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Using the asymptotic iteration and wave function ansatz method, we present exact solutions of the Klein-Gordon equation for the
quark-antiquark interaction and harmonic oscillator potential in the case of the position-dependent mass.

1. Introduction

The movement of a particle with harmonic oscillations
around an equilibrium position creates one of the most
fundamental problems of physics. The basic structure of
different systems such as vibration of the diatomicmolecules,
oscillations of atoms in crystal lattices, or nucleons in core
is a harmonic oscillator problem [1]. Further, the quantum
theory of electromagnetic fields is closely related to the
examples of the harmonic oscillator [2, 3]. When a particle
is in a strong potential field, the relativistic effect must
be considered. However, in relativistic and nonrelativistic
quantum mechanics, many authors have adequately the
harmonic oscillator problem [4, 5]. But, it has never been
investigated for relativistic particles with position-dependent
mass (pdm). Quantummechanical review of relativistic spin-
0 particles with pdm in the harmonic oscillator poten-
tial is very important in terms of understanding physical
behavior of systems as the above-mentioned systems. The
studies of quantum and relativistic quantum systems with
pdm have received increasing attention in the literature.
Systems with pdm have been found to be very useful in
studying the physical and electronic properties of semicon-
ductors, quantum wells and quantum dots, quantum liquids,

3He clusters, graded alloys, and semiconductor heterostruc-
tures [6]. To study the quasi-exactly solvable and exactly solv-
able nonrelativistic Schrödinger, relativistic Klein-Gordon
and Dirac equations in the presence of pdm having a
suitable mass distribution functions in one, three, and/or any
arbitrary D-dimensional cases for different potentials have
been used in different methods by many authors [7–21].

In this study, in addition to the examination of the
harmonic oscillator potential, relativistic spin-0 particles
with pdm have also been investigated in the quark-antiquark
interaction potential. This type of potential and some of
central potentials have recently been studied using different
techniques [22–25]. The quark-antiquark interaction poten-
tial consists of harmonic, linear, and Coulomb potential
terms. As we know, the quark-antiquark interaction poten-
tials are a spherically symmetrical potential. The spherically
symmetrical potentialmodel also presents a good description
of heavy quarkoniummass spectra such as charmonium and
bottomonium. The interaction potentials for such systems
are of a confining type called the Cornell potential. The
Cornell potential consists of two terms, namely, the Coulomb
and linear terms. The Coulomb term is responsible for the
interaction at small distances and the linear term leads to
the confinement. This type of interaction potential is also
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supported by lattice quantum chromodynamics calculations
[26]. The quark-antiquark interaction has also been studied
using the Coulomb term plus the power potential [27].

The organization of this paper is as follows. In the second
section, the AIM is given shortly. In the third section, the
general formalism of the Klein-Gordon equation for spin-
0 particles with pdm has been considered. The relativistic
energy eigenvalues and corresponding eigenfunctions have
been presented for the harmonic oscillator and quark-
antiquark interaction potentials preserved in the fourth and
fifth section, respectively. Finally, conclusions are given in the
last section.

2. Basic Equations of the AIM

We briefly outline the AIM here; the details can be found
in [28–30]. The AIM was proposed to solve second-order
differential equations of the form:

𝑦


= 𝜆
0
(𝑥) 𝑦

+ 𝑠
0
(𝑥) 𝑦, (1)

where 𝜆
0
(𝑥) ̸= 0 and 𝑠

0
(𝑥) are in𝐶

∞
(𝑎, 𝑏), and these variables

are sufficiently differentiable.The differential equation (1) has
a general solution as follows:
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if 𝑛 > 0, for sufficiently large 𝑛,
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𝜆
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, (3)

where

𝜆
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𝑛−1
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𝑛−1 (𝑥) + 𝜆
0 (𝑥) 𝜆𝑛−1 (𝑥) ,

𝑠
𝑛
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0
(𝑥) 𝜆
𝑛−1

(𝑥) , 𝑛 = 1, 2, 3, . . .

(4)

The termination condition of the method together with (4)
can be also written as follows:

𝛿 (𝑥) = 𝜆
𝑛+1

(𝑥) 𝑠
𝑛
(𝑥) − 𝜆

𝑛
(𝑥) 𝑠
𝑛+1

(𝑥) = 0. (5)

For a given potential, the idea is to convert the relativistic
wave equation to the form of (1). Then, 𝑠

0
and 𝜆

0
are

determined and 𝑠
𝑛
and 𝜆

𝑛
parameters are calculated. The

energy eigenvalues are obtained by the termination condition
given by (5). However, the exact eigenfunctions can be
derived from the following wave function generator:

𝑦
𝑛
(𝑥) = 𝐶

2
exp(−∫

𝑥

𝛼
𝑘
𝑑𝑥

) , (6)

where 𝑛 = 0, 1, 2, . . . and 𝑘 is the iteration step number, and it
is greater than 𝑛.

3. Formalism of the Klein-Gordon Equation
with Pdm

In the relativistic quantum mechanics, for spin-0 particles
with pdm, the Klein-Gordon equation is defined as follows:

∇
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(7)

where 𝑉(𝑟) and 𝑆(𝑟) are Lorentz vector and scalar potential,
respectively, 𝑚(𝑟) is mass function, and 𝐸

𝑛𝑙
is the energy of

particle. Let us decompose the radial wave function 𝜓(𝑟) as
follows:

𝜓 (𝑟) =
𝑢 (𝑟)

𝑟
𝑌
𝑙

𝑚
(𝑟) , (8)

where 𝑢(𝑟) is the radial wave function and 𝑌
𝑙

𝑚
(𝑟) is the

angular dependent spherical harmonics, and this reduces (8)
into the following Schrödinger-like equation with position-
dependent mass:

𝑑
2
𝑢 (𝑟)

𝑑𝑟2
+

1

ℎ2𝑐2

× ([𝐸
𝑛𝑙
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2
− [𝑚 (𝑟) 𝑐

2
+ 𝑆 (𝑟)]

2

−
𝑙 (𝑙 + 1)

𝑟2
)

× 𝑢 (𝑟) = 0.

(9)

4. In Case of Harmonic Oscillator Potential

4.1. The Eigenvalues. In case of harmonic oscillator to inves-
tigate spin-0 particles with pdm, we should solve (9). In this
solution, we use atomic units ℎ = c = 1. However, in (9),
we prefer to use mass function similar to type of harmonic
oscillator potential as follows:

𝑚(𝑟) = 𝑚
0
+

1

2
𝑘𝑟
2
, (10)

where 𝑚
0
and 𝑘 are positive constants. The selection as in

(10) of position dependent mass function is more suitable
both physically and mathematical. Already, in physical appli-
cations, the position-dependent mass creates a new effective
potential by shifting potential profile of the system.

In this study, in the absence of scalar potential, vector
harmonic oscillator potential is defined as

𝑉 (𝑟) =
1

2
𝑚 (𝑟) 𝜔

2
𝑟
2
, (11)

where 𝜔 = √𝑘/𝑚(𝑟) is the angular frequency and 𝑘 is elastic
coefficient.
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In the presence of vector potential and by taking
ℎ = 𝑐 = 1, if (10) and (11) are inserted into (9), it is obtained
that

[
𝑑
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𝑑𝑟2
+ 𝜉
0
− 𝜉
1
𝑟
2
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𝜉
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0
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2
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2
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/2, respectively. Therefore, the

reasonable physical wave function is proposed as follows:
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Substituting (13) into (12), we have second-order homoge-
neous linear differential equation:
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Defining a new variable 𝑧 = √𝜉
1
𝑟
2, so doing, we have solvable

differential equation by AIM as follows:
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By comparing (15) with (1), 𝜆
0
(𝑧) and 𝑠

0
(𝑧) values are

obtained, and using (4) we calculate 𝜆
𝑛
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way,
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(16)

Combining these results obtained by the AIM with quantiza-
tion condition given by (5) yields

𝑠
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1
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𝜆
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If the set of equations (17a), (17b), and (17c) are gener-
alized, the indirect energy eigenvalues statement turns out to
be

𝜉
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=
1

2
√𝜉
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When (18) and 𝜉
0
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2
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0
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energy eigenvalues that
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)
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4.2. The Eigenfunctions. The exact eigenfunctions can be
derived from the following generator:

𝑓
𝑛
(𝑧) = 𝐶

2
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Using (3) and (20), the eigenfunctions are obtained as follows:
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Finally, the following general formula for the exact solutions
𝑓
𝑛
(𝑧) is acquired as

𝑓
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Hence, we write the total radial wavefunction as follows:

𝑢
𝑛𝑙
(𝑟) = 𝑁𝑟

(1/2)(1+√1+4𝜉
2
)
𝑒
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(
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𝑟
2
) ,

(23)

where 𝑁 is normalization constant.

5. In Case of Quark-Antiquark Interaction
Potential

5.1. The Eigenvalues and Corresponding Eigenfunctions. In
this section, we present the solution of the Klein-Gordon
equation for the quark-antiquark interaction potential. This
potential is defined as

𝑉 (𝑟) = 𝑎𝑟
2
+ 𝑏𝑟 −

𝑐

𝑟
, 𝑎 > 0, (24)

where 𝑎, 𝑏, and 𝑐 are constants. In atomic units ℎ = 𝑐 = 1,
we solve (9) in the absence of scalar potential. Consider the
position-dependent mass function:

𝑚(𝑟) = 𝑚
0
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2
+ 𝑏𝑟 −

𝑐

𝑟
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On substituting (24) and (25) into (9), we find that
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𝑑
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− 𝜀
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0
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To solve (26), applying an ansatz to the radial wavefunc-
tion 𝑢

𝑙
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Editing (28),
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+ ∑
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In (31), if the first nonvanishing coefficient is 𝑎
0
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0
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𝐶
0
= 𝛿 (𝛿 − 1) − 𝑙 (𝑙 + 1) = 0. (32)

We choose 𝛿 = 𝑙 + 1 as a physically acceptable solution from
(32). Moreover, if the 𝑝th nonvanishing coefficient is 𝑎

𝑝
̸= 0,

but 𝑎
𝑝+1

= 𝑎
𝑝+2

= ⋅ ⋅ ⋅ = 0, then, from (31), it has to be𝐴
𝑝
= 0.

At that rate,

𝛾 + 2𝛾 (𝑝 + 𝛿) + 𝜀 = 0. (33)

Using together (29) and (33), we obtain the energy eigenval-
ues. Namely,

𝑏 (𝐸
𝑛𝑙

+ 𝑚
0
)

𝛼
+

2𝑏 (𝐸
𝑛𝑙

+ 𝑚
0
)

𝛼
(𝑝 + 𝑙 + 1) + 𝐸

2

𝑛𝑙
− 𝑚
2

0
= 0.

(34)

𝐴
𝑛
, 𝐵
𝑛
, and 𝐶

𝑛
must satisfy the determinant relation for a

nontrivial solution:

det



𝐵
0

𝐶
1

. . . . . . . . . 0

𝐴
0

𝐵
1

𝐶
2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .

...
...

...
. . .

...
...

0 0 0 0 𝐴
𝑝−1

𝐵
𝑝



= 0. (35)

In order to appreciate this method, we present the exact
solutions for the cases 𝑝 = 0, 1 as follows.

If 𝑝 = 0, det |𝐵
0
| = 0 and 𝐵

0
= 0. So,

𝐵
0
= 0 ⇒ 2 (𝐸

0
+ 𝑚
0
) 𝑐 = −2 (𝑙 + 1) 𝛼. (36)

We will obtain energy eigenvalues by using (34). But, we can-
not ignore (36) Because it is a restriction on the parameters
of the potential and the 𝑙 quantum number.

The corresponding eigenfunction for 𝑝 = 0 is given as

𝑢
0

𝑙
(𝑟) = 𝑎

0
exp [−

√𝜀
0
+ 𝜀
1
+ √𝜀
0
− 𝜀
1

2
𝑟

−
√𝜀
0
+ 𝜀
1
− √𝜀
0
− 𝜀
1

4
𝑟
2
] 𝑟
𝛿
,

(37)

where 𝑎
0
is the normalization constant.
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If 𝑝 = 1, det 
𝐵
0
𝐶
1

𝐴
0
𝐵
1


= 0. In this case, it is obtained that

(
𝜀
1

2𝛼
+
𝜀
1

𝛼
(𝑙+1)+𝜀) 2(𝑙+1) − (𝜀

2
+ 2𝛼 (𝑙 + 1)) (𝜀

2
+ 2𝛼 (𝑙 + 2))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 𝐸
1

= 0,

(38)

which is a restriction on the parameters of the potential and
the angular momentum quantum number.

The corresponding eigenfunction for 𝑝 = 1 is given as

𝑢
1

𝑙
(𝑟) = (𝑎

0
+ 𝑎
1
𝑟) exp [−

√𝜀
0
+ 𝜀
1
+ √𝜀
0
− 𝜀
1

2
𝑟

−
√𝜀
0
+ 𝜀
1
− √𝜀
0
− 𝜀
1

4
𝑟
2
] 𝑟
𝛿
,

(39)

where 𝑎
0
is the normalization constant.

Following in this way, we can generate a class of exact
solutions by setting 𝑝 = 1, 2, . . .. Generally, if 𝑎

𝑝
̸= 0, but

𝑎
𝑝+1

= 𝑎
𝑝+2

= ⋅ ⋅ ⋅ = 0. So, the energy eigenvalues 𝐸
𝑝
is

obtained by using (34). The corresponding eigenfunction is

𝑢
𝑝

𝑙
(𝑟) = (𝑎

0
+ 𝑎
1
𝑟 + ⋅ ⋅ ⋅ + 𝑎

𝑝
𝑟
𝑝
)

× exp [−
√𝜀
0
+ 𝜀
1
+ √𝜀
0
− 𝜀
1

2
𝑟

−
√𝜀
0
+ 𝜀
1
− √𝜀
0
− 𝜀
1

4
𝑟
2
] 𝑟
𝛿
,

(40)

where 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑝
are normalization constants.

6. Conclusions

This paper has presented a different approach, the AIM, to
calculate the bound state solutions of the relativistic Klein-
Gordon with the harmonic oscillator potential in the case
of the pdm. For arbitrary quantum number 𝑙 state, we have
exactly obtained the energy eigenvalues and corresponding
eigenfunctions for the case of mass function by AIM. The
advantage of the AIM is that it gives the eigenvalues directly
by transforming the second-order differential equation into
a form of 𝑦


= 𝜆
0
(𝑟)𝑦

+ 𝑠
0
(𝑟)𝑦. The exact wavefunctions

are easily constructed by iterating the values of 𝑠
0
and 𝜆

0
.

The method presented in this study is general and worth
extending to the solution of other interactions. For the quark-
antiquark interaction potential, to solve Klein-Gordon equa-
tion with pdm, we have used wave function ansatz method.
While using this method, the most important factor to be
considered is a corresponding restriction on the parameters
of the quark-antiquark potential and the 𝑙 quantum number.
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