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Traditional empirical models of propagation consider individual contagion as an independent process, thus spreading in isolation
manner. In this paper, we study how different contagions interact with each other as they spread through the network in order to
propose an alternative dynamics model for information propagation.The proposedmodel is a novel combination of Lotka-Volterra
cooperative model and competitive model. It is assumed that the interaction of one message on another is flexible instead of always
negative. We prove that the impact of competition depends on the critical speed of the messages. By analyzing the differential
equations, one or two stable equilibrium points can be found under certain conditions. Simulation results not only show the
correctness of our theoretical analyses but also provide a more attractive conclusion. Different types of messages could coexist
in the condition of high critical speed and intense competitive environment, or vice versa. The messages will benefit from the high
critical speed when they are both competitive, and adopting a Tit-for-Tat strategy is necessary during the process of information
propagation.

1. Introduction

With the rapid development of information technology and
the widespread use of intelligent communication tools, we
progress further into the age of information explosion and
have been bombarded with massive amounts of data. For
instance, there are more than 368 million users in Sina
Weibo and 100 million messages are distributed every day
[1], while over 500 million registered users and more than
200 million tweets are posted every signal day in Twitter [2].
As the Twitter and other online social networking (OSN)
applications provide great facility by their convenient and
efficient way of information dissemination, various studies
focus on the issue of many complex phenomena during
the process of the spreading of information over networks.
Because of the complexity of the system, OSN is generally
characterized as being complex networks, in which individ-
uals are represented by nodes, and information interactions
between individuals are represented by links between nodes
[3]. Since the propagation of information and spreading of
epidemic infection have a lot in common, many epidemic

models have been used to describe and explore the evolution
process of information. For instance, the process of rumor
propagation can be viewed as a process of the individuals
being infected. After being infected, the ignorants become
spreader with a probability, and then the spreaders can
become the stiflers, which is similar as the infected persons
can recover over a period of time [4].

Many researches have been devoted to the propagation
dynamics. The significant model for information or rumor
spreading was introduced by Daley and Kendall many years
ago [5, 6]. Other variants based on Daley-Kendall (DK)
model, such as Maki-Thompson (MK) model [7], have
been widely used in the past for quantitative study of the
mechanism of information dissemination. In DK model, a
closed and homogeneously mixed population is classified
into three main groups: ignorants, spreaders, and stiflers.
Ignorants are susceptible to rumor or other information.
Spreaders play an important role in accelerating information
diffusion. Stiflers are the individuals who get tired of rumors
and refuse to propagate them [8]. In DK model, the rumor
is propagated through the population by pairwise contacts
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between spreaders and others, while it is spread by directed
contacts of the spreaders with others in MK model.

As the continuous development of research on complex
networks, a number of recent studies confirm that the
network topology has a marked influence on the whole
diffusion process. In the implementation of the MK model,
Zanette [9] showed that the simulation results exhibited a
transition between regimes of localization and propagation
at a finite value of the network randomness. Moreno et al.
[10] studied the dynamics of epidemic spreading processes
by Monte Carlo simulations and gave a numerical solution
of rumor diffusion mean-field equations [11]. Zhou et al.
[12] focused on the influence of network structure on rumor
propagation and concluded that the total final infected nodes
will decrease when the structure changes from random to
scale-free network. Some studies described a formulation of
the DK model on complex networks in terms of interacting
Markov chains. Nekovee et al. [13] derived mean-field equa-
tions for the dynamics of rumor spreading on the arbitrary
degree correlated networks and drew a conclusion that scale-
free social networks are prone to the spreading of rumors.
These studies revealed a complex interplay between the
network topology and found that the final infected density of
population with degree 𝑘 is related to the network structure.
When the structure changes from random networks to scale-
free networks, the rumor is more easily spread.

Besides the epidemic dynamicsmodelsmentioned above,
other widely used models describing information propaga-
tion are diffusionmodels in social networks. For instance, the
threshold models developed by Granovetter [14] described
collective social behavior, and the simplest version of linear
threshold model presented by Kempe et al. [15] has taken
social network structure into account during the process of
information propagation. Those models characterized the
information propagation based on a directed graph which
originated from social networks, and the inactive nodes could
turn into active ones with a certain probability under the
influence of a small number of initially activated nodes.

Although extensive progress has been made in under-
standing the dynamics of the information spreading, most
studies focused on one type of information or topic through
a complex network in the context of dynamics of information
spreading. Only a few of unsystematic studies concern the
case that more than one type of information coexists and
spreads among the population, such as two rumors with
different probabilities of acceptance spreading among nodes
[16], two types of information spreading among a population
of individuals [17], competing ideas in complex social systems
[18], and the propagation of competing memes on composite
networks [19, 20].

Nevertheless, all of these studies explored different con-
tagions competing with each other as they spread over the
network but neglected the phenomena of the cooperation
as they mutually help each other in spreading. In fact, there
are multiple pieces of information about an event spreading
through the OSN simultaneously. Moreover, these pieces
of information do not spread in isolation manner from all
other information currently diffusing in the network. The
built-in mechanism underlying these complex interactions

between different types of contagions makes a noticeable
impact on dynamic spreading. For instance, competing con-
tagions decrease each other’s probability of spreading, while
cooperating contagions help each other in being adopted
throughout the network [21]. Thus, it is necessary for us
to model the interaction between contagions and not just
consider each contagion in isolation manner separated from
others.

As the main contribution of this paper, we propose a
cooperative and competitive model for the different conta-
gions of information diffusion in OSN. First of all, the pro-
posed model is based on the population dynamics models to
describe the development tendency and interaction between
two different types of information. It provides amore realistic
description of this process comparing with previous models
by Lotka-Volterra and others. Secondly, we use differential
equations of stability theory to analyze the proposed model.
By means of the approximate analytical and exact numerical
solutions of these equations, we examine the steady-state of
information propagation in OSN. Finally, the analytic results
with the real data collected from SinaWeibo indicate that the
proposedmodel is effective for understanding and explaining
some social phenomena presented in the process of online
information spreading, especially the vital role of the cooper-
ation and competition in the information propagation.

The rest of this paper is organized as follows. In Section 2
a formulation of the information spreading model within
the framework of biological models is proposed. Section 3 is
devoted to analyzing the cooperative and competitive model
and explaining the results of the steady-state behavior. In
Section 4, the numerical simulation with the data from Sina
Weibo demonstrates the investigations of the steady state and
dynamics of the model. The last section concludes the paper
with the direction of further research.

2. Model

In this section, we describe the basic information spreading
system and then establish a general co-competition model
based on Lotka-Volterra model.

2.1. System Description. In OSNs websites, once a user pub-
lishes a message on Twitter or other microblog websites,
the message will be transmitted to his/her followers. If
the message is so interesting that some followers decide
to repost it [3], this message can be read by more users
and the information could thus reach beyond the network
of the original author. We define the user behaviors, such
as retweet, review, and mention, as a growth factor. The
greater this value is, the faster the message spreads, and more
users see the message. Meanwhile, the individuals may also
cease spreading a message spontaneously at a certain rate
influenced by time decaying effect [22]. This phenomenon
can be considered as decay factor of the message.

Considering the special time attributes of the information
spreading in OSNs, we choose the user growth rate V(𝑡) as
dynamical variables instead of the users themselves. In OSNs,
the spread of messages is primarily determined by the repost
number in time interval. For example, when we describe
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the spread of a tweet in Twitter, it is usually defined that this
message spread more than𝑁 times per hour, or the message
has been reposted a total number of nearly𝑁 times by time 𝑡.
However, the latter is a cumulative value that cannot reflect a
certain number of changes at some points. Furthermore, the
message spread process has strong timeliness and variation in
OSNs, and each message has a life cycle that spreads slowly
at beginning and then breaks out and vanishes finally. The
variables V(𝑡) can reflect the life circle curve of the message
while the variables𝑁 cannot.

Assume that there is a message published at time 𝑡 in
Twitter, then users repost this tweet and the message could
spread at speed V(𝑡). As mentioned above, we set 𝜇(V) as
a function of the speed V(𝑡). However, the speed could not
immeasurably increase, and there should be a maximum
value 𝑉. When the speed V(𝑡) achieves 𝑉, its value will
decrease. We suppose that the spread of messages obeys
logistic growth pattern in OSNs and set

𝜇 (V) = 𝛿 ⋅ (1 −
V (𝑡)
𝑉

) . (1)

Here 𝛿 is a constant, denoting the growth factor influence on
speed. The speed V(𝑡) can be denoted as V(𝑡) = 𝑑𝑁(𝑡)/𝑑𝑡,
𝑁(𝑡) denotes the total number of people who have heard
the message up to time 𝑡, and V(𝑡) denote the variation
number in time interval [𝑡 − 1, 𝑡]. Meanwhile, the spread of
message in OSNs will be influenced by growth factor 𝜃(𝑡) and
decay factor 𝜆; we can establish an equation to describe this
dynamic process

𝑑V (𝑡)
𝑑𝑡

= 𝛿 ⋅ (1 −
V (𝑡)
𝑉

) ⋅ 𝜃 (𝑡) − 𝜆V (𝑡) . (2)

We discuss the main features of (2) as follows.
(i) When 𝜃(𝑡) = 0 or the speed V(𝑡) reaches its maximum

value 𝑉, (2) becomes

𝑑V (𝑡)
𝑑𝑡

= −𝜆V (𝑡) . (3)

In (3), V(𝑡) is a reduction function that the speed will decrease
with time.

(ii) When 𝜃(𝑡) is a nonzero constant, we introduce
variables 𝛾 and 𝜅; set

𝛾 =
𝛿 ⋅ 𝜃 (𝑡)

𝑉
+ 𝜆

𝜅 = 𝛿 ⋅ 𝜃 (𝑡)

(4)

then (2) becomes

𝑑V (𝑡)
𝑑𝑡

= 𝜅 − 𝛾V (𝑡) . (5)

Set V(0) = V
0
,

V (𝑡) =
𝜅

𝛾
(1 − 𝑒

−𝛾𝑡
) + V
0
𝑒
−𝛾𝑡
. (6)

Equation (8) denotes the function of V(𝑡) when 𝜃(𝑡) is a
nonzero constant.

(iii) When the speed remains unchanged, 𝑑V(𝑡)/𝑑𝑡 = 0,
(2) becomes

𝛿 ⋅ (1 −
V (𝑡)
𝑉

) ⋅ 𝜃 (𝑡) − 𝜆V (𝑡) = 0 (7)

then we obtain

V (𝑡) =
𝛿𝑉𝜃 (𝑡)

𝛿𝜃 (𝑡) + 𝜆𝑉
. (8)

Based on the above analysis, we prove that the speed V(𝑡)
is a function of the growth factor 𝜃(𝑡). In next section, we
further discuss the situation that different types of messages
are spreading over networks.

2.2. Co-Competition Lotka-Volterra Model. The spreading of
abundance of information to which we are exposed through
online social networks is a complex sociopsychological pro-
cess. In the real world, these contagions not only propagate
at the same time but also interplay with each other as
they spread over the networks. This phenomenon is similar
to the mutualism-competition interaction among multiple
species. During the spreading of pieces of information, the
cooperation happens when the different types of information
are at low speed, and the competition happens when they
are at high speed. Hence, according to [23], the general
cooperation-competitionmodel of 𝑛 types of information can
be presented as follows: 𝑑V

𝑖
/𝑑𝑡 = V

𝑖
𝑓
𝑖
(V
1
, V
2
, . . . , V

𝑛
), where

V
𝑖
denotes the speed of the 𝑖th messages and 𝑓

𝑖
(V
1
, V
2
, . . . , V

𝑛
)

represents its growth rate. The partial derivatives of the
function 𝑓

𝑖
(V
1
, V
2
, . . . , V

𝑛
) can be written as 𝜕𝑓

𝑖
/𝜕V
𝑗
, 𝑖, 𝑗 =

1, 2, . . . , 𝑛. The cooperation-competition interaction is set by
(9) by satisfying the condition that for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛, there
is 𝑏
𝑖
> 0. Consider

𝜕𝑓
𝑗

𝜕V
𝑖

> 0, 0 < V
𝑖
< 𝑏
𝑖
,

𝜕𝑓
𝑗

𝜕V
𝑖

< 0, V
𝑖
> 𝑏
𝑖
,

(9)

where 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. According to the ecological
theory, we can infer that the 𝑖th message has a positive effect
on other messages as it is at low density (0 < V

𝑖
< 𝑏
𝑖
), while it

has negative effect on them at high density (V
𝑖
> 𝑏
𝑖
).

We study the common case that two different types
of information interact with each other and then make a
natural extension of the classical two-species Lotka-Volterra
competitive model and Lotka-Volterra cooperative model.
We assume that the spread of each message is affected by the
internal attractiveness itself and the external pressure among
messages simultaneously. Considering two different types of
information on the same event spreading around the same
time in Twitter or other OSNs, they will compete with each
other for the reason that users only choose to believe one of
them. In the meantime, if all the messages are so important
or interesting, users would be more likely to adopt and share
them. It is considered that they mutually help each other
in spreading through the network. We term the two types
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of information as message 1 and message 2, and they will
interact with each other when they spread at the same time.
The propagation process and the interactions between the
two types of information can be governed by the following
set of rules.

(i) Each message has a relatively stable natural growth
coefficient 𝜇

𝑖
and a decay coefficient 𝜆

𝑖
, which repre-

sent the growth factor and decay factor, respectively,
and 𝜇

𝑖
> 𝜆
𝑖
.

(ii) Since a signal message could not spread indefinitely,
there exists a maximum speed𝑉

𝑖
during the propaga-

tion process.
(iii) Two messages will compete or cooperate with one

another and take negative or positive effect, repre-
sented by 𝜎

𝑖𝑗
.

Supported by the rules (i) and (ii), we have the following
model:

𝑑V
1 (𝑡)

𝑑𝑡
= 𝜇
1
V
1
(1 −

V
1

𝑉
1

) − 𝜆
1
V
1
,

𝑑V
2 (𝑡)

𝑑𝑡
= 𝜇
2
V
2
(1 −

V
2

𝑉
2

) − 𝜆
2
V
2
.

(10)

Here 𝜇
𝑖
denotes the growth coefficient of the 𝑖th message

and 𝜇
𝑖
∈ [0, 1]; 𝜆

𝑖
denotes the decay coefficient of the 𝑖th

message and 𝜆
𝑖
∈ [0, 1], 𝑖 = 1, 2.

According to the rule (iii), when the messages 1 and 2
coexist in the network, the interactive influence among the
two messages produces positive effect or negative effect as
they cooperate or compete with each other. Based on the
analysis above, (10) can be written as

𝑑V
1 (𝑡)

𝑑𝑡
= 𝜇
1
V
1
(1 + 𝜎

21

𝛽

𝑉
2

−
V
1

𝑉
1

− 𝜎
21

󵄨󵄨󵄨󵄨V2 − 𝛽
󵄨󵄨󵄨󵄨
∗

𝑉
2

) − 𝜆
1
V
1
,

𝑑V
2
(𝑡)

𝑑𝑡
= 𝜇
2
V
2
(1 + 𝜎

12

𝛼

𝑉
1

−
V
2

𝑉
2

− 𝜎
12

󵄨󵄨󵄨󵄨V1 − 𝛼
󵄨󵄨󵄨󵄨
∗

𝑉
1

) − 𝜆
2
V
2
.

(11)

In order to facilitate the analysis, set 𝑎 = 1 − 𝜆
1
/𝜇
1
, 𝑏 =

1 − 𝜆
2
/𝜇
2
; (11) can be written as

𝑑V
1
(𝑡)

𝑑𝑡
= 𝜇
1
V
1
(𝑎 + 𝜎

21

𝛽

𝑉
2

−
V
1

𝑉
1

− 𝜎
21

󵄨󵄨󵄨󵄨V2 − 𝛽
󵄨󵄨󵄨󵄨
∗

𝑉
2

) ,

𝑑V
2 (𝑡)

𝑑𝑡
= 𝜇
2
V
2
(𝑏 + 𝜎

12

𝛼

𝑉
1

−
V
2

𝑉
2

− 𝜎
12

󵄨󵄨󵄨󵄨V1 − 𝛼
󵄨󵄨󵄨󵄨
∗

𝑉
1

) .

(12)

Equation (12) can be considered as a competition and
cooperation multisystem. Let V

2
= 0 in the first equation

of the system (12); we have 𝑑V
1
/𝑑𝑡 = 𝜇

1
V
1
(𝑎𝑉
1
− V
1
)/𝑉
1
,

then the parameter 𝑎𝑉
1
is the speed of the message 1 when it

disseminates independently form message 2. Let 𝐶
1
(V
1
, V
2
) =

𝑎+𝜎
21
(𝛽/𝑉
2
)−V
1
/𝑉
1
−𝜎
21
(|V
2
− 𝛽|
∗
/𝑉
2
); the function |V

2
− 𝛽|
∗

can be defined as the absolute function |V
2
− 𝛽| while the

function |V
2
− 𝛽| is smoothed in a very small neighborhood

�2

2
𝛽
+
a
V
2
/
𝜎
2
1

bV2

𝛽

L12

K2

K3

D2

D1

K1

L22

O 𝛼 aV1 �12𝛼 + bV1/𝜎12

L1

L2

L21

L11

Figure 1: The smoothed parts of the isoclines 𝐿
1
and 𝐿

2
.

of its vertex (0, 𝛽). Thus, the isocline 𝐿
1
: 𝐶
1
(V
1
, V
2
) = 0 is

smooth as shown in Figure 1. Then the function 𝑓
1
(V
1
, V
2
) =

𝜇
1
V
1
𝐶
1
(V
1
, V
2
) and satisfies

𝜕𝑓
1

𝜕V
2

=
𝜎
21

𝑉
2

𝜇
1
V
1
, 0 < V

2
< 𝛽,

𝜕𝑓
1

𝜕V
2

= −
𝜎
21

𝑉
2

𝜇
1
V
1
, V
2
> 𝛽.

(13)

As shown in (13), the positive or negative effect acting
on message 1 depends on the speed of message 2. When
message 2 travels slowly (V

2
< 𝛽), it takes positive effect on

message 1; otherwise, it produces negative effect on message
1 at high speed (V

2
> 𝛽). The parameter 𝛽 signifies the

critical speed of message 2 near which the effect of message
2 acting on message 1 would turn positive effect into negative
effect. Furthermore, according to the Lotka-Volterra models,
the parameter 𝜎

21
represents both the cooperation (at low

speed) and competition (at high speed) level of message 2
to message 1. Hence, the low speed of message 2, 0 < V

2
<

𝛽, represents the scope of cooperation of message 2 with
message 1. A similar conclusion can be obtained that the
low speed of message 1, 0 < V

1
< 𝛼, represents the region

of net cooperation message 1 with message 2. The isocline
𝐿
2
: 𝐶
2
(V
1
, V
2
) = 𝑏+𝜎

12
(𝛼/𝑉
1
)−V
2
/𝑉
2
−𝜎
12
(|V
1
− 𝛼|
∗
/𝑉
1
) = 0

is smooth as shown in Figure 1.
Since the system (12) can exhibit the features of the Lotka-

Volterra cooperative model and competitive model, it can
be named co-competition Lotka-Volterra model. Obviously,
when the messages are at low speed, for instance, V

1
< 𝛼
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The isocline of x1

+

+

−

x2

0

0

Direction of speed change 
Positive part
Neutral part
Negative part−

(a)

The isocline of x2

x1

−+

0

+

0

Direction of speed change 
Positive part
Neutral part
Negative part−

(b)

Figure 2: The parabolic zero growth isoclines of message 1 (a) and message 2 (b).

and V
2
< 𝛽, the system (12) turns into the Lotka-Volterra

cooperative system

𝑑V
1
(𝑡)

𝑑𝑡
= 𝜇
1
V
1
(𝑎 + 𝜎

21

V
2

𝑉
2

−
V
1

𝑉
1

) ,

𝑑V
2
(𝑡)

𝑑𝑡
= 𝜇
2
V
2
(𝑏 + 𝜎

12

V
1

𝑉
1

−
V
2

𝑉
2

) .

(14)

Conversely, when the messages are at high speed, for
instance, V

1
> 𝛼 and V

2
> 𝛽, the system (12) turns into the

Lotka-Volterra competitive model

𝑑V
1
(𝑡)

𝑑𝑡
= 𝜇
1
V
1
(𝑎 + 2𝜎

21

𝛽

𝑉
2

−
V
1

𝑉
1

− 𝜎
21

V
2

𝑉
2

) ,

𝑑V
2
(𝑡)

𝑑𝑡
= 𝜇
2
V
2
(𝑏 + 2𝜎

12

𝛼

𝑉
1

−
V
2

𝑉
2

− 𝜎
12

V
1

𝑉
1

) .

(15)

By systematic comparison of the system (12) with the
Lotka-Volterra competitive system (15), an important conclu-
sion is reached that the cooperation at low speed promotes the
coexistence level of the two messages in co-opetition Lotka-
Volterra model. When message 2 is at a low speed (V

2
< 𝛽),

it follows the first equation of system (15) that the effect of
message 2 acting on message 1 is negative (−𝜎

21
V
2
/𝑉
2
< 0)

while it follows the first equation of system (12) that the effect
of message 2 acting on message 1 is positive (𝜎

21
V
2
/𝑉
2
> 0),

which originates from the cooperation of message 2 at low
speed. As a consequence, message 1 has survived for a long
time when message 2 is at low speed. When message 2 is at
high speed (V

2
> 𝛽), the negative effect produced by message

2 acting on message 1 in system (15) is (−𝜎
21
V
2
/𝑉
2
) while that

in system (12) is −𝜎
21
(V
2
− 𝛽)/𝑉

2
. Since −𝜎

21
(V
2
− 𝛽)/𝑉

2
>

−𝜎
21
V
2
/𝑉
2
, the negative effect is lessened for the cooperation

among messages in system (12). Similarly, the cooperation in
system (12) promotes the existence of message 1. In a word,
the cooperation in system (12) facilitates the coexistence of
both the two messages.

3. Model Analysis

In this section, we discuss the intersection of two isoclines
𝐿
1
and 𝐿

2
by a symmetrical hypothesis and then analyze the

dynamics of the model and the global stability of the system.

3.1. Basic Analysis. In order to show the existence of intersec-
tion of two isoclines 𝐿

1
and 𝐿

2
, we assume that the positive or

negative effects produced by messages 1 and 2 are almost the
same as each other. In the condition, we can set hypothesis
as follows: 𝑎 = 𝑏 = 𝑧, 𝜎

21
= 𝜎
12

= 𝜎, 𝑉
1
= 𝑉
2
= 𝑉,

and 𝛼 = 𝛽 = 𝜁, then the values of 𝜇
1
and 𝜇

2
can reflect the

difference of the growth factors among the twomessages. For
|V
1
−𝛼| and |V

2
−𝛽| are smoothed in a very small neighborhood

of their vertexes (0, 𝛼) and (0, 𝛽), respectively, the system (12)
can be written as

𝑑V
1 (𝑡)

𝑑𝑡
= 𝜇
1
V
1
(𝑧 + 𝜎

𝜁

𝑉
−
V
1

𝑉
−
𝜎𝜁

𝑉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

V
2

𝜁
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) ,

𝑑V
2
(𝑡)

𝑑𝑡
= 𝜇
2
V
2
(𝑧 + 𝜎

𝜁

𝑉
−
V
2

𝑉
−
𝜎𝜁

𝑉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

V
1

𝜁
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) ;

(16)

set 𝑥
1
= V
1
/𝜁 and 𝑥

2
= V
2
/𝜁; then

𝑑𝑥
1

𝑑𝑡
= 𝜇
1
V
1
(𝑧 + 𝜎

𝜁

𝑉
−
𝜁𝑥
1

𝑉
−
𝜎𝜁

𝑉

󵄨󵄨󵄨󵄨𝑥2 − 1
󵄨󵄨󵄨󵄨) ,

𝑑𝑥
2

𝑑𝑡
= 𝜇
2
V
2
(𝑧 + 𝜎

𝜁

𝑉
−
𝜁𝑥
2

𝑉
−
𝜎𝜁

𝑉

󵄨󵄨󵄨󵄨𝑥1 − 1
󵄨󵄨󵄨󵄨) .

(17)

In int𝑅2
+
, the zero growth isoclines of 𝑥

1
and 𝑥
2
are as follows:

𝑥
1
= −𝜎

󵄨󵄨󵄨󵄨𝑥2 − 1
󵄨󵄨󵄨󵄨 + 𝐶

𝑥
2
= −𝜎

󵄨󵄨󵄨󵄨𝑥1 − 1
󵄨󵄨󵄨󵄨 + 𝐶,

(18)

where 𝐶 = 𝑉𝑧/𝜁 + 𝜎.
According to [24], the isoclines include three parts as

shown in Figure 2: positive part (+), neutral part (0), and
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negative part (−). The positive part, neutral part, or negative
part is the part of isoclines when the slope (for message
1, the slope is 𝑑V

1
(𝑡)/𝑑V

2
(𝑡); for message 2, the slope is

𝑑V
2
(𝑡)/𝑑V

1
(𝑡)) is positive part (+), neutral part (0), and

negative part (−). The two isoclines are symmetry around the
line 𝑥

1
= 𝑥
2
. Then, we only need to discuss

𝑥
1
= 𝑥
2
,

𝑥
2
= −𝜎

󵄨󵄨󵄨󵄨𝑥1 − 1
󵄨󵄨󵄨󵄨 + 𝐶.

(19)

Obviously, (19) always have solutions; we can also obverse the
following aspects.

(i) There are two different roots (𝜎 − 𝐶)/(𝜎 − 1) and (𝜎 +
𝐶)/(𝜎 + 1), when 𝜎2 ̸= 0, 1 and 𝐶 ̸= 1.

(ii) There is double root 𝑥 = 1 or 𝑥 = 𝐶, when 𝜎2 ̸= 1 and
𝐶 = 1, or 𝜎 = 0.

(iii) There is root (𝜎 − 𝐶)/(𝜎 − 1) or (𝜎 + 𝐶)/(𝜎 + 1), when
𝜎
2
= 1 and 𝐶 ̸= 1.

Based on the above analysis, we can conclude that
trajectories in phase space always intersect isoclines either in
the horizontal or in the vertical direction. In the next section,
we make further analysis about the stability of intersection.

3.2. Equilibrium. In order to study the final results of interac-
tive effect between two different types of messages, we need
to conduct a comprehensive analysis for the stability of the
equilibrium points of simultaneous differential equations.

Theorem 1. System (12) admits no periodic orbit.

Proof. Let

𝐵 (V
1
, V
2
) =

1

V
1
V
2

(V
1
, V
2
) ∈ int𝑅2

+

(20)

then we have

𝜕

𝜕V
1

[𝜇
1
(𝑎 + 𝜎

21

𝛽

𝑉
2

−
V
1

𝑉
1

− 𝜎
21

󵄨󵄨󵄨󵄨V2 − 𝛽
󵄨󵄨󵄨󵄨
∗

𝑉
2

)]

+
𝜕

𝜕V
2

[𝜇
2
(𝑏 + 𝜎

12

𝛼

𝑉
1

−
V
2

𝑉
2

− 𝜎
12

󵄨󵄨󵄨󵄨V1 − 𝛼
󵄨󵄨󵄨󵄨
∗

𝑉
1

)]

= −
𝜇
1

V
2
𝑉
1

−
𝜇
2

V
1
𝑉
2

< 0.

(21)

According to the Bendixson-Dulac theorem [25], system
(12) admits no periodic orbit.

We study the evolution of V
1
(𝑡) and V

2
(𝑡) as time 𝑡

approaches infinity. As shown in Figure 1, there are three
equilibrium points in system (12): 𝑂

1
(0, 0), 𝑂

2
(𝑎𝑉
1
, 0), and

𝑂
3
(0, 𝑏𝑉

2
). To determine the stability of the equilibrium

points, let

𝑀 = [
𝑓V
1

𝑓V2
𝑔V
1

𝑔V
2

] ; (22)

we have

𝑝 = −(𝑓V
1

+ 𝑔V2)
󵄨󵄨󵄨󵄨󵄨𝑝
𝑖

, 𝑞 = det𝑀|𝑝
𝑖

. (23)

Then, the stability conditions of equilibrium point 𝑂
𝑖
are

𝑝 > 0 and 𝑞 > 0. The Jacobin matrix of the system (12) at
equilibrium state is as follows.

(i) For the equilibrium point 𝑂
1
(0, 0), we get

𝑀(𝑂
1
) = [

𝑎𝜇
1

0

0 𝑏𝜇
2

]

𝑝
1
= − (𝑎𝜇

1
+ 𝑏𝜇
2
) , 𝑞

1
= 𝑎𝑏𝜇

1
𝜇
2
.

(24)

Based on the assumption that 𝑎 = 1 − 𝜆
1
/𝜇
1
> 0 and 𝑏 =

1 − 𝜆
2
/𝜇
2
> 0, we have 𝑝

1
< 0 and 𝑞

1
> 0; the point 𝑂

1
(0, 0)

is an unstable node.
Since our aim is to show the coexistence of competition

and cooperation by the introduction of 𝛼 and 𝛽, we suppose
that the condition (25) is always satisfied in the rest of the
paper. Consider

𝑏 + 𝜎
12
(
2𝛼

𝑉
1

− 𝑎) > 0,

𝑎 + 𝜎
21
(
2𝛽

𝑉
2

− 𝑏) > 0.

(25)

(ii) For the equilibrium point 𝑂
2
(𝑎𝑉
1
, 0), we get

𝑀(𝑂
2
) =

[
[
[

[

−𝑎𝜇
1

𝑎𝑉
1
𝜇
1
𝜎
21

𝑉
2

0 𝜇
2
[𝑏 + (

2𝛼

𝑉
1

− 𝑎)𝜎
12
]

]
]
]

]

,

𝑝
2
= 𝑎𝜇
1
− 𝜇
2
[𝜎
12
(
2𝛼

𝑉
1

− 𝑎) + 𝑏] ,

𝑞
2
=
𝑎𝜇
1
𝜇
2
(−2𝛼𝜎

12
+ 𝑎𝜎
12
𝑉
1
− 𝑏𝑉
1
)

𝑉
1

.

(26)

The stability condition of equilibrium point 𝑂
2
(𝑎𝑉
1
, 0) is

𝜎
12
> 𝑏𝑉
1
/(𝑎𝑉
1
− 2𝛼).

Condition 𝜎
12

> 𝑏𝑉
1
/(𝑎𝑉
1
− 2𝛼) means that message

1 is more competitive than message 2. It implies that the
personswho should have adoptedmessage 2 choose to believe
message 1. Consequently, message 2 will eventually become
extinct in the process of competition, while message 1 can
continue to diffuse and reach the maximum speed 𝑉

1
.

(iii) For the equilibrium point 𝑂
3
(0, 𝑏𝑉

2
), we get

𝑀(𝑂
3
) =

[
[
[

[

𝜇
1
[𝑎 + (

2𝛽

𝑉
2

− 𝑏)𝜎
21
] 0

𝑏𝑉
2
𝜇
2
𝜎
12

𝑉
1

−𝑏𝜇
2

]
]
]

]

,

𝑝
3
= 𝑏𝜇
2
− 𝜇
1
[𝑎 + 𝜎

21
(
2𝛽

𝑉
2

− 𝑏)] ,

𝑞
3
=
𝑏𝜇
1
𝜇
2
(𝑏𝜎
21
𝑉
2
− 𝑎𝑉
2
− 2𝛽𝜎

21
)

𝑉
2

.

(27)
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The stability condition of equilibrium point 𝑂
3
(0, 𝑏𝑉

2
) is

𝜎
21
> 𝑎𝑉
2
/(𝑏𝑉
2
− 2𝛽).

Condition 𝜎
21
> 𝑎𝑉
2
/(𝑏𝑉
2
− 2𝛽) shows that message 2 is

more competitive thanmessage 1.This just means that people
accepted message 2 even though they should have believed
message 1. Therefore, during the process of competition,
message 2 can survive and reach a maximum speed𝑉

2
, while

message 1 will eventually become extinct finally.

3.3. Dynamics. Assume that the conditions in (25) are satis-
fied; the twomessages in system (12) can coexist.The isocline
𝐿
1
ofmessage 1 can be subdivided into 𝐿

11
and 𝐿

12
as follows:

𝐿
11
: 𝑎 + 𝜎

21

V
2

𝑉
2

−
V
1

𝑉
1

, 0 < V
2
< 𝛽,

𝐿
12
: 𝑎 + 2𝜎

21

𝛽

𝑉
2

−
V
1

𝑉
1

− 𝜎
21

V
2

𝑉
2

, V
2
> 𝛽,

(28)

where 𝐿
1
is smoothed in a small neighborhood of the vertex

𝐷
1
(𝑎𝑉
1
+ 𝛽𝜎
21
𝑉
1
/𝑉
2
, 𝛽) as shown in Figure 1. Similarly, we

divide the isocline𝐿
2
ofmessage 2 into𝐿

21
and𝐿

22
as follows:

𝐿
21
: 𝑏 + 𝜎

12

V
1

𝑉
1

−
V
2

𝑉
2

, 0 < V
1
< 𝛼,

𝐿
22
: 𝑏 + 2𝜎

12

𝛼

𝑉
1

−
V
2

𝑉
2

− 𝜎
12

V
1

𝑉
1

, V
1
> 𝛼,

(29)

where 𝐿
2
is smoothed in a small neighborhood of the vertex

𝐷
2
(𝛼, 𝑏𝑉

2
+ 𝛼𝜎
12
𝑉
2
/𝑉
1
) as shown in Figure 1.

While the line segments 𝐿
11
and 𝐿

21
are restricted to the

intervals (𝑎𝑉
1
, 𝑎𝑉
1
+ 𝛽𝜎
21
𝑉
1
/𝑉
2
) and (0, 𝛼), respectively, they

are impossible to intersect in the interval 𝛼 ≤ 𝑎𝑉
1
.Then there

is a maximum of three isolated positive equilibrium points in
system (12). As shown in Figure 1, let 𝐾

1
(𝑘
11
, 𝑘
12
) represent

the intersection of 𝐿
11
and 𝐿

22
, let 𝐾

2
(𝑘
21
, 𝑘
22
) represent the

intersection of 𝐿
21
and 𝐿

12
, and let𝐾

3
(𝑘
31
, 𝑘
32
) represent the

intersection of 𝐿
12
and 𝐿

22
. Then we have

𝑘
11
=
𝑉
1
(𝑎 + 𝑏𝜎

21
) + 2𝛼𝜎

12
𝜎
21

𝜎
12
𝜎
21
+ 1

,

𝑘
12
=
𝑉
2
(𝑉
1
(𝑏 − 𝑎𝜎

12
) + 2𝛼𝜎

12
)

(𝜎
12
𝜎
21
+ 1)𝑉

1

,

𝑘
21
=
𝑉
1
(𝑉
2
(𝑎 − 𝑏𝜎

21
) + 2𝛽𝜎

21
)

(𝜎
12
𝜎
21
+ 1)𝑉

2

,

𝑘
22
=
𝑉
2
(𝑎𝜎
12
+ 𝑏) + 2𝛽𝜎

12
𝜎
21

𝜎
12
𝜎
21
+ 1

,

𝑘
31
=
𝑉
1
(𝑉
2
(𝑏𝜎
21
− 𝑎) − 2𝛽𝜎

21
) + 2𝛼𝜎

12
𝜎
21
𝑉
2

(𝜎
12
𝜎
21
− 1)𝑉

2

,

𝑘
32
=
𝑉
1
(𝑉
2
(𝑎𝜎
12
− 𝑏) + 2𝛽𝜎

12
𝜎
21
) − 2𝛼𝜎

12
𝑉
2

(𝜎
12
𝜎
21
− 1)𝑉

1

.

(30)

�2

2
𝛽
+
a
V
2
/
𝜎
2
1

bV2

K2

K3

K1

O aV1
�12𝛼 + bV1/𝜎12

L1

L2

Figure 3: Three positive equilibria 𝐾
1
, 𝐾
2
, and 𝐾

3
.

Suppose that 𝐺
1
and 𝐺

2
represent the slope of the lines

𝐿
12
and 𝐿

22
, respectively. Suppose that𝐺 denotes the slope of

the line𝐷
1
𝐷
2
. Then we have

𝐺
1
= −

𝑉
2

𝑉
1
𝜎
21

< 0,

𝐺
2
= −

𝑉
2
𝜎
12

𝑉
1

< 0,

𝐺 =
𝑉
2
(𝑏𝑉
2
𝑉
1
+ 𝛼𝜎
12
𝑉
2
− 𝛽𝑉
1
)

𝑉
1
(𝑎𝑉
1
𝑉
2
− 𝛼𝑉
2
+ 𝛽𝜎
21
𝑉
1
)
< 0.

(31)

Dynamics of system (12) can be displayed in five cases,
while we discuss the situation of |𝐺

1
| < |𝐺

2
| in cases 1–4 and

that of |𝐺
1
| > |𝐺

2
| in case 5.

(i) Case 1 (|𝐺
1
| < |𝐺| < |𝐺

2
|). In this case, there are three

positive equilibria 𝐾
1
, 𝐾
2
, and 𝐾

3
as shown in Figure 3. The

Jacobian matrix of system (12) at 𝐾
1
is

𝑀(𝐾
1
) =

[
[
[

[

−
𝑘
11
𝜇
1

𝑉
1

𝑘
11
𝜇
1
𝜎
21

𝑉
2

−
𝑘
12
𝜇
2
𝜎
12

𝑉
1

−
𝑘
12
𝜇
2

𝑉
2

]
]
]

]

(32)

then 𝑝(𝑀(𝐾
1
)) = 𝑘

11
𝜇
1
/𝑉
1
+ 𝜇
2
𝑘
12
/𝑉
2
> 0 and 𝑞(𝑀(𝐾

1
)) =

𝑘
11
𝑘
12
𝜇
1
𝜇
2
(𝜎
12
𝜎
21
+1)/𝑉

1
𝑉
2
> 0.That is,𝐾

1
is asymptotically

stable. Then we obtain that the stability condition of equilib-
rium point𝐾

1
is

0 < 𝜎
12
<

𝜇
1
𝑉
1
(𝜆
2
− 𝜇
2
)

𝜇
2
(2𝛼𝜇
1
+ 𝜆
1
𝑉
1
− 𝜇
1
𝑉
1
)
,

𝜎
21
> 0, 𝑉

1
>

2𝛼𝜇
1

𝜇
1
− 𝜆
1

.

(33)
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Figure 4: Two positive equilibria 𝐾
1
and 𝐾

2
.

Condition 0 < 𝜎
12

< 𝜇
1
𝑉
1
(𝜆
2
− 𝜇
2
)/𝜇
2
(2𝛼𝜇
1
+ 𝜆
1
𝑉
1
−

𝜇
1
𝑉
1
)means thatmessage 1 is less competitive thanmessage 2.

When (33) are satisfied, bothmessage 1 andmessage 2 coexist,
and the speed of message 1 and message 2 will tend to reach a
nonzero finite value.

Similarly, The Jacobian matrix of system (12) at 𝐾
2
is

𝑀(𝐾
2
) =

[
[
[

[

−
𝑘
21
𝜇
1

𝑉
1

−
𝑘
21
𝜇
1
𝜎
21

𝑉
2

𝑘
22
𝜇
2
𝜎
12

𝑉
1

−
𝑘
22
𝜇
2

𝑉
2

]
]
]

]

(34)

then the 𝑝(𝑀(𝐾
2
)) = 𝑘

21
𝜇
1
/𝑉
1
+ 𝑘
22
𝜇
2
/𝑉
2

> 0 and
𝑞(𝑀(𝐾

2
)) = 𝑘

21
𝑘
22
𝜇
1
𝜇
2
(𝜎
12
𝜎
21
+ 1)/𝑉

1
𝑉
2
> 0. That is,

𝐾
2
is asymptotically stable. Then we obtain that the stability

condition of equilibrium point𝐾
2
is

0 < 𝜎
21
<

𝜇
2
𝑉
2
(𝜆
1
− 𝜇
1
)

𝜇
1
(2𝛽𝜇
2
+ 𝜆
2
𝑉
2
− 𝜇
2
𝑉
2
)
,

𝜎
12
> 0, 𝑉

2
>

2𝛽𝜇
2

𝜇
2
− 𝜆
2

.

(35)

The condition 0 < 𝜎
21
< 𝜇
2
𝑉
2
(𝜆
1
− 𝜇
1
)/𝜇
1
(2𝛽𝜇
2
+ 𝜆
2
𝑉
2
−

𝜇
2
𝑉
2
)means thatmessage 2 is less competitive thanmessage 1.

When (35) are satisfied, bothmessage 1 andmessage 2 coexist,
and their speed will change over time to reach a stable state.

The Jacobian matrix of system (12) at 𝐾
3
is

𝑀(𝐾
3
) =

[
[
[

[

−
𝑘
31
𝜇
1

𝑉
1

−
𝑘
31
𝜇
1
𝜎
21

𝑉
2

−
𝑘
32
𝜇
2
𝜎
12

𝑉
1

−
𝑘
32
𝜇
2

𝑉
2

]
]
]

]

(36)

then the 𝑝(𝑀(𝐾
3
)) = 𝑘

31
𝜇
1
/𝑉
1
+ 𝑘
32
𝜇
2
/𝑉
2

> 0 and
𝑞(𝑀(𝐾

3
)) = 𝑘

31
𝑘
32
𝜇
1
𝜇
2
(1 − 𝜎

12
𝜎
21
)/𝑉
1
𝑉
2
. By |𝐺

1
| < |𝐺

2
|,

�2

2
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a
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Figure 5: The unique positive equilibrium 𝐾
2
.

we have 𝜎
12
𝜎
21
> 1, and 𝑞(𝑀(𝐾

3
)) < 0. It means that 𝐾

3
is a

saddle point. In int 𝑅2
+
, all orbits but 𝐾

3
and the separatrixes

of𝐾
3
converge to equilibria𝐾

1
and𝐾

2
as shown in Figure 3.

(ii) Case 2 (|𝐺
1
| < |𝐺| = |𝐺

2
|). As can be seen in Figure 4,

there are two positive equilibrium points 𝐾
1
and 𝐾

2
. It is

important to note that, however, 𝐾
1
and 𝐾

3
in Figure 3

coincide. Similar to the analysis in case 1,𝐾
2
is asymptotically

stable, and the stability condition of equilibrium point 𝐾
2

satisfies (35).
Since 𝑝(𝑀(𝐾

1
)) = 𝑘

11
𝜇
1
/𝑉
1
+ 𝜇
2
𝑘
12
/𝑉
2

> 0 and
𝑞(𝑀(𝐾

1
)) = 0, it can be determined that 𝐾

1
is a saddle node

by the saddle node rule [26]. According toTheorem 1, we can
draw the dynamics of system (12) as shown in Figure 4. The
same approach also applies to the case |𝐺

1
| = |𝐺| < |𝐺

2
|; the

difference is that𝐾
1
is asymptotically stable and𝐾

2
is a saddle

node equilibrium, and all orbits converge to equilibria 𝐾
1
in

int 𝑅2
+
except 𝐾

2
and the separatrixes of 𝐾

2
.

(iii) Case 3 (|𝐺
1
| ≤ |𝐺

2
| < |𝐺|). In case 3, there is

only one positive equilibrium point 𝐾
2
. By Theorem 1, 𝐾

2
is

asymptotically stable as shown in Figure 5, and the stability
condition of equilibrium point 𝐾

2
satisfies (33). Similar

discussions can be given for the case |𝐺| < |𝐺
1
| ≤ |𝐺

2
| in

which 𝐾
1
is asymptotically stable.

(iv) Case 4 (|𝐺
1
| = |𝐺

2
| = |𝐺|). In this case, the isoclines 𝐿

12

and 𝐿
22
coincide, and all the positive equilibrium points dis-

tribute on the line segment𝐷
1
𝐷
2
. According toTheorem 1, in

int 𝑅2
+
, all orbits of system (12) converge to the line segment

as shown in Figure 6.

(v) Case 5 (|𝐺
2
| < |𝐺

1
|). In this situation, we have similar

discussions with the case 3, and globally stable is𝐾
2
as shown
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in Figure 5. The same principle applies to the condition of
|𝐺| < |𝐺

2
| < |𝐺

1
| that 𝐾

1
is globally stable. In the case of

|𝐺
2
| ≤ |𝐺| < |𝐺

1
| or |𝐺

2
| < |𝐺| ≤ |𝐺

1
|, there is a unique

positive globally stable point𝐾
3
of system (12) in Figure 7.

4. Numerical Simulation

To better understand the proposed model, we carry out
computer simulations with real data from Sina Weibo, a
Chinese microblog. Our data collected by a crowd sourcing
Weibo visual analytic system [27], and the interval time is
from March 31th, 2014, to May 30th, 2014. We extract two
messages published by famous Chinese actors Wen Zhang
andMa Yili about their marriage. In SinaWeibo, Wen Zhang
has 53 706 926 fans, ranked in 7th place and Ma Yili has 34
759 267 fans, ranked in 35th place. Atmidnight ofMarch 31th,
Wen Zhang apologised to his families and devoted fans, and
then his wife Ma Yili forgives him. For their action in saving
marriage, amount of their fans reposted the two messages.
As the repost actions have occurred mainly before 14:00, we
specify a unit time in 15 minutes to statistical analysis among
11:00–14:00 in March 31th. In order to explore the dynamics
process with varied parameters, we put the observations
in our model and then further study the influence of the
competition coefficient (𝜎

12
and 𝜎

21
) in case of messages

propagation with low (or high) critical speed (𝛼 and 𝛽).
We first consider the case that both messages have less

competitive 𝜎
12
< 𝑏𝑉
1
/(𝑎𝑉
1
−2𝛼) and 𝜎

21
< 𝑎𝑉
2
/(𝑏𝑉
2
−2𝛽) at

low critical speed. Figure 8(a) shows the evolutionary trend of
message 1 and message 2 over time. We find that the speed of
the twomessages can be viewed as a nonmonotonic function,
and the velocity curve of message 1 can be divided into
three distinctly different stages. In the initial stage, message
1 appears in OSNs and then attracts more and more users,
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+
a
V
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/
𝜎
2
1

bV2

K3

O aV1
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Figure 7: The unique positive equilibrium 𝐾
3
.

leading to rapid spread of message 1. However, message 1
descends slowly followed by the end of initial stage, because
of the natural dying out of its own as well as the competition
coming from message 2. Specifically, since message 1 is less
competitive than message 2, the growth of message 2 hinders
the spread of message 1 and message 1 will continuously
decay due to the competition. Finally, message 1 arrives at
its equilibrium and then converges to a constant value. The
evolution process of message 2 is similar to message 1. After
a slow growth in the initial stage, message 2 spreads rapidly
and then slows down till a steady state is reached.

The change trends of message 1 and message 2 can
be observed from Figure 8(b). At the beginning, the two
messages grow quickly and then slow down and converge
to a nonzero constant. This process reflects that, with less
competitive and low critical speed, message 1 and message
2 will cooperate with each other in the propagation. Both
of them can attract a certain amount of users, and they can
coexist in a period of time.

In the case of 𝜎
12

< 𝑏𝑉
1
/(𝑎𝑉
1
− 2𝛼) and 𝜎

21
>

𝑎𝑉
2
/(𝑏𝑉
2
− 2𝛽), the message which is more competitive

than the other will survive at the final state. As shown in
Figure 9(a), along with the increasing number of people who
have heard message 2, the speed of message 1 increases at the
beginning and then decreases rapidly. The main reason for
this phenomenon is that the two messages have cooperated
with each other when their speed is lower than the critical
speed at the beginning, and then competed against each
other when their speed is higher than the critical speed
after the initial phase. Finally, only the more competitive
message (𝜎9(𝑎)

21
≫ 𝜎
9(𝑎)

12
) survived in the system. When 𝜎

12
>

𝑏𝑉
1
/(𝑎𝑉
1
−2𝛼) and 𝜎

21
< 𝑎𝑉
2
/(𝑏𝑉
2
−2𝛽), we can get a similar

conclusion that message 2 will vanish at stable state. That is,
the more competitive message can draw the users attention
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and spread widely while the message with lesser competitive
is difficult to attract users and vanished after a while.

The change trends of message 1 and message 2 in
Figure 9(b) is similar to that in Figure 8(b). The difference is
that only message 2 can survive when a final state is reached.
Under the constraint condition of parameters 𝜎9(𝑎)

21
≫ 𝜎
8(𝑎)

21
,

we can make a conclusion that message 2 attracts amount of
users frommessage 1 at low critical speed and spreads widely
in online social networks.

As shown in Figure 10(a), under the condition of 𝜎
12

>

𝑏𝑉
1
/(𝑎𝑉
1
− 2𝛼) and 𝜎

21
> 𝑎𝑉
2
/(𝑏𝑉
2
− 2𝛽), only message 1

survives and message 2 vanishes in steady state, while they
coexist with each other at the final stage in Figure 10(b).
It can be inferred that in strong competitive environment,
the high critical speed promotes the coexistence of the two
messages. At the same time, although restricted by 𝜎

21
< 𝜎
12
,

the velocity values of both message 1 and message 2 in
Figure 10(b) are greater than that in Figure 10(a); it can be
concluded that when the two messages are both competitive,
they will benefit from the high critical speed.

Generally, more competitive messages disseminate more
rapidly than less competitive messages over network. Unfor-
tunately, the situation is often not the case. It can be observed
that under the conditions with the same 𝜎

21
, message 2 can

survive and reach its maximum speed in Figure 9(a), but it
vanished finally in Figure 10(a). The difference exists because
the competition coefficient of message 1 (𝜎

12
) is considerably

larger in Figure 10(a) than that in Figure 9(a) (𝜎10(𝑎)
12

≫

𝜎
9(𝑎)

12
). It means that the advantage of the prior competitive

message will quickly disappear as the competitiveness gap
narrowed. Therefore, under the condition of low critical
speed, it is necessary to adopt Tit-for-Tat-like strategy to
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improve their competitiveness when there already exists a
competitive message in online social network.

5. Conclusions

The majority of studies on information propagation have
focused on a single contagion spreading through the social
network without considering the influence of other con-
tagions. In this paper, we have explored the information
spreading mechanism impacted by cooperative and com-
petitive effectiveness during the process of the propagation
of two types of messages over networks. We developed a
new OSN information propagation model based on Lotka-
Volterra models to demonstrate the dynamics of a specific
cooperation-competition system of these two messages. The
stability of the systemwas proved by the differential equations
and the phase trajectory of the stability theory. The results
of stability analysis further indicated that the differential
equations admit no periodic orbit, and the system can reach
steady state in certain condition.

We proved that two types of messages usually cannot
spread together peacefully, and only one type message sur-
vives till final state. Nevertheless, it produced stable points
in the condition of high (or low) critical speed, which shows
that it is possible for the coexistence of both messages in
competitive propagation of different contagions. Using the
real data collected from Sina Weibo, the results validated
the theoretical analysis and presented another interesting
conclusion that the messages will benefit from the high
critical speed when they are both competitive. If there already
is a competitive message in OSN, it is wise to adopt a Tit-for-
Tat strategy.

As the great massive data are generated every moment
in OSN, the rapid progress of information technology pro-
vides us with an easy way to collect data and observe
the phenomenon that various types of information flow in
the form of cascades on Twitter or other OSNs. Naturally,

the proposed dynamic information propagation model
should be tested and applied in real OSN with large topology
network and vast numbers of the nodes and connections.
These issues will be addressed in future research.
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