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This paper focuses on the filtering problems of nonlinear discrete-time stochastic dynamic systems, such as themodel simplification,
noise characteristics uncertainty, initial conditions uncertainty, or system parametric variation. Under these circumstances, the
measurements of system have one sampling time random delay. A new method, that is, strong tracking filtering algorithm of
randomly delayed measurements (STF/RDM) for nonlinear systems based on recursive operating by analytical computation and
first-order linear approximations, is proposed; a principle of extended orthogonality is presented as a criterion of designing the
STF/RDM, and through the residuals between available and predicted measurements, the formula of fading factor is obtained.
Under the premise of using the extended orthogonality principle, STF/RDM proposed in this paper can adjust the fading factor
online via calculating the covariance of residuals, and then the gain matrices of the STF/RDM adjust in real time to enhance the
performance of the proposed method. Lastly, in order to prove that the performance of STF/RDM precedes existing EKF method,
the experiment of tracking maneuvering aircraft is carried out.

1. Introduction

Filtering task is obtaining state variables from a series of noisy
measurements available online. The main aim is to minimize
the estimation error, which is referred to as the residual or
innovation vector.

Currently, most suboptimal methods for obtaining the
posterior density in nonlinear discrete-time stochastic dyna-
mic systems are using global and local approximation meth-
ods. Taking the point-mass filter based on adaptive algorithm
[1] and particle filters with Gaussian mixtures based on
Gaussian mixture approximation [2], for example, it is the
advantage of the global approximate approach that any clear
assumption pertaining to the form of posterior density is not
needed. Although the global methods have strong adaptabil-
ity, they suffer from enormous computational complexity. In
contrast, the local methods have simple design of the filter
and fast implementing speed, and the performance of this
method is always with acceptable accuracy in actual applica-
tions. In local methods, the form of posterior density usually

is assumed to be Gaussian. Sometimes several local filters can
be derived without an assumption on the density (just the
first two moments are required) such as extended Kalman
filter or unscented Kalman filter. Up till now, there are plenty
of variations about local methods of approximation, such as
the extended Kalman filter (EKF) based on the method of
linearization [3], the central-difference Kalman filter (CDKF)
based on the interpolationmethod [4], the unscentedKalman
filter (UKF) based on the method of unscented transform
[5], the quadrature Kalman filter (QKF) based on the rule
of Gauss-Hermite [6], and the cubature Kalman filter (CKF)
based on the cubature rule of spherical-radial cubature [7].
However, since the aforementioned state estimationmethods
are all formulated under the assumption of statistics of the
noises and system parameters accurate modeling, in real
applications they have some disadvantages; for example, the
uncertainties in themodel, initial conditions, or noise charac-
teristics may lead to bias in the estimation process. In order
to overcome the above disadvantages, one solution is to intro-
duce fading factors in the state error covariance matrix based
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on the residual sequence.This method is named as the strong
tracking filter (STF), which was proposed by Zhou and Frank
[8–11].

In general, all the above filtering estimations often con-
sider the fact that in real time themeasurements generated by
system are available, but the measurements directly obtained
are affected by random delay in many actual applications.
Therefore, the problem of filtering having randomly delayed
measurements has been attracting wide attention [12–15], in
nonlinear state estimation. In [12], two modified filtering
algorithms, EKF and UKF, with one sampling time randomly
delayed measurements have been proposed; an improved
unscented filtering algorithm in [13] was proposed based on
two-step randomly delayed measurements; the literature [14]
considered one-stage prediction, filtering, and fixed-point
smoothing problems in nonlinear discrete-time stochastic
systems having one-step randomly delayedmeasurements; in
this situation, the recursive estimation algorithm, that is, the
signal produced by state-space model is uncertain and only
the covariance information can be utilized, has been pro-
posed; recently, considering observations of one-step ran-
domly delayed measurements, a generic framework of Gaus-
sian approximation (GA) filter has been given in [15].

To overcome the common disadvantages of filtering
method having one-step randomly delayed measurements
and normal filtering method, here, a novel STF/RDM is pro-
posed; an extended orthogonality principle is presented as a
criterion of designing the STF/RDM and through the resid-
uals between available and predicted measurements, the
formula of fading factor is obtained. Since the STF/RDM can
implement the online tuning of the fading factor by monitor-
ing the covariance of residuals, the gain of the STF/RDMwill
be adjusted in real time to enhance performance of ESFT.

The structure of this paper is as follows. The basis of the-
ory and elementary knowledge about the existing EKF having
one-step randomly delayed measurements is reviewed in
Section 2. Then, the extended orthogonality principle which
is the basis of STF/RDM is proposed in Section 3. There-
after, in Section 4, the STF/RDM having one-step randomly
delayed measurements is derived. In Section 5, simulation
experiment on tracking a maneuvering aircraft is imple-
mented to compare the performance of the STF/RDM with
existing EKF. Finally, Section 6 gives some conclusions.

Throughout this paper, 𝐸[⋅] stands for mathematical
expectation; 𝐼 stands for the unit matrix; diag{⋅ ⋅ ⋅ } denotes
a block-diagonal matrix; the superscripts −1, 𝑇, ∧, and ∼,
respectively, denote the inverse matrix, the matrix transpo-
sition, the estimate, and the estimation error. For example, 𝑥
stands for the estimate of variable 𝑥 and 𝑥 = 𝑥 − 𝑥 stands for
the estimate error of variable 𝑥.

2. Problem Formulation and Preliminaries

In this section, the nonlinear model having one-step ran-
domly delayed observations and the filtering algorithm
derived from this model are reviewed.

2.1. Nonlinear System Model. Consider a nonlinear, discrete-
time, stochastic system as state model shown by

𝑥
𝑘+1

= 𝑓
𝑘
(𝑥
𝑘
) + 𝑤
𝑘
, 𝑘 ≥ 0 (1)

and themodel of one sampling randomly delayed observation

𝑧
𝑘
= ℎ
𝑘
(𝑥
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, 𝑘 ≥ 1, (2)
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for all 𝑘, the nonlinear functions 𝑓
𝑘
and ℎ

𝑘
are infinitely

continuously differentiable, and {𝛾
𝑘
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where𝑝
𝑘
represents the probability of a delay inmeasurement

at time 𝑘.
Substituting (2) into (3) gives

𝑦
𝑘+1

= (1 − 𝛾
𝑘
) [ℎ
𝑘+1
(𝑥
𝑘+1
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(5)

In (1)–(3), assume that 𝑥
0
, {𝑤
𝑘
; 𝑘 ≥ 0}, {V

𝑘
; 𝑘 ≥ 1}, and {𝛾

𝑘
; 𝑘 >

1} are mutually independent.
Obviously, the Bernoulli variable in (3) imitates the

random delay in the following sense: at each time 𝑘 > 1, if
𝛾
𝑘
= 1, then 𝑦

𝑘
= 𝑧
𝑘−1

which means that the measurement
is one sampling time randomly delayed; otherwise, if 𝛾

𝑘
= 0,

then 𝑦
𝑘
= 𝑧
𝑘
which means that the measurement is updated.

2.2. Extended Kalman Filter with One-Step Randomly Delayed
Observations. In [15], a general and common framework of
Gaussian approximation (GA) applied in the system shown
by (1)–(3) has been presented; under these circumstances, the
measurements with one sampling time random delay often
occur. Here, the functions of one-step posterior predictive
probability density 𝑝(𝑥

𝑘+1
| 𝑌
𝑘
) and 𝑝(𝑦

𝑘+1
| 𝑌
𝑘
) are all

assumed to be Gaussian, where 𝑌
𝑘
= {𝑦
𝑖
}
𝑘

𝑖=1
is the set of

the available measurements in (3). In (5), it is clear that the
Gaussian approximation of 𝑝(𝑥

𝑘+1
| 𝑌
𝑘+1
) and 𝑝(V

𝑘+1
| 𝑌
𝑘+1
)

needs to be known when deriving a GA filter for the system
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in (1)–(3).Therefore, the augmented state vector is defined as
follows:

𝑥
𝑎

𝑘+1
= (

𝑥
𝑘+1

V
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) , (6)
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In [15], the equations describing theGaussian approxima-
tion (GA) filter applied in the system shown by (1)–(3) are as
follows:
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express the gain matrices of the filtering estimated state and
measurement noise. Based on (9)–(19), the extended Kalman
filter in [12] can be described by the following equations.

Assuming that the 𝑥𝑎
𝑘|𝑘

and 𝑃
𝑎

𝑘|𝑘
at time 𝑘 have been
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𝑘
(𝑥
𝑘
) and ℎ

𝑘
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𝑘
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≈ ℎ
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𝑘
= 𝜕𝑓
𝑘
(𝑥
𝑘
)/𝜕𝑥
𝑘
|
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𝑘
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𝑘
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𝐹
𝑇
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Moreover, given 𝑥
𝑘+1|𝑘

and 𝑃
𝑘+1|𝑘

by (22) and (23), by
linearization of ℎ

𝑘+1
(𝑥
𝑘+1
) with the first term of the Taylor

series expansion about 𝑥
𝑘+1|𝑘
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𝑧
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− 𝑥
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where𝐻
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, 𝑃𝑥𝑧
𝑘+1|𝑘

, and 𝑃𝑥𝑧
𝑘+1,𝑘|𝑘

are computed by the linear
Kalman filter as follows:
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= ℎ
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= ℎ
𝑘
(𝑥
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𝑃
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= 𝐻
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𝑃
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𝐻
𝑇

𝑘+1
+ 𝑅
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𝑃
𝑧𝑧

𝑘|𝑘
= 𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐻
𝑘
𝑃
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𝑘
𝑃
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𝑇
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𝑃
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𝐻
𝑇
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𝑃
𝑥𝑧
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= 𝐹
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𝑃
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𝐻
𝑇
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+ 𝐹
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𝑃
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At time 𝑘 + 1, combining (22)-(23) and (25)–(30) with (9)–
(19) computes 𝑥𝑎

𝑘+1|𝑘+1
and 𝑃𝑎

𝑘+1|𝑘+1
in (7). For the derivation

process of (20), (21), (24), and (26), see the literature [12].

3. Extended Orthogonality Principle

As is known to all, model mismatch due to model sim-
plification, noise characteristics uncertainty, initial condi-
tions uncertainty, or system parametric variation causes the
robustness of EKF to be bad and even diverging [16, 17].
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Under the orthogonality principle, the literature [18] first pre-
sented the strong tracking filter (STF) applied in nonlinear
systems with white noise.The excellent characteristics of STF
are described as follows:

(1) It has strong robustness when the model is uncertain.

(2) For the state changing suddenly or slowly and even
the system reaching a steady state or not, it has
excellent ability of tracking to the states.

(3) It has moderate computational complexity.

Further, we hold opinion that STF fit copingwith the problem
of model uncertainties and other unpredictable disturbances
in nonlinear state estimation that have one-step randomly
delayed observations.

The standard STF cannot be directly applied to the state
estimation with one-step randomly delayed observations,
because of the arbitrarily selected pairs of residuals, in
orthogonality principle of standard STF, which is calculated
according to all observations having been updated.Therefore,
in the following section, STF/RDM is proposed according to
the principle of extended orthogonality applied in fusion one-
step randomly delayed observations efficiently.

Definition 1 (extended orthogonality principle). For the
discrete-time nonlinear process having one-step randomly
delayed observations in (1)–(3), (9), (10), and (22), the suf-
ficient condition of the augmented state estimator is called a
strong tracking filter that the criteria must satisfy (through
choosing time varying gain matrices𝐾𝑥

𝑘+1
and𝐾V

𝑘+1
online):

𝐸 {(𝑥
𝑎

𝑘+1
− 𝑥
𝑎

𝑘+1|𝑘+1
) (𝑥
𝑎

𝑘+1
− 𝑥
𝑎

𝑘+1|𝑘+1
)
𝑇

} = min, (31)

𝐸 {𝑦
𝑘+1+𝑗|𝑘+𝑗

𝑦
𝑇

𝑘+1|𝑘
} = 0,

𝑘 = 0, 1, 2, . . . ; 𝑗 = 1, 2, . . . ,

(32)

where the criteria of minimum mean square error (MMSE)
is shown as (31), the condition of orthogonality is shown as
(32), in which the condition is that all of the residuals should
be mutually orthogonal at any time.

Remark 2. Equation (31) is just the criterion of the existing
EKF, the derivation of which for the problem is presented in
the Appendix. Equation (32) is the core formulation of exten-
ded orthogonality principle; using other criteria to replace
(31), the deformation of extended orthogonality principle can
be obtained. Therefore, once (32) was introduced into the
original filter, it has the characteristics of STF.

4. Derivation of the STF/RDM

In this section, an STF/RDM algorithm is derived according
to the principle of extended orthogonality. It is easy to find
that the idea of the EKF with one-step randomly delayed
observations depends upon the past measurement data and

the heavy reliance may lead to diverge state estimation. In
order to restrain the divergence, the filter should be capable
of eliminating the effect of past data from a current state esti-
mate if these data are no longermeaningful.The literature [18]
presented a method to modify the covariance of state error at
time 𝑘 through introducing the fading factor of suboptimal
as follows:

𝑃
𝑘|𝑘
= 𝜆
𝑘+1
𝑃
𝑘|𝑘
. (33)

Then, the covariance of predicted state error is also modified
through substituting (33) into (23) as follows:

𝑃
𝑘+1|𝑘

= 𝜆
𝑘+1
𝐹
𝑘
𝑃
𝑘|𝑘
𝐹
𝑇

𝑘
+ 𝑄
𝑘
, (34)

where 𝜆
𝑘+1

≥ 1. As a consequence, the influence of the
latest measurement data in state estimation is dominant and
divergence is restrained.

The purpose of the STF/RDM is to impair the influence
of the historical data when they are no longer significant, by
using a time varying suboptimal fading factor, andmodify the
gainmatrices online so that the filter has strong tracking abil-
ity.Therefore, a key problem in STF/RDM is how to calculate
the suboptimal fading factor 𝜆

𝑘+1
according to the principle

of extended orthogonality.
Substituting (21) and (24)–(26) into (15) yields

𝑦
𝑘+1|𝑘

= (1 − 𝛾
𝑘+1
) [𝐻
𝑘+1
(𝑥
𝑘+1

− 𝑥
𝑘+1|𝑘

) + V
𝑘+1
]

+ 𝛾
𝑘+1
[𝐻
𝑘
(𝑥
𝑘
− 𝑥
𝑘|𝑘
) + V
𝑘
− V̂
𝑘|𝑘
]

+ (𝛾
𝑘+1

− 𝑝
𝑘+1
) [ℎ
𝑘
(𝑥
𝑘|𝑘
) − ℎ
𝑘+1
(𝑥
𝑘+1|𝑘

) + V̂
𝑘|𝑘
] .

(35)

Using (20) minus (22) yields

𝑥
𝑘+1

− 𝑥
𝑘+1|𝑘

= 𝐹
𝑘
(𝑥
𝑘
− 𝑥
𝑘|𝑘
) + 𝑤
𝑘
. (36)

Substituting (22) and (36) into (35) yields

𝑦
𝑘+1|𝑘

= [(1 − 𝛾
𝑘+1
)𝐻
𝑘+1
𝐹
𝑘
+ 𝛾
𝑘+1
𝐻
𝑘
] (𝑥
𝑘
− 𝑥
𝑘|𝑘
)

+ (1 − 𝛾
𝑘+1
)𝐻
𝑘+1
𝑤
𝑘
+ (1 − 𝛾

𝑘+1
) V
𝑘+1

+ 𝛾
𝑘+1
(V
𝑘
− V̂
𝑘|𝑘
) + (𝛾
𝑘+1

− 𝑝
𝑘+1
)

⋅ [ℎ
𝑘
(𝑥
𝑘|𝑘
) − ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) + V̂

𝑘|𝑘
] .

(37)

Using a similar derivation method yields

𝑦
𝑘+1+𝑗|𝑘+𝑗

= [(1 − 𝛾
𝑘+1+𝑗

)𝐻
𝑘+1+𝑗

𝐹
𝑘+𝑗

+ 𝛾
𝑘+1+𝑗

𝐻
𝑘+𝑗
]

⋅ (𝑥
𝑘+𝑗

− 𝑥
𝑘+𝑗|𝑘+𝑗

) + (1 − 𝛾
𝑘+1+𝑗

)
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⋅ 𝐻
𝑘+1+𝑗

𝑤
𝑘+𝑗
(1 − 𝛾

𝑘+1+𝑗
) V
𝑘+1+𝑗

+ 𝛾
𝑘+1+𝑗

(V
𝑘+𝑗

− V̂
𝑘+𝑗|𝑘+𝑗

) + (𝛾
𝑘+1+𝑗

− 𝑝
𝑘+1+𝑗

)

⋅ [ℎ
𝑘+𝑗
(𝑥
𝑘+𝑗|𝑘+𝑗

)

− ℎ
𝑘+1+𝑗

(𝑓
𝑘+𝑗
(𝑥
𝑘+𝑗|𝑘+𝑗

)) + V̂
𝑘+𝑗|𝑘+𝑗

] .

(38)
Substituting (38) into (32) yields

𝐸 {𝑦
𝑘+1+𝑗|𝑘+𝑗

𝑦
𝑇

𝑘+1|𝑘
} = 𝐸 {[[(1 − 𝛾

𝑘+1+𝑗
)𝐻
𝑘+1+𝑗

𝐹
𝑘+𝑗

+ 𝛾
𝑘+1+𝑗

𝐻
𝑘+𝑗
] (𝑥
𝑘+𝑗

− 𝑥
𝑘+𝑗|𝑘+𝑗

) + (1 − 𝛾
𝑘+1+𝑗

)

⋅ 𝐻
𝑘+1+𝑗

𝑤
𝑘+𝑗

+ (1 − 𝛾
𝑘+1+𝑗

) V
𝑘+1+𝑗

+ 𝛾
𝑘+1+𝑗

(V
𝑘+𝑗

− V̂
𝑘+𝑗|𝑘+𝑗

) + (𝛾
𝑘+1+𝑗

− 𝑝
𝑘+1+𝑗

) [ℎ
𝑘+𝑗
(𝑥
𝑘+𝑗|𝑘+𝑗

)

− ℎ
𝑘+1+𝑗

(𝑓
𝑘+𝑗
(𝑥
𝑘+𝑗|𝑘+𝑗

)) + V̂
𝑘+𝑗|𝑘+𝑗

]] 𝑦
𝑇

𝑘+1|𝑘
} .

(39)

Since the initial state 𝑥
0
, {𝑤
𝑘
; 𝑘 ≥ 0}, {V

𝑘
; 𝑘 ≥ 1}, and {𝛾

𝑘
; 𝑘 >

1} that can generate the state and observations are mutually

independent and taking (4) into account, then the (39) can be
simplified to

𝐸 {𝑦
𝑘+1+𝑗|𝑘+𝑗

𝑦
𝑇

𝑘+1|𝑘
}

= [(1 − 𝑝
𝑘+1+𝑗

)𝐻
𝑘+1+𝑗

𝐹
𝑘+𝑗

+ 𝑝
𝑘+1+𝑗

𝐻
𝑘+𝑗
]

⋅ 𝐸 {(𝑥
𝑘+𝑗

− 𝑥
𝑘+𝑗|𝑘+𝑗

) 𝑦
𝑇

𝑘+1|𝑘
} .

(40)

Based on (9), (20), and (22) and by a similar derivation
method applied in (38), this yields

𝑥
𝑘+𝑗

− 𝑥
𝑘+𝑗|𝑘+𝑗

= 𝑥
𝑘+𝑗

− 𝑥
𝑘+𝑗|𝑘+𝑗−1

− 𝐾
𝑥

𝑘+𝑗
𝑦
𝑘+𝑗|𝑘+𝑗−1

= {[𝐼 − (1 − 𝛾
𝑘+𝑗
)𝐾
𝑥

𝑘+𝑗
𝐻
𝑘+𝑗
] 𝐹
𝑘+𝑗−1

− 𝐾
𝑥

𝑘+𝑗
𝛾
𝑘+𝑗
𝐻
𝑘+𝑗−1

} (𝑥
𝑘+𝑗−1

− 𝑥
𝑘+𝑗−1|𝑘+𝑗−1

) + 𝑤
𝑘+𝑗−1

− 𝐾
𝑥

𝑘+𝑗
{(1 − 𝛾

𝑘+𝑗
)𝐻
𝑘+𝑗
𝑤
𝑘+𝑗−1

+ (1 − 𝛾
𝑘+𝑗
) V
𝑘+𝑗

+ 𝛾
𝑘+𝑗
(V
𝑘+𝑗−1

− V̂
𝑘+𝑗−1|𝑘+𝑗−1

) + (𝛾
𝑘+𝑗

− 𝑝
𝑘+𝑗
)

⋅ [ℎ
𝑘+𝑗−1

(𝑥
𝑘+𝑗−1|𝑘+𝑗−1

)

− ℎ
𝑘+𝑗
(𝑓
𝑘+𝑗−1

(𝑥
𝑘+𝑗−1|𝑘+𝑗−1

)) + V̂
𝑘+𝑗−1|𝑘+𝑗−1

]} .

(41)

Substituting (41) into (40) yields

𝐸 {𝑦
𝑘+1+𝑗|𝑘+𝑗

𝑦
𝑇

𝑘+1|𝑘
} = [(1 − 𝑝

𝑘+1+𝑗
)𝐻
𝑘+1+𝑗

𝐹
𝑘+𝑗

+ 𝑝
𝑘+1+𝑗

𝐻
𝑘+𝑗
] 𝐸 {[{[𝐼 − (1 − 𝛾

𝑘+𝑗
)𝐾
𝑥

𝑘+𝑗
𝐻
𝑘+𝑗
] 𝐹
𝑘+𝑗−1

− 𝐾
𝑥

𝑘+𝑗
𝛾
𝑘+𝑗
𝐻
𝑘+𝑗−1

}

⋅ (𝑥
𝑘+𝑗−1

− 𝑥
𝑘+𝑗−1|𝑘+𝑗−1

) + 𝑤
𝑘+𝑗−1

− 𝐾
𝑥

𝑘+𝑗
{(1 − 𝛾

𝑘+𝑗
)𝐻
𝑘+𝑗
𝑤
𝑘+𝑗−1

+ (1 − 𝛾
𝑘+𝑗
) V
𝑘+𝑗

+ 𝛾
𝑘+𝑗
(V
𝑘+𝑗−1

− V̂
𝑘+𝑗−1|𝑘+𝑗−1

)

+ (𝛾
𝑘+𝑗

− 𝑝
𝑘+𝑗
) [ℎ
𝑘+𝑗−1

(𝑥
𝑘+𝑗−1|𝑘+𝑗−1

) − ℎ
𝑘+𝑗
(𝑓
𝑘+𝑗−1

(𝑥
𝑘+𝑗−1|𝑘+𝑗−1

)) + V̂
𝑘+𝑗−1|𝑘+𝑗−1

]}] 𝑦
𝑇

𝑘+1|𝑘
} .

(42)

Again, since the initial state 𝑥
0
, {𝑤
𝑘
; 𝑘 ≥ 0}, {V

𝑘
; 𝑘 ≥ 1}, and

{𝛾
𝑘
; 𝑘 > 1} that can generate the state and observations are

mutually independent and taking (4) into account, then (42)
can be simplified to

𝐸 {𝑦
𝑘+1+𝑗|𝑘+𝑗

𝑦
𝑇

𝑘+1|𝑘
} = [(1 − 𝑝

𝑘+1+𝑗
)𝐻
𝑘+1+𝑗

𝐹
𝑘+𝑗

+ 𝑝
𝑘+1+𝑗

𝐻
𝑘+𝑗
] {[𝐼 − (1 − 𝑝

𝑘+𝑗
)𝐾
𝑥

𝑘+𝑗
𝐻
𝑘+𝑗
] 𝐹
𝑘+𝑗−1

− 𝐾
𝑥

𝑘+𝑗
𝑝
𝑘+𝑗
𝐻
𝑘+𝑗−1

}

⋅ 𝐸 {[𝑥
𝑘+𝑗−1

− 𝑥
𝑘+𝑗−1|𝑘+𝑗−1

] 𝑦
𝑇

𝑘+1|𝑘
} .

(43)

From (40) and (43), the following form can be obtained by
using an iterative operation

𝐸 {𝑦
𝑘+1+𝑗|𝑘+𝑗

𝑦
𝑇

𝑘+1|𝑘
} = [(1 − 𝑝

𝑘+1+𝑗
)𝐻
𝑘+1+𝑗

𝐹
𝑘+𝑗

+ 𝑝
𝑘+1+𝑗

𝐻
𝑘+𝑗
]

𝑗

∏

𝑖=2

{[𝐼 − (1 − 𝑝
𝑘+𝑖
)𝐾
𝑥

𝑘+𝑖
𝐻
𝑘+𝑖
] 𝐹
𝑘+𝑖−1

− 𝐾
𝑥

𝑘+𝑖
𝑝
𝑘+𝑖
𝐻
𝑘+𝑖−1

} 𝐸 {[𝑥
𝑘+1

− 𝑥
𝑘+1|𝑘+1

] 𝑦
𝑇

𝑘+1|𝑘
} .

(44)

Equation (9) yields

𝐸 {[𝑥
𝑘+1

− 𝑥
𝑘+1|𝑘+1

] 𝑦
𝑇

𝑘+1|𝑘
}

= 𝐸 {[𝑥
𝑘+1

− 𝑥
𝑘+1|𝑘

− 𝐾
𝑥

𝑘+1
𝑦
𝑘+1|𝑘

] 𝑦
𝑇

𝑘+1|𝑘
}

= 𝐸 {[𝑥
𝑘+1

− 𝑥
𝑘+1|𝑘

] 𝑦
𝑇

𝑘+1|𝑘
}

− 𝐾
𝑥

𝑘+1
𝐸 {𝑦
𝑘+1|𝑘

𝑦
𝑇

𝑘+1|𝑘
}

= 𝐸 {𝑥
𝑘+1|𝑘

𝑦
𝑇

𝑘+1|𝑘
} − 𝐾
𝑥

𝑘+1
𝐸 {𝑦
𝑘+1|𝑘

𝑦
𝑇

𝑘+1|𝑘
}

= 𝑃
𝑥𝑦

𝑘+1|𝑘
− 𝐾
𝑥

𝑘+1
𝐸 {𝑦
𝑘+1|𝑘

𝑦
𝑇

𝑘+1|𝑘
} .

(45)

Substituting (29) and (30) into (18) yields

𝑃
𝑥𝑦

𝑘+1|𝑘
= (1 − 𝑝

𝑘+1
) 𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1

+ 𝑝
𝑘+1
(𝐹
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐹
𝑘
𝑃
𝑥V
𝑘|𝑘
) .

(46)
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Substituting (46) into (45) yields

𝐸 {[𝑥
𝑘+1

− 𝑥
𝑘+1|𝑘+1

] 𝑦
𝑇

𝑘+1|𝑘
}

= (1 − 𝑝
𝑘+1
) 𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1

+ 𝑝
𝑘+1
(𝐹
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐹
𝑘
𝑃
𝑥V
𝑘|𝑘
) − 𝐾
𝑥

𝑘+1
𝑉
0

𝑘+1
,

(47)

where𝑉0
𝑘+1

≜ 𝐸{𝑦
𝑘+1|𝑘

𝑦
𝑇

𝑘+1|𝑘
} is the covariance of the residual.

Substituting (17), (22), (25)–(28), and (46) into (14) yields

𝐾
𝑥

𝑘+1
= [(1 − 𝑝

𝑘+1
) 𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1

+ 𝑝
𝑘+1
(𝐹
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐹
𝑘
𝑃
𝑥V
𝑘|𝑘
)] ((1 − 𝑝

𝑘+1
)

⋅ (𝐻
𝑘+1
𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1
+ 𝑅
𝑘+1
)

+ 𝑝
𝑘+1
(𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
+ (𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
)
𝑇

+ 𝑃
VV
𝑘|𝑘
)

+ (1 − 𝑝
𝑘+1
)

⋅ 𝑝
𝑘+1
[ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]

⋅ [ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]
𝑇

)

−1

.

(48)

Substituting (48) into (47) yields

𝐸 {[𝑥
𝑘+1

− 𝑥
𝑘+1|𝑘+1

] 𝑦
𝑇

𝑘+1|𝑘
} = [(1 − 𝑝

𝑘+1
) 𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1

+ 𝑝
𝑘+1
(𝐹
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐹
𝑘
𝑃
𝑥V
𝑘|𝑘
)] {𝐼 − ((1 − 𝑝

𝑘+1
)

⋅ (𝐻
𝑘+1
𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1
+ 𝑅
𝑘+1
)

+ 𝑝
𝑘+1
[𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
+ (𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
)
𝑇

+ 𝑃
VV
𝑘|𝑘
]

+ (1 − 𝑝
𝑘+1
)

⋅ 𝑝
𝑘+1
[ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]

⋅ [ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]
𝑇

)

−1

𝑉
0

𝑘+1
} .

(49)

Substituting (49) into (44) yields

𝐸 {𝑦
𝑘+1+𝑗|𝑘+𝑗

𝑦
𝑇

𝑘+1|𝑘
} = [(1 − 𝑝

𝑘+1+𝑗
)𝐻
𝑘+1+𝑗

𝐹
𝑘+𝑗

+ 𝑝
𝑘+1+𝑗

𝐻
𝑘+𝑗
]

𝑗

∏

𝑖=2

{[𝐼 − (1 − 𝑝
𝑘+𝑖
)𝐾
𝑥

𝑘+𝑖
𝐻
𝑘+𝑖
] 𝐹
𝑘+𝑖−1

− 𝐾
𝑥

𝑘+𝑖
𝑝
𝑘+𝑖
𝐻
𝑘+𝑖−1

} [(1 − 𝑝
𝑘+1
) 𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1

+ 𝑝
𝑘+1
(𝐹
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐹
𝑘
𝑃
𝑥V
𝑘|𝑘
)] {𝐼 − ((1 − 𝑝

𝑘+1
)

⋅ (𝐻
𝑘+1
𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1
+ 𝑅
𝑘+1
)

+ 𝑝
𝑘+1
[𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
+ (𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
)
𝑇

+ 𝑃
VV
𝑘|𝑘
]

+ (1 − 𝑝
𝑘+1
)

⋅ 𝑝
𝑘+1
[ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]

⋅ [ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]
𝑇

)

−1

𝑉
0

𝑘+1
} .

(50)

In order to satisfy the principle of extended orthogonality in
(32), an appropriate fading factor 𝜆

𝑘+1
needs to be chosen,

according to (50), to ensure that (51) is workable:

𝐼 − ((1 − 𝑝
𝑘+1
) (𝐻
𝑘+1
𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1
+ 𝑅
𝑘+1
)

+ 𝑝
𝑘+1
[𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
+ (𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
)
𝑇

+ 𝑃
VV
𝑘|𝑘
]

+ (1 − 𝑝
𝑘+1
)

⋅ 𝑝
𝑘+1
[ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]

⋅ [ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]
𝑇

)

−1

𝑉
0

𝑘+1
= 0.

(51)

Equation (51) is equivalent to

(1 − 𝑝
𝑘+1
)𝐻
𝑘+1
𝑃
𝑘+1|𝑘

𝐻
𝑇

𝑘+1
+ 𝑝
𝑘+1
𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
= 𝑉
0

𝑘+1

− (1 − 𝑝
𝑘+1
)

⋅ 𝑝
𝑘+1
[ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]

⋅ [ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]
𝑇

− 𝑝
𝑘+1
[𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
+ (𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
)
𝑇

+ 𝑃
VV
𝑘|𝑘
] − (1 − 𝑝

𝑘+1
)

⋅ 𝑅
𝑘+1
.

(52)

Substituting (33) and (34) into (52) yields

𝜆
𝑘+1
[(1 − 𝑝

𝑘+1
)𝐻
𝑘+1
𝐹
𝑘
𝑃
𝑘|𝑘
𝐹
𝑇

𝑘
𝐻
𝑇

𝑘+1

+ 𝑝
𝑘+1
𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
] = 𝑉

0

𝑘+1
− (1 − 𝑝

𝑘+1
)

⋅ 𝑝
𝑘+1
[ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
))

− ℎ
𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
] [ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
)

− V̂
𝑘|𝑘
]
𝑇

− 𝑝
𝑘+1
[𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
+ (𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
)
𝑇

+ 𝑃
VV
𝑘|𝑘
] − (1

− 𝑝
𝑘+1
) (𝑅
𝑘+1

+ 𝐻
𝑘+1
𝑄
𝑘
𝐻
𝑇

𝑘+1
) .

(53)
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In both sides of (53), the traces are directly calculated simi-
larly to the idea of the literature [8] as follows:

tr [𝜆
𝑘+1
[(1 − 𝑝

𝑘+1
)𝐻
𝑘+1
𝐹
𝑘
𝑃
𝑘|𝑘
𝐹
𝑇

𝑘
𝐻
𝑇

𝑘+1

+ 𝑝
𝑘+1
𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
]] = tr [𝑉0

𝑘+1
− (1 − 𝑝

𝑘+1
)

⋅ 𝑝
𝑘+1
[ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]

⋅ [ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]
𝑇

− 𝑝
𝑘+1
[𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
+ (𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
)
𝑇

+ 𝑃
VV
𝑘|𝑘
] − (1 − 𝑝

𝑘+1
)

⋅ (𝑅
𝑘+1

+ 𝐻
𝑘+1
𝑄
𝑘
𝐻
𝑇

𝑘+1
)] .

(54)

Define

𝑀
𝑘+1

≜ (1 − 𝑝
𝑘+1
)𝐻
𝑘+1
𝐹
𝑘
𝑃
𝑘|𝑘
𝐹
𝑇

𝑘
𝐻
𝑇

𝑘+1

+ 𝑝
𝑘+1
𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
,

(55)

𝑁
𝑘+1

≜ 𝑉
0

𝑘+1
− (1 − 𝑝

𝑘+1
)

⋅ 𝑝
𝑘+1
[ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]

⋅ [ℎ
𝑘+1
(𝑓
𝑘
(𝑥
𝑘|𝑘
)) − ℎ

𝑘
(𝑥
𝑘|𝑘
) − V̂
𝑘|𝑘
]
𝑇

− 𝑝
𝑘+1
[𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
+ (𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
)
𝑇

+ 𝑃
VV
𝑘|𝑘
] − (1 − 𝑝

𝑘+1
)

⋅ 𝑅
𝑘+1

− (1 − 𝑝
𝑘+1
)𝐻
𝑘+1
𝑄
𝑘
𝐻
𝑇

𝑘+1
.

(56)

Hence, (54) is equivalent to

tr [𝜆
𝑘+1
𝑀
𝑘+1
] = tr [𝑁

𝑘+1
] . (57)

So, the fading factor 𝜆
𝑘+1

can be calculated by

𝜆
𝑘+1

=
tr [𝑁
𝑘+1
]

tr [𝑀
𝑘+1
]
. (58)

In (56), the actual value of the covariance of residual 𝑉0
𝑘+1

is
unknown, which can be calculated roughly by

𝑉
0

𝑘+1
=

{{{

{{{

{

𝑦
1|0
𝑦
𝑇

1|0
, 𝑘 = 0

𝜌𝑉
0

𝑘
+ 𝑦
𝑘+1|𝑘

𝑦
𝑇

𝑘+1|𝑘

1 + 𝜌
, 𝑘 ≥ 1,

(59)

where 0 < 𝜌 ≤ 1 is a forgetting factor which can be
heuristically selected like that in the literature [18]; for details,
see the simulation results in situation I of Section 5. Because
the fading factor 𝜆

𝑘+1
takes effect only when 𝜆

𝑘+1
≥ 1, it can

be finally determined as follows:

𝜆
𝑘+1

= max{1,
tr [𝑁
𝑘+1
]

tr [𝑀
𝑘+1
]
} . (60)

The formulae of the STF/RDM algorithm are similar to
those of the EKF with one-step randomly delayed observa-
tions shown by (22)-(23) and (25)–(30). The differences are
that (23), (28), and (30) should be rewritten as follows:

𝑃
𝑘+1|𝑘

= 𝜆
𝑘+1
𝐹
𝑘
𝑃
𝑘|𝑘
𝐹
𝑇

𝑘
+ 𝑄
𝑘
, (61)

𝑃
𝑧𝑧

𝑘|𝑘
= 𝜆
𝑘+1
𝐻
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
+ (𝐻
𝑘
𝑃
𝑥V
𝑘|𝑘
)
𝑇

+ 𝑃
VV
𝑘|𝑘
,

(62)

𝑃
𝑥𝑧

𝑘+1,𝑘|𝑘
= 𝜆
𝑘+1
𝐹
𝑘
𝑃
𝑘|𝑘
𝐻
𝑇

𝑘
+ 𝐹
𝑘
𝑃
𝑥V
𝑘|𝑘
. (63)

Then, the calculating process of the STF/RDM algorithm is
inserting (22), (61), (25)–(27), (62), (29), and (63) into (9)–
(19) and computes 𝑥𝑎

𝑘+1|𝑘+1
and 𝑃𝑎

𝑘+1|𝑘+1
in (7).

Remark 3. For nonlinear systems having one-step randomly
delayed observations, if directly applying the principle of ext-
ended orthogonality to them, (31) and (32) may be difficult to
be strictly satisfied. Under these circumstances, the approxi-
matemethod is usually applied to satisfy these two conditions
and obtain the approximate solution of a fading factor 𝜆

𝑘+1
,

such as calculating the traces directly in both sides of (53)
and roughly determining𝑉0

𝑘+1
through (59) to ensure that the

filtering algorithm can be calculated in real time.

5. Simulation Results and Analysis

In this section, to analyze and compare the performance of
the proposed method in Section 4 and the existing EKF in
Section 2, the simulation experiments of tracking a maneu-
vering aircraft are implemented. Assume that the initial
position, velocity, and turn rate of the aircraft in the two-
dimensional plane are (1 km, 1 km), (300m/s, 0m/s), and
0
∘ s−1, respectively. The simulation aircraft trajectory is gen-
erated as follows:

(1) It moves with constant velocity during 0–26 s.

(2) It maneuvers and moves with constant turn rate Ω =

5
∘ s−1 during 27–59 s.

(3) It moves with constant velocity during 60–68 s.

(4) It maneuvers and moves with constant turn rate Ω =

−25
∘ s−1 during 69–73 s.

(5) It moves with constant velocity during 74–100 s.

Figures 1(a), 1(b), and 1(c) show the simulation trajectory
of the aircraft position, velocity, and turn rate, respectively,
during an interval of 0–100 s.

Considering the coordinated turn model with unknown
turn rateΩ in [19], there is bias between real value of turn rate
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Figure 1: (a) Position trajectory (e: initial point, ◼: final point), : radar location. (b) Velocity trajectory. (c) Turn rate trajectory.

and estimate value of it, and the bias leads to the model mis-
match. The mismatch kinematics model of the maneuvering
aircraft can be obtained, which is shown as follows:

𝑋
𝑘+1

=

[
[
[
[
[
[
[
[
[
[

[

1
sinΩ𝑇
Ω

0
cosΩ𝑇 − 1

Ω
0

0 cosΩ𝑇 0 − sinΩ𝑇 0

0
1 − cosΩ𝑇

Ω
1

sinΩ𝑇
Ω

0

0 sinΩ𝑇 0 cosΩ𝑇 0

0 0 0 0 1

]
]
]
]
]
]
]
]
]
]

]

𝑋
𝑘

+ 𝑤
𝑘
, 𝑘 ≥ 0,

(64)

where 𝑋 = [𝑥 �̇� 𝑦 ̇𝑦 Ω]
𝑇 is state vector; 𝑥, 𝑦, �̇�, and ̇𝑦

express the position and velocity in 𝑥 direction and 𝑦 direc-
tion, respectively; Ω denotes turn rate; 𝑇 denotes sampling
period; 𝑤

𝑘
denotes the process noise which has zero mean

and covariance

𝑄 = 𝜇 ⋅ diag [𝑞
1
𝑀 𝑞
2
𝑀 𝑞
3
𝑇] , (65)

where

𝑀 =

[
[
[

[

𝑇
3

3

𝑇
3

2

𝑇
3

2
𝑇

]
]
]

]

; (66)
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the parameters 𝑞
1
= 0.1m2s−3, 𝑞

2
= 0.1m2s−3, and 𝑞

3
=

1.75 × 10
−4 s−3, respectively, denote the coefficient of process

noise in 𝑥 direction, 𝑦 direction, and turn rate.
Using two-dimensional radar location the origin of plane

measures the range and bearing of maneuvering aircraft.The
measurement can be calculated by the following equation:

𝑧
𝑘
=
[
[

[

√𝑥
2

𝑘
+ 𝑦
2

𝑘

tan−1 (
𝑦
𝑘

𝑥
𝑘

)

]
]

]

+ V
𝑘
, 𝑘 ≥ 1, (67)

where V
𝑘
is radar measurement noise which has zero mean

and its covariance 𝑅 = diag [𝜎2
𝑟
𝜎
2

𝜃
], where 𝜎

𝑟
= 10m and

𝜎
𝜃
= √10 × 10

−3 rad. Assume that the measurements applied
in the estimation have one sampling time random delay and
the measurements can be calculated as follows:

𝑦
𝑘
= (1 − 𝛾

𝑘
) 𝑧
𝑘
+ 𝛾
𝑘
𝑧
𝑘−1
, 𝑘 > 1; 𝑦

1
= 𝑧
1
. (68)

The 𝑥
0
= [1000m 300ms−1 1000m 0ms−1 0∘ s−1]𝑇 is ini-

tial state. In each simulation, the initial state estimation 𝑥
0
is

selected randomly from𝑁(𝑥
0
, 𝑃
0|0
), where the initial covari-

ance is

𝑃
0|0

= diag [100m2 10m2s−2 100m2 10m2s−2 0.1 rad2s−2] .
(69)

The period of sampling is 1 second and the total time of each
simulation is 100 seconds.

In order to compare the filtering performance, the root
mean square error (RMSE) is chosen, because it can yield a
measure which combines the bias and variance of a filter
estimate. At time 𝑘, both RMSEs of position are defined by

RMSE
𝑘
= (

1

𝑚

𝑚

∑

𝑛=1

((𝑥
𝑛

𝑘
− 𝑥
𝑛

𝑘
)
2

+ (𝑦
𝑛

𝑘
− 𝑦
𝑛

𝑘
)
2

))

1/2

,

1 ≤ 𝑘 ≤ 100,

(70)

where 𝑚 denotes the total number of Monte Carlo experi-
ment, (𝑥𝑛

𝑘
, 𝑦
𝑛

𝑘
) and (𝑥𝑛

𝑘
, 𝑦
𝑛

𝑘
), respectively, denote the simulated

position, which can be replaced by true position and filtering
estimate position, when 𝑛th Monte Carlo experiment is run.
Like the RMSE of position, the formulas of RMSE about
velocity and turn rate can also be defined.

In situation I, assuming 𝑚 = 1000, 𝑝 = 0.5, 𝜇 = 1,
and 𝜌 = 0.1, 0.2, . . . , 1, the average of RMSEs of position,
velocity, and turn rate obtained by using the STF/RDM is
shown in Figure 2. The values of fading factor determined by
forgetting factor are shown in Figure 3. As shown in Figures
2 and 3, with the increase of the forgetting factor 𝜌, the mean
of RMSEs about the proposed STF/RDM is almost stable and
𝜆
𝑘+1

is insensitive to the value of 𝜌. Therefore, the forgetting
factor is selected as 𝜌 = 0.95 in the following situation.

In situation II, assuming 𝑚 = 1, 𝑝 = 0.5, and 𝜇 = 1, the
RMSEs of position, velocity, and turn rate obtained by using
the proposed STF/RDM and the existing EKF are shown in
Figures 4, 5, and 6, respectively. The values of fading factor
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Figure 2: Mean of RMSEs when 𝑚 = 1000, 𝑝 = 0.5, 𝜇 = 1, and
𝜌 = 0.1, 0.2, . . . , 1.
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Figure 3: Fading factors when 𝜌 = 0.1, 0.5, and 0.9.

determined by proposed STF/RDM are shown in Figure 7.
The estimated autocovariance of 𝑥 and𝑦 position calculated
by STF/RDM and the existing EKF is, respectively, shown in
Figures 8 and 9. According to Figures 4–9, the analysis is as
follows:

(1) During 0–68 seconds, aircraft moves with constant
velocity at first and then maneuvers with lesser turn
rate. The values of fading factor are close to 1, and the
proposed STF/RDM deteriorates into the existing
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Figure 4: RMSE of position when𝑚 = 1, 𝑝 = 0.5, and 𝜇 = 1.
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Figure 5: RMSE of velocity when𝑚 = 1, 𝑝 = 0.5, and 𝜇 = 1.

EKF. In this case, besides the RMSEs of position,
velocity, and turn rate, the estimated autocovariance
of𝑥 position and that of𝑦 position based on proposed
STF/RDM and existing EKF are almost equal.

(2) During 69–100 seconds, aircraft maneuvers with
greater constant turn rate at first and thenmoves with
constant velocity. Since the turn rate changes sud-
denly, both filters appear divergence. In the diver-
gence period, the estimated autocovariance of 𝑥 posi-
tion and that of 𝑦 position of STF/RDM are larger
than the EKF and the RMSEs of existing EKF are
larger than the STF/RDM. The proposed STF/RDM
can timely detect the increase of residual covariance
and through the fading factors adaptively increasing,
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Figure 6: RMSE of turn rate when𝑚 = 1, 𝑝 = 0.5, and 𝜇 = 1.
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Figure 7: Fading factors when𝑚 = 1, 𝑝 = 0.5, and 𝜇 = 1.

the RMSEs reduce and the estimated autocovariance
of 𝑥 and 𝑦 position increases. Comparing with the
existing EKF, the increasing of estimated autocovari-
ance of STF/RDM can reflect the sudden change of
𝑥 and 𝑦 position in time. The decrease of RMSEs
ensures STF/RDM having better tracking perfor-
mance. After the divergence period, the RMSEs and
the estimated autocovariance of STF/RDM quickly
decrease, while the RMSEs and the estimated autoco-
variance of EKF gradually increase; in other words,
unlike the existing EKF, the STF/RDM can eliminate
the influence of the cumulative estimation error by
increasing the fading factor to avoid further diver-
gence. The above results verify that proposed STF/
RDM have the ability to deal with the problem of
system parametric variation.
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Figure 8: The estimated autocovariance of 𝑥 position when 𝑚 = 1,
𝑝 = 0.5, and 𝜇 = 1.
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Figure 9: The estimated autocovariance of 𝑦 position when 𝑚 = 1,
𝑝 = 0.5, and 𝜇 = 1.

For a judicial comparison, the same condition is set to ini-
tialize all the filters in each simulation, and 1000 independent
Monte Carlo experiments are carried out.

In situation III, assuming 𝑚 = 1000, 𝑝 = 0.5, and 𝜇 =

1, the RMSEs of position, velocity, and turn rate obtained
by using the proposed STF/RDM and the existing EKF are
shown in Figures 10, 11, and 12, respectively, and the mean of
RMSEs in position, velocity, and turn rate is shown in Table 1.

As shown in Table 1 and Figures 10, 11, and 12, the RMSEs
of existing EKF gradually increasing lead the EKF to diverge
due to randomly selecting the initial state estimation 𝑥

0
from

𝑁(𝑥
0
, 𝑃
0|0
) in each run. Contrarily, the RMSEs of STF/RDM

are convergent. The performance of proposed STF/RDM is
better than existing EKF, whatever in accuracy or conver-
gence rate. It is inferred that the proposed STF/RDM can
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Figure 10: RMSE of position when𝑚 = 1000, 𝑝 = 0.5, and 𝜇 = 1.
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Figure 11: RMSE of velocity when𝑚 = 1000, 𝑝 = 0.5, and 𝜇 = 1.

Table 1: Mean of RMSEs when𝑚 = 1000, 𝑝 = 0.5, and 𝜇 = 1.

RMSE per state EKF STF/RDM
Position, km 1.727 0.144
Velocity, km/s 3.524 0.079
Turn rate, rad/s 0.74 0.06

solve the problem of initial conditions uncertainty to improve
estimation accuracy, in spite of the existing EKF sensitive to
this problem. Correspondingly, when 𝑝 is equal to any other
value during 0 to 1, similar result can be obtained.
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Figure 13: Mean of RMSE in position when 𝑚 = 1000, 𝜇 = 1, and
𝑝 = 0.1, 0.2, . . . , 0.9.

In situation IV, assuming 𝑚 = 1000, 𝜇 = 1, and 𝑝 =

0.1, 0.2, . . . , 0.9, the mean of RMSE in position about two
filters is shown in Figure 13. The mean of the proposed STF/
RDM is smaller than the existing EKF, which reflects that
the filtering performance of proposed STF/RDMprecedes the
existing EKFwhen the delay probability 𝑝 has a large range of
change. In particular, as 𝑝 increases, both mean of proposed
STF/RDM and that of existing EKF are obviously decreased,
but the STF/RDM has better filtering performance when 𝑝 is
equal to greater value.
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Figure 14: Mean of RMSE in position when𝑚 = 1000, 𝑝 = 0.5, and
𝜇 = 1.1, 1.2, . . . . , 1.9.

In situation V, assuming 𝑚 = 1000, 𝑝 = 0.5, and 𝜇 =

1.1, 1.2, . . . , 1.9, the mean of RMSE in position about two
filters is shown in Figure 14. As shown in Figure 14, with the
increase of the noise level 𝜇, the mean of RMSE about the
existing EKF is increasing, while it is inspiring to find that
the mean of RMSE about the proposed STF/RDM is almost
stable.

Generally speaking, it can be found that the proposed
STF/RDM has the definite robustness to the different change
of the delay probability and the noise level on the basis of the
simulation analysis from Figures 13 and 14.

6. Conclusion

In this paper, for the tracking problem of one sampling time
randomly delayed measurements in nonlinear system, a new
algorithm of STF/RDM is proposed. The recursive operation
of this algorithm is carried out by first-order linearization
approximation. When the model is inexact, for example,
model simplification, noise characteristics, initial condi-
tions uncertainty, or system parametric variation, based on
extended orthogonality principle, the proposed STF/RDM
can timely detect the change of residual covariance and keep
well ability of tracking by changing the fading factor online.
The simulation experiments are carried out to prove the pro-
posed STF/RDM having good performance. Also the results
show that STF/RDM is better than existing EKF in coping
with the problem of tracking maneuvering target. Analyzing
the outcome of simulation, the conclusion is that proposed
STF/RDMhasmore high accuracy and robustness than exist-
ing EKF for the problem of model mismatch when tracking
maneuvering target, besides advantages of existing EKF. Since
the proposed STF/RDM is general filtering method, it can
be applied to some relevant research areas such as fault
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diagnosis, signal processing, and state estimation of dynamic
system.

Appendix

Equation (31) is the criterion of the existing EKF, the deriva-
tion of which is presented as follows.

First, considering that V
𝑘+1

is uncorrelated with 𝑌
𝑘
, it is

clear that

𝑝 (V
𝑘+1

| 𝑌
𝑘
) = 𝑁 (V

𝑘+1
; 0, 𝑅
𝑘+1
) . (A.1)

According to the Gaussian distributions 𝑝(𝑥
𝑘+1

| 𝑌
𝑘
) and

𝑝(V
𝑘+1

| 𝑌
𝑘
), the one-step posterior predictive PDF of the

augmented state 𝑥𝑎
𝑘+1

conditioned by𝑌
𝑘
is also Gaussian; that

is,

𝑝 (𝑥
𝑎

𝑘+1
| 𝑌
𝑘
) = 𝑁 (𝑥

𝑎

𝑘+1
; 𝑥
𝑎

𝑘+1|𝑘
, 𝑃
𝑎

𝑘+1|𝑘
) , 𝑘 > 0, (A.2)

where, in the MMSE sense, the augmented state prediction
𝑥
𝑎

𝑘+1|𝑘
and the covariance 𝑃𝑎

𝑘+1|𝑘
, respectively, express the first

two moments of 𝑝(𝑥𝑎
𝑘+1

| 𝑌
𝑘
):

𝑥
𝑎

𝑘+1|𝑘
= 𝐸 [𝑥

𝑎

𝑘+1
| 𝑌
𝑘
] ,

𝑃
𝑎

𝑘+1|𝑘
= 𝐸 [𝑥

𝑎

𝑘+1|𝑘
(𝑥
𝑎

𝑘+1
)
𝑇

| 𝑌
𝑘
] .

(A.3)

Second, according to the Gaussian distributions 𝑝(𝑦
𝑘+1

|

𝑌
𝑘
) and 𝑝(𝑥𝑎

𝑘+1
| 𝑌
𝑘
), the joint posterior PDF of 𝑥𝑎

𝑘+1
and 𝑦
𝑘+1

conditioned by 𝑌
𝑘
is also Gaussian; that is,
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(A.4)

From the computation rule of the Gaussian distribution in
[15], rearranging (A.4) yields

𝑝 (𝑥
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According to the Bayesian rule, we get

𝑝 (𝑥
𝑎

𝑘+1
| 𝑌
𝑘+1
) =
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Further,𝑝(𝑥𝑎
𝑘+1

| 𝑌
𝑘+1
) can be updated to beGaussian in (A.7)

by substituting (A.5) into (A.6):

𝑝 (𝑥
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We can conclude that according to the criteria of MMSE
showed in (31) the Gaussian approximation of 𝑝(𝑥𝑎

𝑘+1
|

𝑌
𝑘+1
) has the filtering estimation 𝑥𝑎

𝑘+1|𝑘+1
and the covariance
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𝑘+1|𝑘+1
at time 𝑘 + 1 of the augmented state as the unified

form:
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(A.8)

where 𝐾𝑎
𝑘+1

express the gain matrix of the estimated state of
augmentation and 𝑥𝑎

𝑘+1|𝑘
, 𝑃𝑎
𝑘+1|𝑘

, 𝑦
𝑘+1|𝑘

, 𝑃𝑦𝑦
𝑘+1|𝑘

, and 𝑃𝑎𝑦
𝑘+1|𝑘

have
been obtained by (8), (15), and (17)–(19).
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[14] R. Caballero-Águila, A. Hermoso-Carazo, J. D. Jiménez-López,
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