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A circle forming problem for a group of mobile agents governed by first-order system is investigated, where each agent can only
sense the relative angular positions of its neighboring two agents with time delay andmove on the one-dimensional space of a given
circle. To solve this problem, a novel decentralized sampled-data control law is proposed. By combining algebraic graph theory with
control theory, some necessary and sufficient conditions are established to guarantee that all themobile agents form a pregiven circle
formation asymptotically. Moreover, the ranges of the sampling period and the coupling delay are determined, respectively. Finally,
the theoretical results are demonstrated by numerical simulations.

1. Introduction

In recent years, decentralized control in networked mul-
tiagent systems has attracted considerable attention from
various scientific communities [1–5] due to its broad applica-
tions in physics, biology, and engineering [6–8]. Meanwhile,
it should be noted that decentralized control has many
advantages in achieving cooperative group performance,
especially with low operational costs, high robustness, and
flexible scalability.

As a popular research topic in decentralized control, for-
mation control [9–12] refers to coordinating a group of agents
such that they can form a predesigned geometrical configu-
ration through local interactions so that some tasks can be
finished by the collaboration of the agents. Forming circle for-
mations becomes a benchmark problem, since on one hand
circle formations are one of the simplest classes of formations
with geometric shapes and on the other they are natural
choices of the geometric shapes for a robotic team to exploit
an area of interest [13–15]. Research efforts have beenmade in
the systems and control community. In [16], a novel pursuit-
based approach has been presented to investigate collective
motions and formations of a large number of agents with

single-integrator kinematics and double-integrator dynamics
on directed acyclic graphs, respectively. Furthermore, the
problem of pattern formation based on complex Laplacians
has been studied in [17]. More recently, Lin et al. [18] have
studied the leader-follower formation problem based on
complex-valued Laplacians for graphs whose edges are attri-
buted with complex weights and designed a novel linear
control law to achieve the shape of a planar formation. In
that work, the linear control law can only solve the formation
problem asymptotically. Lou and Hong [19] have considered
the distributed surrounding of a convex target set by a group
of agents with switching communication graphs and pro-
posed a distributed controller to make the agents surround
a given set with equal distance and the desired projection
angles specified by a complex-value adjacency matrix.

However, in some practical situations, it is more desirable
for the multiagent systems to reach the formation in a finite
time, such as when high precision performance and stringent
convergence time are required. In [20], Xiao et al. have devel-
oped a novel finite-time formation control framework for
multiagent systems. In their framework, the problems of
time-invariant formation, time-varying formation, and tra-
jectory tracking have been discussed, respectively, and some
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sufficient conditions for finite-time formation have been
presented.

In addition, the coupling delay [21, 22] between neighbor-
ing agents, which may deteriorate the system’s performance
or even destabilize it, is always unavoidable in real circum-
stance with practical reasons, such as the finite switching and
spreading speed of the hardware and circuit implementation.
Due to this observation, Qin et al. [23] have studied the
consensus problem for second-order dynamic agents under
directed arbitrarily switching topologies with communica-
tion delay.They have proven that consensus can be reached if
the delay is small enough. Very recently, Chen et al. [24] have
considered the consensus problem of nonlinear multiagent
systems with state time delay and obtained some consensus
results by designing an adaptive neural network control strat-
egy. In their work, it should be noted that the approximation
property of radial basis function neural networks is used to
neutralize the uncertain nonlinear dynamics of agents.

In this paper, we investigate a circle formation problem
of mobile agents with the coupling delay, where each agent is
described by a kinematic point. Specifically, in the circle for-
mation problem [25], all the agents move counterclockwise
on the one-dimensional space of a given circle. We assume
that each agent can only sense the relative angular positions of
its neighboring two agents that are immediately in front of or
behind it.The objective is to design appropriate decentralized
control law such that all the agents can form a pregiven circle
formation. Considering the limitations inherited in practical
systems, such as the finite computing resource, we employ
sampled-data control [26–30] when studying the circle for-
mation problem of mobile agents with the coupling delay.
Under the decentralized sampled-data control framework,
the whole system is modeled in a hybrid fashion, and the
continuous-time system is equivalently transformed into a
discrete-time system. Furthermore, based on the discrete-
time system, some necessary and sufficient conditions are
established to guarantee that all the mobile agents form a
pregiven circle formation asymptotically. We emphasize that
the formulation of circle formation problem in our paper
mainly follows thework in [25]. However, [25] has focused on
the situation with the locomotion constraint that the mobile
agents can only move forward but not backward which is
motivated by several types of mobile robots, while this paper
focuses on the case with time delay.Thus thewaywe deal with
the circle formation problem with time delay here is quite
different from that in [25].

The rest of the paper is organized as follows. In Section 2,
some basic definitions in graph theory and the system model
are provided. In Section 3, a novel decentralized sampled-
data control law is proposed, based onwhich themain analyt-
ical results are obtained. In Section 4, numerical simulations
are implemented to demonstrate the analytic results. Finally,
the paper is concluded in Section 5.

Notations. Throughout this paper, 𝜙 denotes the empty set,
(⋅)𝑇 and (⋅)−1 denote transpose and inverse, respectively. For
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Figure 1: Agents distributed on a circle.

𝐴 ∈ 𝑅𝑁×𝑁, 𝜆
𝑖
(𝐴) is the eigenvalue of the matrix𝐴. Moreover,

𝐴 = diag{𝐴
1
, . . . , 𝐴

𝑁
} denotes a block diagonal matrix with

the matrices 𝐴
𝑖
, (𝑖 = 1, . . . , 𝑁) on the main diagonal. If the

range of the indices 𝑖 is clear from the context, this notation
is abbreviated by 𝐴 = diag{𝐴

𝑖
}.

2. Preliminaries

In this section, some basic definitions in graph theory and
system model are firstly introduced for the subsequent use.

Consider multiagent systems consist of 𝑁 agents, which
are initially located on a given circle and can only move
on the circle. The agent indexes belong to a finite index set
𝐼 = {1, 2, . . . , 𝑁}, and we label the agents counterclockwise as
shown in Figure 1. Each agent has the dynamics as follows:

�̇�
𝑖 (𝑡) = 𝑢

𝑖 (𝑡) , ∀𝑖 ∈ 𝐼, (1)

where 𝑥
𝑖
(𝑡) is the position of agent 𝑖 at time 𝑡 measured by

angles, and 𝑢
𝑖
(𝑡) is the decentralized control of agent 𝑖. Here,

without loss of generality, it is assumed that the initial values
of the agents satisfy

0 ≤ 𝑥
1 (𝑡) < 𝑥

2 (𝑡) < ⋅ ⋅ ⋅ < 𝑥
𝑁 (𝑡) < 2𝜋, (2)

which means that all the agents do not coincide in the
beginning.

In the multiagent systems, each agent can communicate
with several other agents which are defined as its neighbors,
and the neighbor set of agent 𝑖 is denoted by𝑁

𝑖
. Specially, in

the circle formation problem, each agent can only sense the
relative angular positions of its neighboring two agents that
are immediately in front of or behind it, and it follows that
𝑁
𝑖
= {𝑖+, 𝑖−}, where

𝑖
+
=
{
{
{

𝑖 + 1 if 𝑖 = 1, . . . , 𝑁 − 1

1 if 𝑖 = 𝑁,
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𝑖
−
=
{
{
{

𝑖 − 1 if 𝑖 = 2, . . . , 𝑁

𝑁 if 𝑖 = 1.

(3)

Obviously, the interconnection topology between the agents
in the circle formation problem is ring [31].

Suppose 𝑑
𝑖
is the desired angular distance between agents

𝑖 and 𝑖+. Then the pregiven circle formation can be described
by a vector 𝑑 = [𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑁
] ∈ 𝑅𝑁, where 𝑑

𝑖
> 0, and

∑
𝑁

𝑖=1
𝑑
𝑖
= 2𝜋. Denote the auxiliary variable 𝑦

𝑖
as follows:

𝑦
𝑖
=
{
{
{

𝑥
𝑖
+ − 𝑥
𝑖

if 𝑖 = 1, . . . , 𝑁 − 1

𝑥
1
+ 2𝜋 − 𝑥

𝑁
if 𝑖 = 𝑁,

(4)

where 𝑦
𝑖
is the angular distance between agents 𝑖 and 𝑖+.

The main objective of this paper is to design an appropriate
decentralized control 𝑢

𝑖
(𝑡) such that a group of agents

form a pregiven circle formation asymptotically; that is,
lim
𝑡→∞

𝑦
𝑖
(𝑡) = 𝑑

𝑖
, ∀𝑖 ∈ 𝐼. In [24, 25],Wang et al. adopted the

following decentralized control to solve the circle formation
problem:

𝑢
𝑖 (𝑡) =

𝑑
𝑖
−

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖 (𝑡) −

𝑑
𝑖

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖
− (𝑡) , ∀𝑖 ∈ 𝐼. (5)

In this paper, we assume that each agent can only receive
the neighbor information with the coupling delay. Specifi-
cally, by using periodic sampling technology and zero-order
hold circuit, a decentralized sampled-data control induced
from (5) is given as

𝑢
𝑖 (𝑡) =

{{{
{{{
{

𝑑
𝑖
−

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖 (𝑘ℎ − ℎ) −

𝑑
𝑖

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖
− (𝑘ℎ − ℎ) if 𝑡 ∈ [𝑘ℎ, 𝑘ℎ + 𝜏)

𝑑
𝑖
−

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖 (𝑘ℎ) −

𝑑
𝑖

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖
− (𝑘ℎ) if 𝑡 ∈ [𝑘ℎ + 𝜏, 𝑘ℎ + ℎ) ,

(6)

where ℎ > 0 is the sampling period, 𝜏 is the coupling delay
between neighboring agents, and it is assumed that 𝜏 < ℎ. In
the next section, we investigate the circle formation problem
of the closed-loop system (1) and (6).

3. Main Results

In this section, the convergence analysis of circle formations
is presented, and some necessary and sufficient conditions are
established.

Given the decentralized sampled-data control (6), (1)
evolves according to the following dynamic:

�̇�
𝑖 (𝑡) =

{{{
{{{
{

𝑑
𝑖
−

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖 (𝑘ℎ − ℎ) −

𝑑
𝑖

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖
− (𝑘ℎ − ℎ) if 𝑡 ∈ [𝑘ℎ, 𝑘ℎ + 𝜏)

𝑑
𝑖
−

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖 (𝑘ℎ) −

𝑑
𝑖

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖
− (𝑘ℎ) if 𝑡 ∈ [𝑘ℎ + 𝜏, 𝑘ℎ + ℎ)

, ∀𝑖 ∈ 𝐼, (7)

and then it follows that ∀𝑡 ∈ [𝑘ℎ, 𝑘ℎ + 𝜏),

�̇�
𝑖
(𝑡) = [𝑥

𝑖
+ (𝑡) − 𝑥𝑖 (𝑡)]



=
𝑑
𝑖

𝑑
𝑖
+ + 𝑑
𝑖

𝑦
𝑖
+ (𝑘ℎ − ℎ) −

𝑑
𝑖
+

𝑑
𝑖
+ + 𝑑
𝑖

𝑦
𝑖 (𝑘ℎ − ℎ)

−
𝑑
𝑖
−

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖 (𝑘ℎ − ℎ) +

𝑑
𝑖

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖
− (𝑘ℎ − ℎ)

= − [
𝑑
𝑖
+

𝑑
𝑖
+ + 𝑑
𝑖

+
𝑑
𝑖
−

𝑑
𝑖
+ 𝑑
𝑖
−

] 𝑦
𝑖 (𝑘ℎ − ℎ)

+
𝑑
𝑖

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖
− (𝑘ℎ − ℎ) +

𝑑
𝑖

𝑑
𝑖
+ + 𝑑
𝑖

𝑦
𝑖
+ (𝑘ℎ − ℎ) ,

(8)

and ∀𝑡 ∈ [𝑘ℎ + 𝜏, 𝑘ℎ + ℎ)

�̇�
𝑖
(𝑡) = − [

𝑑
𝑖
+

𝑑
𝑖
+ + 𝑑
𝑖

+
𝑑
𝑖
−

𝑑
𝑖
+ 𝑑
𝑖
−

]𝑦
𝑖 (𝑘ℎ)

+
𝑑
𝑖

𝑑
𝑖
+ 𝑑
𝑖
−

𝑦
𝑖
− (𝑘ℎ) +

𝑑
𝑖

𝑑
𝑖
+ + 𝑑
𝑖

𝑦
𝑖
+ (𝑘ℎ) .

(9)

Denote 𝑦(𝑡) = [𝑦
1
(𝑡), . . . , 𝑦

𝑁
(𝑡)]𝑇, and (8) and (9) can be

rewritten as

�̇� (𝑡) =
{
{
{

−𝐿 (𝑑) ⋅ 𝑦 (𝑘ℎ − ℎ) ∀𝑡 ∈ [𝑘ℎ, 𝑘ℎ + 𝜏)

−𝐿 (𝑑) ⋅ 𝑦 (𝑘ℎ) ∀𝑡 ∈ [𝑘ℎ + 𝜏, 𝑘ℎ + ℎ) ,
(10)
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where the matrix 𝐿(𝑑) is given by

𝐿 (𝑑)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑑
2

𝑑
2
+ 𝑑
1

+
𝑑
𝑁

𝑑
1
+ 𝑑
𝑁

−
𝑑
1

𝑑
2
+ 𝑑
1

0 ⋅ ⋅ ⋅ 0 −
𝑑
1

𝑑
1
+ 𝑑
𝑁

−
𝑑
2

𝑑
2
+ 𝑑
1

𝑑
3

𝑑
3
+ 𝑑
2

+
𝑑
1

𝑑
2
+ 𝑑
1

−
𝑑
2

𝑑
3
+ 𝑑
2

⋅ ⋅ ⋅ 0 0

0 −
𝑑
3

𝑑
3
+ 𝑑
2

𝑑
4

𝑑
4
+ 𝑑
3

+
𝑑
2

𝑑
3
+ 𝑑
2

⋅ ⋅ ⋅ 0 0

...
...

...
...

...
...

0 0 0 ⋅ ⋅ ⋅
𝑑
𝑁

𝑑
𝑁
+ 𝑑
𝑁−1

+
𝑑
𝑁−2

𝑑
𝑁−1

+ 𝑑
𝑁−2

−
𝑑
𝑁−1

𝑑
𝑁
+ 𝑑
𝑁−1

−
𝑑
𝑁

𝑑
1
+ 𝑑
𝑁

0 0 ⋅ ⋅ ⋅ −
𝑑
𝑁

𝑑
𝑁
+ 𝑑
𝑁−1

𝑑
1

𝑑
1
+ 𝑑
𝑁

+
𝑑
𝑁−1

𝑑
𝑁
+ 𝑑
𝑁−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.
(11)

According to (10), it implies that

𝑦 (𝑘ℎ + 𝜏) − 𝑦 (𝑘ℎ) = −𝜏𝐿 (𝑑) 𝑦 (𝑘ℎ − ℎ)

𝑦 (𝑘ℎ + ℎ) − 𝑦 (𝑘ℎ + 𝜏) = − (ℎ − 𝜏) 𝐿 (𝑑) 𝑦 (𝑘ℎ) ,
(12)

which follows that
𝑦 (𝑘ℎ + ℎ) − 𝑦 (𝑘ℎ) = −𝜏𝐿 (𝑑) 𝑦 (𝑘ℎ − ℎ)

− (ℎ − 𝜏) 𝐿 (𝑑) 𝑦 (𝑘ℎ)

= [𝐼
𝑁
− (ℎ − 𝜏) 𝐿 (𝑑)] 𝑦 (𝑘ℎ)

− 𝜏𝐿 (𝑑) 𝑦 (𝑘ℎ − ℎ) .

(13)

Then, the dynamics (13) is summarized as follows:

[
𝑦 (𝑘ℎ + ℎ)

𝑦 (𝑘ℎ)
] = Φ[

𝑦 (𝑘ℎ)

𝑦 (𝑘ℎ − ℎ)
] , 𝑘 = 0, 1, 2, . . . , (14)

where Φ = [
𝐼
𝑁
−(ℎ−𝜏)𝐿(𝑑) −𝜏𝐿(𝑑)

𝐼
𝑁

0
]. Furthermore, it should be

noted that the continuous-time system (7) solves the circle
formation problem if and only if the discrete-time system (14)
solves the circle formation problem. Before presenting the
main results, some useful lemmas are introduced as follows.

Lemma 1 (see [26]). Given the matrix 𝐿(𝑑), the following
statements hold:

(1) 𝐿(𝑑) is diagonalizable and 𝜆
𝑖
(𝑑) ∈ [0, 2], 𝑖 = 1, 2,

. . . , 𝑁;
(2) 0 is a single eigenvalue;
(3) when𝑁 is even, 2 is an eigenvalue, and when𝑁 is odd,

2 is not.

Lemma 2 (see [32]). Given the system

𝑍 (𝑘 + 1) = 𝐴𝑍 (𝑘) , (15)

where 𝐴 ∈ 𝑅𝑛×𝑛, then system (15) solves the consensus problem
if and only if 1 is an algebraically simple eigenvalue of 𝐴 and is
the unique eigenvalue of maximum modulus.

Then themain result of the paper is given by the following
theorem.

Theorem 3. Consider a network with 𝑁 agents governed
by the form (1); then the decentralized sampled-data control
(6) solves the circle formation problem if and only if 𝜏 <
1/max{𝜆

𝑖
(𝑑)} and 𝜏 < ℎ < 2𝜏 + 2/max{𝜆

𝑖
(𝑑)}, where 𝜆

𝑖
(𝑑)

is the eigenvalue of the matrix 𝐿(𝑑).

Proof. Firstly, denote the matrix 𝐷 = diag{𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑁
},

and then one has 𝐷−1𝐿(𝑑)𝐷 = 𝐿𝑇(𝑑), which is the Laplacian
matrix of strongly connected graph. Let the auxiliary variable
𝛿(𝑘ℎ + ℎ) = [𝐷

−1
0

0 𝐷
−1
] [
𝑦(𝑘ℎ+ℎ)

𝑦(𝑘ℎ)
], and rewrite (14) as

𝛿 (𝑘ℎ + ℎ) = [
𝐷−1 0

0 𝐷−1
]

⋅ [
𝐼
𝑁
− (ℎ − 𝜏) 𝐿 (𝑑) −𝜏𝐿 (𝑑)

𝐼
𝑁

0
]

⋅ [
𝑦 (𝑘ℎ + ℎ)

𝑦 (𝑘ℎ)
]

= [
𝐷−1 0

0 𝐷−1
]

⋅ [
𝐼
𝑁
− (ℎ − 𝜏) 𝐿 (𝑑) −𝜏𝐿 (𝑑)

𝐼
𝑁

0
]

⋅ [
𝐷 0

0 𝐷
]𝛿 (𝑘ℎ)

= [
𝐼
𝑁
− (ℎ − 𝜏) 𝐿𝑇 (𝑑) −𝜏𝐿𝑇 (𝑑)

𝐼
𝑁

0
] 𝛿 (𝑘ℎ) .

(16)

Obviously, from (15), it can be concluded that (14)
solves the circle formation problem if and only if (16)
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solves the consensus problem. Denote the matrix Φ̃ =

[ 𝐼𝑁−(ℎ−𝜏)𝐿
𝑇
(𝑑) −𝜏𝐿

𝑇
(𝑑)

𝐼
𝑁

0
], and one obtains that

Φ̃ ⋅ 1
2𝑁

= [
𝐼
𝑁
− (ℎ − 𝜏) 𝐿𝑇 (𝑑) −𝜏𝐿𝑇 (𝑑)

𝐼
𝑁

0
] ⋅ [

1
𝑁

1
𝑁

]

= 1
2𝑁
,

(17)

and it implies that 1 is an eigenvalue of Φ̃.
According to Lemma 2, we proceed to prove that 1

is an algebraically simple eigenvalue of Φ̃ and also is the
unique eigenvalue of maximum modulus if and only if 𝜏 <
1/max{𝜆

𝑖
(𝑑)} and 𝜏 < ℎ < 2𝜏 + 2/max{𝜆

𝑖
(𝑑)}. From

Lemma 1, there exists a matrix 𝐵, such that 𝐿𝑇(𝑑) = 𝐵 ⋅ Λ ⋅
𝐵−1, where Λ = diag{0, 𝜆

2
(𝑑), . . . , 𝜆

𝑁
(𝑑)}. Furthermore, one

obtains that

Φ̃ = [
𝐵

𝐵
] ⋅ [

𝐼
𝑁
− (ℎ − 𝜏)Λ −𝜏Λ

𝐼
𝑁

0
] ⋅ [

𝐵−1

𝐵−1
] , (18)

and it follows that Φ̃ is similar to a block diagonal matrix
diag{𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑁
}, where 𝐴

𝑖
= [ 1−(ℎ−𝜏)𝜆𝑖(𝑑) −𝜏𝜆𝑖(𝑑)

1 0
].

Moreover, it is obvious that 1 and 0 are two eigenvalues of𝐴
1
.

In order to solve the circle formation problem, one should
guarantee that all the eigenvalues of𝐴

𝑖
are located in the unit

circle for 𝑖 = 2, 3, . . . , 𝑁. Actually, all the matrixes𝐴
𝑖
have the

same form; hence one can analyze them together. Consider
the auxiliary matrix [ 1−(ℎ−𝜏)𝜆 −𝜏𝜆

1 0
], where 𝜆 ∈ (0, 2], and

its eigenvalues can be obtained by solving the characteristic
equation

𝛼 (𝑠) = 𝑠
2
+ [(ℎ − 𝜏) 𝜆 − 1] 𝑠 + 𝜏𝜆 = 0. (19)

Let the roots of (19) be 𝑠
1
, 𝑠
2
, and it should be noted that there

are two cases of the roots of (19).
For case 1, the second-order polynomial 𝛼(𝑠) has two real

roots, that is, 𝑠
1
, 𝑠
2
∈ 𝑅, and one hasΔ = [(ℎ−𝜏)𝜆−1]2−4𝜏𝜆 ≥

0, which follows that

ℎ ∈ [𝜏 +
1

𝜆
+ 2√

𝜏

𝜆
, +∞) ∪ (−∞, 𝜏 +

1

𝜆
− 2√

𝜏

𝜆
] . (20)

Then, to guarantee that 𝑠
1
, 𝑠
2
∈ (−1, 1), the following

condition should be satisfied:

1 − (ℎ − 𝜏) 𝜆

2
∈ (−1, 1) ⇐⇒ 𝜏 −

1

𝜆
< ℎ < 𝜏 +

3

𝜆

𝛼 (1) > 0 ⇐⇒ ℎ𝜆 > 0

𝛼 (−1) > 0 ⇐⇒ ℎ < 2𝜏 +
2

𝜆
.

(21)

Next, to determine the range of the sampling period ℎ,
we should divide it into three cases. In the first case, when
√𝜏𝜆 ≥ 1, one has 𝜏 − 1/𝜆 ≥ 𝜏 + 1/𝜆 − 2√𝜏/𝜆, and 𝜏 + 3/𝜆 ≤

𝜏 + 1/𝜆 + 2√𝜏/𝜆. Hence it follows that ℎ ∈ 𝜙. In the second
case, when 1/2 ≤ √𝜏𝜆 < 1, one obtains that 𝜏 − 1/𝜆 < 𝜏 +
1/𝜆 − 2√𝜏/𝜆, 𝜏 + 3/𝜆 > 2𝜏 + 2/𝜆, and 𝜏 ≥ 𝜏 + 1/𝜆 − 2√𝜏/𝜆,

which follows that ℎ ∈ [𝜏+1/𝜆+2√𝜏/𝜆, 2𝜏+2/𝜆). In the third
case, when √𝜏𝜆 < 1/2, one has 𝜏 − 1/𝜆 < 𝜏 + 1/𝜆 − 2√𝜏/𝜆,
𝜏 + 3/𝜆 > 2𝜏 + 2/𝜆, and 𝜏 < 𝜏 + 1/𝜆 − 2√𝜏/𝜆, which obtains
that ℎ ∈ (𝜏, 𝜏 + 1/𝜆 − 2√𝜏/𝜆] ∪ [𝜏 + 1/𝜆 + 2√𝜏/𝜆, 2𝜏 + 2/𝜆).
Therefore, it concludes that

ℎ ∈ 𝜙 if 𝜏 ≥ 1

𝜆

ℎ ∈ [𝜏 +
1

𝜆
+ 2√

𝜏

𝜆
, 2𝜏 +

2

𝜆
) if 1

4𝜆
≤ 𝜏 <

1

𝜆

ℎ ∈ (𝜏, 𝜏 +
1

𝜆
− 2√

𝜏

𝜆
] ∪ [𝜏 +

1

𝜆
+ 2√

𝜏

𝜆
, 2𝜏 +

2

𝜆
)

if 𝜏 < 1

4𝜆
.

(22)

For case 2, the second-order polynomial 𝛼(𝑠) has a pair
of conjugate complex roots, that is, 𝑠

1
, 𝑠
2
∈ 𝐶, and one has

Δ = [(ℎ − 𝜏)𝜆 − 1]2 − 4𝜏𝜆 < 0, which follows that

ℎ ∈ (𝜏 +
1

𝜆
− 2√

𝜏

𝜆
, 𝜏 +

1

𝜆
+ 2√

𝜏

𝜆
) . (23)

Moreover, one has 𝑠
1
⋅ 𝑠
2
= |𝑠
1
|2 = 𝜏𝜆. In order to locate the

roots of 𝛼(𝑠) in the unit circle, one has 𝜏𝜆 < 1; that is, 𝜏 < 1/𝜆.
Therefore, the eigenvalues of the auxiliary matrix

[ 1−(ℎ−𝜏)𝜆 −𝜏𝜆
1 0

] are located in the unit circle if and only if 𝜏 < 1/

𝜆 and 𝜏 < ℎ < 2𝜏 + 2/𝜆, and it can directly follow that the
eigenvalues of the block diagonal matrix diag{𝐴

2
, . . . , 𝐴

𝑁
}

are in the unit circle if and only if 𝜏 < 1/max{𝜆
𝑖
(𝑑)} and

𝜏 < ℎ < 2𝜏+2/max{𝜆
𝑖
(𝑑)}. Obviously, one obtains that 1 is an

algebraically simple eigenvalue of Φ̃ and is also the unique
eigenvalue of maximum modulus if and only if 𝜏 < 1/
max{𝜆

𝑖
(𝑑)} and 𝜏 < ℎ < 2𝜏 + 2/max{𝜆

𝑖
(𝑑)}, and the

decentralized sampled-data control (6) solves the circle
formation problem. This completes the proof.

According to Lemma 1, when the number of the agents
is even, 2 is the maximum eigenvalue of the matrix 𝐿(𝑑).
Therefore, based on Theorem 3 and its proof, we have the
following corollary.

Corollary 4. Consider a network with 𝑁 agents governed by
the form (1), and 𝑁 is even; then the decentralized sampled-
data control (6) solves the circle formation problem if and only
if 𝜏 < 1/2 and 𝜏 < ℎ < 2𝜏 + 1.

4. Numerical Simulation

In this section, an example is provided to illustrate the
effectiveness of the proposed theoretical results.

Consider six agents in the multiagent systems, with the
edges of their interaction topology {(1, 2), (2, 3), (3, 4), (4, 5),
(5, 6), (6, 1)}, and the initial values of the six agents are chosen
as 𝑥(0) = [(1/10)𝜋, (3/20)𝜋, (1/4)𝜋, (2/5)𝜋, (1/2)𝜋, (3/5)𝜋].
Moreover, the pregiven circle formation is described by the
vector 𝑑 = [(1/3)𝜋, (1/3)𝜋, (1/3)𝜋, (1/3)𝜋, (1/3)𝜋, (1/3)𝜋].

According to Lemma 1, one has max{𝜆
𝑖
(𝑑)} = 2, and it

follows that 𝜏 < 1/2 and 𝜏 < ℎ < 2𝜏 + 1. Hence, we choose
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Figure 2: The evolution of 𝑦
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(𝑡) and 𝑥

𝑖
(𝑡) with the decentralized sampled-data control, when 𝜏 = 0.4 and ℎ = 0.8 which meets the condition

in Corollary 4.
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Figure 3: The evolution of 𝑦
𝑖
(𝑡) and 𝑥

𝑖
(𝑡) with the decentralized sampled-data control, when 𝜏 = 0.4 and ℎ = 1.85 which does not meet the

condition in Corollary 4.

𝜏 = 0.4, ℎ = 0.8. From (6), (7), and (10), the evolution of
𝑦
𝑖
(𝑡) and 𝑥

𝑖
(𝑡) is shown in Figure 2, and one can see that the

multiagent system (1) with the decentralized sampled-data
control (6) achieves the pregiven circle formation.

Furthermore, we choose 𝜏 = 0.4, ℎ = 1.85, and then ℎ >
2𝜏 + 1, which do not meet for the condition in Corollary 4,
and hence themultiagent system cannot achieve the pregiven
circle formation, and the evolution of 𝑦

𝑖
(𝑡) and 𝑥

𝑖
(𝑡) is shown

in Figure 3.

5. Conclusion

This paper has discussed the circle forming problem for a
group of mobile agents which are governed by first-order
dynamics. In this study, each agent can only sense the relative
delayed angular positions of its neighboring two agents and

move on the one-dimensional space of a given circle. With
the help of periodic sampling technology and zero-order
hold circuit, a novel decentralized sampled-data control has
been proposed. By combining algebraic graph theory with
control theory, some necessary and sufficient conditions have
been established to guarantee that all the mobile agents
form a pregiven circle formation asymptotically. Finally, the
simulations have confirmed our theoretical results. In the
future, we will focus on the situations where the agent has
the intrinsic dynamic, and the decentralized sampled-data
control needs to be designed.
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