Angluin’s algorithm L* was proposed
by Rivest and Schapire [29]. They observed that the handling
of counterexamples as in L* could lead to inconsistency in
an observation table (S, E, T). Informally, the table is incon-
sistent if two (or more) rows in the upper part of the table
that represent the same potential state in the conjecture have
different target states when applied to some inputs. More
precisely, 3s, t € S and 3 € I, such that s=gt but
s - i#pt - i. This scenario implies that the rows s and t
must be distinguished. Fortunately, Rivest and Schapire sug-
gested that, by adding a distinguishing sequence from the
counterexample to the set E, inconsistency will never occur.
The reason is that the method will never directly add a
new row to S, and consequently, the rows in S will remain
inequivalent. Furthermore, this condition will always hold
trivially. However, the method requires a relaxation on the
prefix-closed and suffix-closed properties of the table. For
more details and proofs of the method, interested readers can
refer to the original paper [29].

In [25], Shahbaz and Groz modified the method for pro-
cessing the counterexample based on Rivest and Schapire’s
idea. Their method starts by finding the longest prefix of the

counterexample that has already been observed in the table,
that is, SUS-I. Then, the remaining string and all of its suffixes
are added to E. Unlike the previous methods, the observation
table preserves the prefix-closed and suffix-closed properties,
and, therefore, the constructed conjecture is proved to be
consistent with the table.

Our treatment of counterexamples is adapted straight
from [25]. Let ce be the counterexample for the current
conjecture. We find the longest prefix u € SU S - I/O of ce
such that ce = u-v,and v = X/ is the remaining input/output
sequence of ce. Then, we add the input sequence of v, x, and
all of its suffixes to E.

We have observed that, when fixing a counterexample in
this setting, the table preserves the prefix-closed and suffix-
closed properties of S and E, respectively. Thus, the output
conjecture is proved to be consistent with the observation
table.

3.4. Correctness. As usual in an active learning procedure,
our algorithm asks increasingly longer output queries to the
Teacher to observe all of the possible states of an unknown
machine, and the corresponding sets of output sequences are
recorded in an observation table (S, E, T). According to the
structure of the observation table, the set S contains uniquely
potential states of the conjecture, and the set E contains the
sequences that can be used to distinguish these states from
each other. This scenario means that every row in S can be
distinguished when applying some e € E. In other words, any
rows in the table (i.e., SUS- I/O) that represent the same state
must not be distinguished by any sequences in E.

In the case of a deterministic machine, when the
same states are applied by any distinguishing sequences,
the machine always responds with the same set of output
sequences. However, this scenario is not always the case for a
non-deterministic machine. The reason is that if the complete
testing assumption does not hold, the Learner may observe
a different set of output sequences when the state is applied
more than once by the same input/output sequence. This situ-
ation could lead the Learner to infer an incorrect conjecture.
Nevertheless, the learning procedure will always terminate,
which will be proved as follows.

Proposition 11. Suppose that M, = (Q,I1,0,8,q,) is an
unknown ONFSM. Let q; be a state in Q, and let O, , be a set
of possible outputs of a state q; under an input a in 1. Clearly,
Oga € O. Let L, , be the set of all combinations of outputs
of the state q; under the input a. Then, L, , = 204 \ {0} and

|Lgql = 2%l — 1.

Proposition 11 claims that the number of possible distinct
output sets that can be observed and added to the observation
table is finite.

Theorem 12. Given an unknown ONFSM M, = (Q,1,0,6,
qo)> Ly will eventually provide a closed table (S, E, T) in each
iteration, regardless of the complete testing assumption.

Proof. Now assume that sisarowinSand¢isarowinS-I/0O
and that they represent the same state g; in Q. Therefore,
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output: ONFSM conjecture M
// Construct the initial observation table (S, E, T)
(1) setS=

(3) repeat

/I Check whether the table is closed
(4) while foundt € S-I/O such thatt #gs, foralls € S do
(5) move t to S;

(7) end
(8)  make the ONFSM conjecture M from (S, E, T);
(9) if the Teacher replies with a counterexample ce then

(16) until the Teacher replies “yes”;
(17) return the conjecture M;

input: A set of input symbols I, the number of repeated queries k

{e}, E = I, and update T using output queries by asking each query k times;
(2) adde-ifotoS-I/Oforallie I,o0 € T(e,i), and update T using output queries by asking each query k times;

(6) addt-ifotoS-I/Oforalli € I,0 € T(t,i), and update T using output queries by asking each query k times;

(10)  if any prefix of ce has been recorded in T with a different value, then terminate with no solution;

11) else

(12) find the longest u € SUS - I/O such thatce = u - v;

(13) add the input sequence of v and all of its suffixes to E, and update T using output queries by asking each query k times;
(14) end

(15) end

ArGoriTHM 1: The algorithm LY.

s=gt, which means that T(s,e) = T(f,e) must hold for all
e in E with respect to Definition 7. If the complete testing
assumption holds, then we know that 5(¢;,a) = Oy, for

alla € I and for all g; € Q. Since e is I, we have T(s,e) =
T(t,e) = 85(q;>e). Thus, the table is closed.

In contrast, when the complete testing assumption does
not hold, we know that 6(q;,a) € O, ,. Thus, there could
exist an e in E such that T'(s, e) # T(¢, e); that is, the different
subsets of O, , have been observed as outputs for T'(s, e) and
T(t,e). This scenano leads the Learner to consider moving
row ¢, which represents a spurious state, to S. Thus there are
two possible cases as follows.

(i) If t is not a new row in S, then the table is now closed.

(ii) Otherwise, row t is moved to S, and the learning
process can continue. In this case, the number of the
remaining elements in L, , must decrease by at least
one for each iteration.

By Proposition 11, the set L, , is finite. Thus, the maxi-
mum number of spurious states for a state g; for all inputs is
bounded by },,; L, 4|, which is also finite. As a result, from
(i) and (ii), the learning process eventually terminates with a
closed table. O

Theorem 13. Given an unknown ONFSM My = (Q, 1,0,
8, 4q), let M be a corresponding conjecture that is constructed
from a closed table (S,E,T) in each iteration. When Ly,
terminates, if the complete testing assumption holds, then M
is guaranteed to be isomorphic with M.

Proof. Theorem 12 ensures that L}, always provides a closed
table in each iteration. Whenever the table is closed, the cor-
responding ONFSM conjecture is constructed based on
Definition 9. Since, by Theorem 10, the conjecture M is

consistent with the finite function T'. For the case in which
the complete testing assumption holds, according to the
correctness of the Teacher’s answer for the equivalence query,
we either obtain a counterexample from the conjecture for
extending the table, or the learning procedure terminates
with a correct conjecture that is isomorphic to M. O

Note that, when the complete testing assumption does
not hold, spurious states could be recorded as some rows in
the table. Thus, the conjecture M, which is consistent with
the table, could also have these spurious states. With respect
to the correctness of the answer for the equivalence query,
if M contains the spurious states, then L}F\IM terminates. In
summary, our algorithm does not necessarily provide an
ONFSM that is isomorphic to My, in this case.

3.5. Complexity. We analyze a theoretical upper bound for
the number of output queries asked by L};,,. Similar to the
membership queries of L* or the output queries of L}, the
maximum number of output queries also corresponds to the
worst-case size of the observation table.

Let |I| and |O| be the sizes of the input set I and the
output set O, respectively. Let n be the number of states of
the ONFSM, and let m be the maximum length of any coun-
terexamples that are provided by the Teacher for equivalence
queries. The size of the table has at most n + n|I||O| rows (n
rows in the upper part + their successors) and |I| + m(n — 1)
columns because E contains |I| elements initially, and at most
m suffixes of the maximum # — 1 counterexamples are added.
In addition, with respect to complete testing assumption,
each query must be asked k times to observe every possible
output. Thus, L}, produces a correct conjecture by asking a
maximum of k(SU S - I/O) x E = O(kn|I*|O| + kmn®|I||O|)
output queries.
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FIGURE 3: A partially specified NFSM (a) and the corresponding completely specified NFSM (b).

3.6. Optimization. As mentioned in [25], reactive systems
can be naturally modeled as (non-deterministic) finite state
machines. These models are very useful for checking some
properties before implementing the system or testing whether
the implementation conforms to the specification models.
However, these models might come up with partial transition
relations [30]. To apply our method, one necessary assump-
tion is that the FSM models must be completely specified.

In this paper, any (non-deterministic) FSM can be trans-
formed into a completely specified FSM by adding a sink
state that loops itself for all inputs, that is, a state that has no
outgoing transition to other states, and adding transitions for
the missing inputs from any states in the original FSM to the
sink state, with a designated error output symbol.

Consider an ONFSM example, shown in Figure 3, in
which the input symbols are {a, b} and the output symbols are
{0, 1}. Here, an ONFSM on the left side is partially specified
because it is missing input b of state g, and input a of state
q,. Thus, a sink state 77 is introduced, and new transitions are
added between state g, under input b and state g, under input
a to the sink state, as shown in Figure 3(b). In Figure 3, an
error output symbol is represented by Q.

Thus, if we know that any sequence ¢ will lead the machine
to enter the sink state, then every sequence that has ¢ as
its prefix will also lead the machine to enter the sink state.
We can then use this characteristic to reduce the number of
output queries asked to the Teacher. Before asking each query,
the Learner must first test whether it is an extension of an
input/output sequence that has already been observed with an
error output. If so, the Learner can then immediately record
the result of the query as an error in the table.

Note that, when we obtain a correct conjecture, which is
a completely specified ONFSM with a sink state, from L},
it can be transformed back to the original machine easily by
removing the sink state and all of the transitions that lead to
it.

3.7. Example. We illustrate the algorithm L},, on the
ONFSM M, given in Figure 1. The algorithm initializes (S,
E,T)with S = {¢} and E = I = {a, b}. Moreover, we setk = 10
in this example. Then, it asks the output queries to fill the

TABLE 3: Processing the counterexample a/ y-b/ y-a/ y-b/x for M,".

(a) Adding the suffixesofa - bto E

E
L a b a-b
S
€ v} {v} yxy yl
aly v} {x, } vy}
aly-b/x {x} {x} {x - x}
S-1/0
bly {r} {v} y-xy yl
aly-aly v} {v} {y-xy y
aly-bly v} {v} vy}
aly-b/x-alx {x} {x} {x - x}
aly-b/x-b/x i} i} xy yh
(b) Moving the rowsa/y -b/yto S
E
L a b a-b
S
€ {v} {v} {y-xy y}
aly {r} {x, } vy}
aly-b/x {x} {x} {x - x}
aly-bly i} i} -y}
S-1/0
bly {v} {v} {y-xy-y}
aly-aly {r} {r} {y-xy- y}
aly-b/x-alx {x} {x} {x-x}
aly-b/x-b/x {7 {r} y-xy y
aly-bly-aly {»} {r} vy}
aly-bly-bly i} i} {y-xy-y}

upper part of the table, that is, T(e,a) = y and T(e,b) = y.
Next, it uses the known outputs to construct the queries to fill
the lower part of the table. The initial table is shown in Table 1.



When the initial table is filled, L}, repeatedly tests
whether the table is closed. Table 1 is not closed because the
rowa/yinS-1/Ois not equivalent to any row in S. Therefore,
the algorithm moves the row a/y to S and extends the table
byaddinga/y-a/y,a/y-b/xanda/y-b/ytoS-I1/O. Then,
the queries are constructed for the missing elements of the
observation table.

The new table is closed, as shown in Table 2; consequently,

L, makes a conjecture M(()l) from the table, which is shown

in Figure 2. Because the conjecture M(()l) is not correct, the
Teacher replies with a counterexample ce. In this case, we
assume that the counterexample ceisa/y-b/y-a/ y-b/x (since
aly-bly-aly-bjx ¢ ZM"),butaly-bly-aly-b/x ¢
LMy)).

According to the method for processing the counterex-
ample, L, adds a-b, which is the remaining input sequence
of ce, and all of its suffixes, that is, band a-b, to E, as shown in
Table 3(a). This table is not closed because the row a/y - b/y
is not equivalent to any rows in S. Thus, the row a/y - b/y
is moved to S, and the table is extended accordingly. The
resulting table after filling in the missing elements by asking
output queries is Table 3(b).

Next, Ly, checks whether Table3(b) is closed. This
table is closed, so L}, constructs a new conjecture that
is isomorphic to M,. Thus, the Teacher replies yes to this
conjecture, and L};,, terminates with the correct conjecture
as its output. The total number of output queries asked by the
algorithm during this run is 300.

4. Experiments

We have performed a suite of experiments to demonstrate
the applicability and scalability of our algorithm in practice.
This suite is composed of (i) nine samples of (partially and
completely specified) ONFSMs, either inspired by different
papers [20, 31] or specifically designed, and (ii) random
(partially specified) ONFSMs with arbitrary sizes for the
number of states. Furthermore, we have implemented our
algorithm in Java, together with our proposed optimization.

We have also simulated the Teacher to answer the equiva-
lence query by using the model checker Labelled Transition
System Analyser (LTSA) [32]. To apply the LTSA, we first
transform the ONFSM to the corresponding Labelled Transi-
tion System (LTS). The transformation technique is straight-
forwardly modified from [33]. Then, the model checking
tool checks the trace equivalence relation between two cor-
responding LTSs of the learned ONFSM and the target
ONEFSM.

As mentioned in [34], the performance of the Teacher in
answering an equivalence query depends on the method that
is used to realize it. Thus, the time spent by the equivalence
query is disregarded from the measurement. To evaluate
the execution time of the algorithm, we measured the total
execution time except for the time utilized for the equivalence
queries.

The experiments were conducted using a Windows 7
system with an Intel Core i5, 2.67 GHz and 4 GB of memory,
and LTSA version 3.0. In addition, the Learner and the
Teacher were running on the same machine.
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TABLE 4: Runs from 9 sample machines.

Machines No. of states k  Output queries EQ Avg. time (ms)

Ml 3 1 14 1 7.2
M2 3 8 144 1 103.1
M3 4 7 140 1 65.9
M4 4 10 260 1 363
M5 4 7 154 1 95.8
M6 6 11 462 2 251.9
M7 6 6 336 3 176.1
M8 7 10 510 2 307.6
M9 8 10 570 2 329.4
250000

200000

150000

100000

Number of output queries

50000

0

10 20 30 40 50 60 70 8 90 100
States

-+ - Normal
—=—  With optimization

FIGURE 4: Random ONFSM examples learned with normal L}, and
with optimization, using |I| = 10, |O| = 5, and k = 20.

4.1. Sample Machines. The first set of experiments was con-
ducted on nine sample FSMs, that is, one DFSM and eight
ONFSMs, to evaluate our algorithm. All of the examples are
different sizes in terms of the number of states. Moreover,
we started with the number of repeated queries (k) to 1 and
learned 10 times for each machine.

4.1.1. Experiences. The learned machines are isomorphic to
the original FSMs, as expected. With respect to the number
of states of each sample machine (number of States) and the
number of repeated queries (k), which can guarantee the
complete testing assumption, Table 4 shows the experimental
results, including the number of used output queries (output
queries), the number of used equivalence queries (EQ), and
the average execution time in milliseconds (Avg. time).

From the table, L}, can be applied with both DFSMs
(e.g., M1) and ONFSMs (e.g., M2-M9). In addition, k = 1
is obviously sufficient for learning any DFSM. Note that the
efficiency of the algorithm not only depends on the number
of states and the size of the input alphabet, but it also depends
on the value of k. Let us consider machines M2 and M3,
which have 3 and 4 states, respectively. Learning M3, which
has more states, is expected to require more output queries;
however, because the value of k for inferring M3 is less than
that for inferring M2, learning M2 requires slightly more
queries than M3.
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TaBLE 5: Comparison of normal LY, with the optimized version
using the random ONFSM examples.

. Output queries  Saved queries
No. of states Output queries (with opt.) (%)
10 22000 12620 43
20 44200 26020 41
30 66200 38760 41
40 87400 50900 42
50 109200 67640 38
60 132200 81760 38
70 158552 94950 40
80 176202 108366 38
90 198200 127960 35
100 222402 138546 38
12000000
g 10000000 4+
S 8000000 4 -+
E L7
= .
2 6000000 4 v
S Ly
'é 4000000 4+
£ >
Z2000000{ e
_-m -
0 n===F=
10 20 30 40 50 60 70 80 90 100
States
kn|I[%[0]
~=~ kmn’|I]/0]

—%— Actual

FIGURE 5: Comparison of the actual number of output queries of
the normal L}, algorithm and the theoretical upper bound on the
random ONFSM examples.

4.2. Random Arbitrary Machines. Apart from the sample
machines, we also performed a second set of experiments on
random examples by varying the number of states. Specifi-
cally, we generated and learned ONFSMs with sizes ranging
between 10 and 100 states (in steps of 10), with an input size
of 10 and an output size of 5. For each number of states
n, we randomly generated 10 ONFSMs, which have n — 1
states plus one sink state, to observe the effectiveness of our
optimization.

First, we fixed the number of repeated queries to 5.
However, we found that we cannot guarantee the complete
testing assumption with this value. To compare the scalability
of L}» we varied the number of states of the target machines
and fixed the number of repeated queries. Thus, in this
experiment, we set the number of repeated queries to 20, and
we leave the topic of how to define this value to be discussed
in the next section.

4.2.1. Experiences. We observed that the number of output
queries relative to the number of states is linear and conforms
to the part kn|I I’lO| in the complexity calculation (see
Figure 4, in which we vary the number of states but fix the
other factors such that |I| = 10, |O| = 5, and k = 20).

The number of output queries is reduced by an average
of approximately 39% using the optimized version compared
to the basic L}, algorithm. Moreover, the best reduction
that we achieved in this setting was 43% in an ONFSM with
10 states. With the specific example of a size of 100 states,
the optimized Learner took approximately 10 minutes with
138,546 output queries, a reduction of approximately 38%.
The detailed results can be found in Table 5, in which it can
be seen that the optimized Learner performs better in every
case. This scenario might indicate that, for an ONFSM with a
certain structure, we can make the algorithm perform better
through our optimization.

Note that, because the number of equivalence queries
in the optimized version does not change from the number
in the basic algorithm, we do not report the query in this
experiment.

Interestingly, when we plotted a graph to study the
relationship between the actual number and the theoretical
upper bound of the Output queries, as shown in Figure 5,
we observed that the part kn|I I|O| of the calculated upper
bound is closer to the experimental results than the other
part, that is, kmn*|I||O|. The reason for this similarity is that
the Learner in our setting asks a few equivalence queries in
practice. Thus, a small number of columns will be added
to the observation table; that is, the maximum number of
columns is |I| + €, where ¢ is a small integer.

5. Discussion and Conclusions

This work has presented a refined algorithm L}, for ONF-
SMs inference from unknown non-deterministic systems. In
contrast to the previous approach [21], L};,, does not require
complicated answers from the Teacher. It tries to collect all
possible output sequences by asking the same query many
times. Thus the number of repeated queries (k) is considered
as one factor in our approach. We have proved that the
algorithm will eventually terminate no matter whether a
complete testing assumption is satisfied or not. However, the
correct ONFSM conjecture can be inferred if the value of k is
sufficient to satisfy the assumption.

From the performance perspective, the algorithm L},
can infer the corresponding ONFSMs of the unknown non-
deterministic systems efficiently (i.e., in polynomial time).
Our method uses O(kn|I|*|O| + kmn?|I||O|) output queries
to learn an ONFSM which has 7 states, |I| inputs, and |O]|
outputs. Moreover, the evaluation results indicate that the
number of repeated queries k affects the performance of our
algorithm.

In addition, when dealing with systems that are known
to be equivalent to some (unknown) partially specified
ONFSMs, the algorithm offers a faster run by our pro-
posed optimization. Based on the experimental results, the
optimization can reduce the number of output queries by
approximately 39% on average.
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To answer the question of how to define the value k
to guarantee the complete testing assumption, we used the
initial value of k to be a small integer (e.g., k = |Ol) in our
experiments. Because our algorithm is assured to terminate
regardless of the complete testing assumption, we eventually
obtain a conjecture ONFSM. Using the equivalence query, we
do receive either the answer yes or a counterexample from the
Teacher. There are two cases of the counterexamples. (a) The
counterexample has not been recorded in the table. Then it
will be used to extend the table, as described in Section 3.3.
(b) The counterexample has already been observed in the
table but the recorded answer is not the same (line 10 in
Algorithm 1). This situation means that we cannot explore
every possible output of the machine with the current value
of k. Therefore, we restart the algorithm with an increased
value of k. Although this process can be run incrementally,
performing incremental steps appears to be inefficient. Thus,
it is a challenge to obtain a method for selecting the most
appropriate value of k. This is for the reason that the value of
k may not necessarily be minimal but it is sufficient to ensure
the complete testing assumption. Moreover, since the value
of k is relative to the number of possible outputs, it is easy
to particularly construct ONFSMs that cannot be learned
efficiently such as ones where the number of possible outputs
grows exponentially with the length of the input. However, to
the best of our knowledge, the case is rare in practice.

Our current research works focus mainly on methods for
applying a learning approach to automatic verification in soft-
ware engineering. Because these methods may not be suitable
with practical applications, we intend to continue our future
research in this direction to obtain further improvements.
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