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The present investigation deals with analysis of non-Markovian queueing model with multistage of services. When the server is
unavailable during the systembreakdown (or) vacation periods, we consider reneging to prevail. Supplementary variable techniques
have been adopted to obtain steady state system length distributions. The numerical illustrations are provided to validate the
tractability of performance measures as far as computational aspect is concerned. Numerical results in the form of graphical
representation are also presented. Practical large scale industry applications are described to justify our model.

1. Introduction

Vacation queueingmodels play amajor role inmanufacturing
and production, computer and communication, and service
and distribution systems. Many models for customer’s impa-
tience in queueing systems have been studied in the past,
and the source of impatience has always been considered
to be either a long wait already experienced at a queue
or a long wait anticipated by a customer upon arrival.
Queueing models enable organizations to implement critical
production strategies or tactics aimed at reducing costs on
increasing revenues. By examining themethods of operations
research and especially queueing theory, new models can be
developed and existing ones can be extended.

One of the earliest works on balking and reneging was by
Haight [1, 2] and Barrer [3], which was the first to introduce
reneging in which they studied deterministic reneging with
single server Markovian arrival and service rates. Montazer-
Haghighi et al. [4] studied a Markovian mutiserver queueing
system with balking and reneging. A two-stage batch arrival
queueing system where customers receive a batch service in
the first and individual service in the second stagewas studied
by Doshi [5] in the past.

Furthermore [6], Chodhury examined an M[𝑥]/G/1
queueing system with a set-up period and a vacation period.
This paper deals with an M𝑋/G/1 queueing system with
a vacation period which comprises an idle period and a
random set-up period. The server is turned off each time
when the system becomes empty. At this point of time the idle
period starts. As soon as a customer or a batch of customers
arrive, the setup of the service facility begins which is needed
before starting each busy period. In this paper the steady-state
behaviour of the queue size distributions at stationary (ran-
dom) point of time and at departure point of time is studied.
Also, explicit expressions for the system state probabilities
and some performance measures of this queueing system
are derived analytically. Finally, the probability generating
function of the additional queue size distribution due to the
vacation period as the limiting behaviour of theM𝑋/M/1 type
queueing system is derived.

Madan [7] investigated a batch arrival queueing system,
where the server provides two stages of heterogeneous service
with a modified Bernoulli schedule under N-policy. The
server remains idle till the queue size becomes N (≥1).
As soon as the queue size becomes at least N, the server
instantly starts working and provides two stages of service
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in succession to each customer, that is, the first stage service
followed by the second stage service. However, after the
second stage service, the server may take a vacation or decide
to stay in the system to provide service to the next customer,
if any.The queue size distributions at a random epoch as well
as a departure epoch under the steady-state conditions were
derived.

The M/G/1 queue with impatient customers was studied
by Bae et al. [8]; the complete formula of the limiting
distribution of the virtual waiting time was derived explicitly.
The expected busy period of the queue was also obtained by
using a martingale argument.

In 2002, Krishna Kumar et al. [9] studied anM/G/1 retrial
queueing system with two-phase service and preemptive
resume. In this paper, for an arbitrarily distributed retrial time
distribution, the necessary and sufficient condition for the
system stability is obtained, assuming that only the customer
at the head of the orbit has priority access to the server. The
steady-state distributions of the server state and the number
of customers in the orbit are obtained along with other
performance measures. The effects of various parameters
on the system performance are analysed numerically. A
general decomposition law for this retrial queueing system
is established.

Furthermore Madan et al. [10] studied the server vaca-
tions based on Bernoulli schedules and a single vacation
policy in 2003. In this model, a single server queue with
optional server vacations based on exhaustive service is
studied. Unlike other vacation policies, the assumption that,
only at the completion of service of the last customer in the
system, the server has the option to take a vacation or to
remain idle in the system waiting for the next customer to
arrive is considered. The service times of the customers have
been assumed to be deterministic and vacations are phase
type exponential. Steady-state results for the probability gen-
erating functions of the queue length, the expected number
of customers in the queue, and the expected waiting time of
the customer are derived explicitly.

In addition, Choudhury [11] investigated a batch arrival
queueing system with an additional service channel. This
paper deals with anM𝑥/G/1 queueing systemwith two phases
of heterogeneous service under N-policy, where the server
remains idle till the queue size becomes N (⩾1). As soon
as the queue size becomes N, the server immediately starts
first “essential service” for all the units. After completion of
the essential service of a unit, it may leave the system with
probability (1 − 𝜃) or may immediately go for a second phase
of service in an additional service channel with probability 𝜃

(0 ⩽ 𝜃 ⩽ 1). For this model, the queue size distribution at
a random epoch as well as at a departure epoch is obtained.
This is a generalization of recent papers considered byMedhi
and Lee et al. (queueing systems).

In 2004 Madan and Abu Al-Rub [12] investigated on a
single server queue with optional phase type server vaca-
tions based on exhaustive deterministic service and a single
vacation policy. Furthermore Madan and Choudhury [13]
proposed a queueing system with restricted admissibility of
arriving batches. In this model a batch arrival queue with a
Bernoulli vacation schedule is considered. After completion

of the service the server either goes for a vacation in random
length with probability 𝜃 (0 ≤ 𝜃 ≤ 1) or may continue to
serve the next unit, if any, with probability (1 − 𝜃) under
a restricted admissibility policy of arriving batches. Unlike
the usual batch arrival queueing system the restricted admis-
sibility policy differs during a busy period and a vacation
period and hence all arriving batches are not allowed to join
the system at all time. Steady-state queue size distribution
at a random point of time as well as a departure epoch is
derived.Moreover this paper attempts to unify several classes
of related batch arrival queueing system.

Choudhury and Madan [14] studied a two-stage batch
arrival queueing system with a modified Bernoulli sched-
ule vacation under N-policy. In this paper a batch arrival
queueing system, where the server provides two stages of
heterogeneous service with a modified Bernoulli schedule
under N-policy, is considered. The server remains idle till
the queue size becomes N (≥1). As soon as the queue size
becomes at least N, the server instantly starts working and
provides two stages of service in succession to each customer,
that is, the first stage service followed by the second stage
service. However, after the second stage service, the server
may take a vacation or decide to stay in the system to
provide service to the next customer, if any. The queue
size distribution at a random epoch as well as a departure
epoch under the steady-state conditions is derived. Further,
the existence of the stochastic decomposition property to
show that the departure point queue size distribution of
this model can be decomposed into the distributions of
three independent randomvariables is demonstrated. Finally,
a simple procedure to obtain optimal stationary operating
policy under a suitable linear cost structure is developed.

Furthermore Chang and Takine [15] studied factorization
and stochastic decomposition properties in bulk queues with
generalized vacation. This paper considers a class of sta-
tionary batch-arrival, bulk-service queues with generalized
vacations.The system consists of a single server and a waiting
room of infinite capacity. Arrivals of customers follow a
batchMarkovian arrival process.The server is unavailable for
occasional intervals of time called vacations, and, when it is
available, customers are served in groups of fixed size B. For
this class of queues, the vector probability generating function
of the stationary queue length distribution is factored into
two terms, one of which is the vector probability generating
function of the conditional queue length distribution given
that the server is on vacation is shown. The special case
of batch Poisson arrivals is examined and a new stochastic
decomposition formula is derived for the stationary queue
length distribution.

Altman and Yechiali [16] considered the systems with
servers vacations where customers’ impatience is due to an
absentee of servers upon arrival. Such a model, representing
frequent behavior by waiting customers in service systems,
had never been treated before in the literature.

Altman and Yechiali [17] studied a system that is operat-
ing as an M/M/∞ queue. However, when it becomes empty,
it is assigned to perform another task, the duration U of
which is random. Customers arriving while the system is
unavailable for service (i.e., occupied with a U-task) become
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impatient: each individual activates an “impatience timer”
having random duration T such that if the system does
not become available by the time the timer expires, the
customer leaves the system never to return.When the system
completes a U-task and there are waiting customers, each one
is taken immediately into service. Explicit expressions for the
corresponding mean queue sizes were obtained.

In 2012, Kumar and Sharma [18] analyzed a single server
queue with general service time distribution, random system
breakdowns, and Bernoulli schedule server vacations where,
after a service completion, the server may decide to leave the
system with probability 𝑝 or to continue serving customers
with probability 1 − 𝑝. It is assumed that the customers
arrive to the system in batches of variable size but are served
one by one. If the system breaks down, it enters a repair
process immediately. It is assumed that the repair time has
general distribution, while the vacation time has exponential
distribution. The purpose is to find the steady-state results
in explicit and closed form in terms of the probability-
generating functions for the number of customers in the
queue, the average number of customers, and the average
waiting time in the queue.

Also Maraghi et al. [19] studied an M𝑥/G/1 queue with
random breakdowns and Bernoulli schedule server vacations
where, after a service completion, the server may decide to
leave the system with probability p or to continue serving
customers with probability 1−𝑝. It is assumed that customers
arrive to the system in batches of variable size but are served
one by one.

Kumar and Sharma [20] analysed the concept of customer
balking and reneging has been exploited to a great extent in
the recent past by the queuing modelers. According to this
model, a reneged customer can be convinced in many cases
by employing certain convincing mechanism to stay in the
queue for completion of his service.Thus, a reneged customer
can be retained in the queuing system with some probability
(say, 𝑞) and it may leave the queue without receiving service
with probability 𝑝 (= 1 − 𝑞). This process was referred to as
customer retention. The effect of probability of retention on
the average system size had been studied.

Recently in 2013, Baruah et al. [21] studied a two-stage
queuing model where the server provides two stages of
service one by one in succession. They considered reneging
to occur when the server is unavailable during the system
breakdown or vacation periods.

Kumar and Sharma [22] in their queueing model with
retention of reneged customers and balking studied a finite
capacity and the retention of reneged customers. The cus-
tomer’s impatience may occur in the form of balking also.
In this paper, the work of Kumar and Sharma (2013) is
extended by including balking to take into consideration the
broader perspective of customer’s impatience. The model is
solved iteratively to obtain the steady-state probabilities of
system size. Some useful performance measures are derived,
and the effect of the probability of retaining the reneged
customers on various performance measures is studied
numerically.

1.1. Model Description. In today’s competitive world, cus-
tomer’s impatience has become a serious problem. Firms are
employing a number of strategies to retain their customers.
To the best of our knowledge, studies on multistage batch
arrival of service in reneging do not exist. We extend
and develop the above models on two stages of service
to multistage of services. In particular, a two-stage model
of Monita Baruah, Kailash C. Madan, and Tillal Eldabi
in the year 2013 motivated us for developing this new
model which we consider here. Their model on two stages
of service is extended to multistage of service where the
arrivals occur in batches. Breakdown and reneging play a vital
role in our model. Two stages of service will be benefited
only for small scale industries, factories of low production,
limited network, and so forth, whereasmultistages of services
render a huge amount of beneficial factors in large scale
industries and in multitier applications in e-commerce in
particular.

This results in an introduction of a new model: a non-
Markovian multistage batch arrival queue with breakdown
and reneging. In this model once the customers enter they
will be provided with the service in all the stages of service
department one by one in succession. Once the service
gets completed, customer departs from the system. Once
the multistage service of a unit is completed, the server is
assumed to take vacation with probability 𝜃 or may continue
to offer service with probability (1 − 𝜃). As soon as the
vacation period of the server ends, it joins the system to
continue service of the waiting customers. During system
breakdown (or) vacation periods, there will be unavailability
of service; in that case reneging occurs. Reneging is assumed
to follow exponential distribution. Arrival follows a Poisson
process and service time follows general distribution. We
study the changes in the probability of idle time and in the
traffic intensity in some particular cases like (1) if there is
no vacation and (2) if the service time and vacation time
are exponentially distributed. Using supplementary variable
technique we derive the steady-state probabilities and perfor-
mance measures.

This paper is organized as follows. Applications of model
is presented in Section 2, the mathematical description of the
model is given in Section 3, the definitions and notations
are described in Section 4, the equations governing the
system are given in detail using birth and death process
in Section 5, the queue size distribution at random epoch
is highlighted in Section 6, and the average queue size
and average waiting time are given in Section 7. Sections
6 and 7 gives a comprehensive idea about the model in
which step by step method is followed for better under-
standing which helps in any extension of this model. The
particular cases are derived in Section 8 in which the
model is seen in various aspects or situations. For justifi-
cation of the model, the numerical illustrations are given
in Section 9, and, at last, the conclusion is presented in
Section 10. In this section future scope of this model is
discussed.
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2. Applications of Model

With the development of computer and communication
networks, queueing systems and networks have been iden-
tified as a powerful analysis and design tool for various
applications. Our model plays a major role in multitier
applications in e-commerce, motor production process, car
production process, and textile industry. Somemultistage real
life applications in large scale manufacturing industry are
described in the following sections which come across the
necessity of our new model.

2.1. Three-Tier Application in e-Commerce. Consider a three-
tier application, as shown in Figure 1. The first two tiers
are clustered web server and clustered java application,
respectively, and the third tier is a database used in e-
commerce applications. Each tier is considered to be a stage.
Each incoming application is subjected to admission control
at the sentry to ensure that the contracted performance
guarantees are met. The excess sessions are turned away
during overloads.The load balancer efficiently distributes the
incoming requests. Each input data is considered to be a
customer. The server maintenance period is considered to be
a vacation period, and this application can be extended to
multistage of services.
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AssemblyInspectionCar

Figure 3: Multistage car production process.

2.2. Electric Motor Production Industry

Multistage in Motor Production Process (See Figure 2). In the
electric motor manufacturing industries, multistage produc-
tion process is implemented (Figure 2). The stator body is
considered as the arrival customer. In the first stage, the stator
body is wounded by the coil; in the second stage, the rotor
part is fixed in the stator; in the third stage, the cooling fan
is fixed in one end of the rotor; in the fourth stage, the end
cover is fixed in the other end of the rotor; in the fifth stage,
the entire motor is painted; and, finally, in the sixth stage, a
complete electric motor is produced. We consider the stator
body as a batch arrival customer. In the production sector,
vacation denotes obtaining new rawmaterial, maintenance of
the tools, stock verification, and so forth. Here, the machine
gets idle owing to breakdown, and the machine idle period is
considered as the breakdown period.

2.3. Automobile Industry

Multistage in Car Production Process (See Figure 3). In auto-
mobile industry, car production process is considered as the
multistage production process (Figure 3). Here, we consider
the steel plate as the batch arrival customer. In the first
stage of production, a roll of steel plate is cut according to
the shape of the car parts in the second stage, and steel



Mathematical Problems in Engineering 5

Drawing 
machine

Carding 
machine

machine
Spinning 
machine

Cone 
winding 
machine

Yarn 
production

Bunch 
of 

cotton
Blow 
room

Simplex

Figure 4: Textile yarn production process.

plates are welded; in the third stage, all the car parts are
painted in the painting section; in the fourth stage, the engine
assembly is mounted; in the fifth stage, extra fittings are
assembled according to the customer requirements; in the
sixth stage, quality control inspection is conducted; and,
finally, a complete car is produced. We consider the steel
plate as the batch arrival customer. In the production sector,
vacation denotes obtaining new rawmaterial, maintenance of
the tools andmachines, stock verification, and so forth. Here,
machine gets idle owing to breakdown, and the machine idle
period is considered as the breakdown period.

2.4. Textile Yarn Production Industry

Multistage in Production Process (See Figure 4). In the textile
industry, yarn production is considered as the multistage
production process (Figure 4). Here, a bunch of cotton is
considered as the arrival customer. In the first stage, a bunch
of cotton is inserted into the blow room machine; in the
second stage, the refined cotton is inserted into the carding
machine; in the third stage, the produced cotton sliver is
inserted into the drawing machine and is again processed;
in the fourth stage, the processed cotton sliver is inserted
into the simplex machine; in the fifth stage, the refined
cotton sliver is inserted into the spinningmachine; and in the
sixth stage, the cotton yarn output from spinning machine is
inserted into the conewindingmachine, and the entire cotton
yarn is wounded as a cone. These six stages of production
are required to convert a bunch of cotton into cotton yarn.
In the production sector, vacation denotes obtaining a new
raw material, maintenance of the tool and machine, stock
verification, and so forth. Here, machine gets idle owing to
breakdown, and the machine idle period is considered as the
breakdown period.

3. The Mathematical Description of the Model

3.1. The Model Is Based on the Following Assumptions. (a)
Customers arrive in batches following a compound Poisson
process with a rate of arrival 𝜆. Let 𝜆𝑐𝑖𝑑𝑡 (𝑖 = 1, 2, 3, . . . , 𝑛) be
the first-order probability that customers arrive at the system
in batches of size 𝑖 at the system in a short interval of time
(𝑥, 𝑥 + 𝑑𝑡), where 0 ≤ 𝑐𝑖 ≤ 1 and ∑

∞

𝑖=1 𝑐𝑖 = 1.
(b) The server provides multistage of heterogeneous

services one after the other in succession. An arrival batch
receives the service offered at multistage in succession,
defined as the first stage, second stage, and so forth, respec-
tively. The service discipline is assumed to be on a first come

first served basis (FCFS). Let us assume that the service time
𝑆𝑗 (𝑗 = 1 to 𝑛) of the 𝑗th stage service follows a general
probability distribution with a distribution function 𝐾𝑗(𝑆𝑗),
where 𝑘𝑗(𝑠𝑗) is the probability density function and 𝐸(𝑆

𝑛
𝑗 ) is

the 𝑛th moment of the service time, with 𝑗 = 1, 2, . . . , 𝑁.
Let

𝜇𝑗 (𝑥) =

𝑘𝑗 (𝑥)

1 − 𝐾𝑗 (𝑥)
𝑗 = 1, 2, . . . , 𝑁,

𝑘𝑗 (𝑆𝑗) = 𝜇𝑗 (𝑥) 𝑒
[− ∫
𝑠

0

𝜇
𝑗
(𝑥)𝑑𝑥]

, where 𝑗 = 1, 2, . . . , 𝑁.

(1)

(c) Once the multistage service of a unit is completed, the
server is assumed to take vacation with probability 𝜃 or may
continue to offer service with probability (1 − 𝜃). As soon as
the vacation period of the server ends, it joins the system to
continue the service of the waiting customers.

Let us assume the vacation time to be a random variable
following general probability law with distribution𝑀(V) and
density function by 𝑚(V). 𝐸(𝑉𝑛) denotes the 𝑛th moment
(𝑛 = 1, 2, . . .) of the vacation time. Here, let us consider that
𝜉(𝑥) is the conditional probability of a vacation period during
the interval (𝑥, 𝑥 + 𝑑𝑥), given that elapsed time is 𝑥, which
can be given as

𝜉 (𝑥) =
𝑀 (𝑥)

1 −𝑀 (𝑥)
. (2)

Thus,

𝑚(V) = 𝜉 (V) 𝑒[− ∫
V
0

𝜉(𝑥)𝑑𝑥]
. (3)

(d) Customers arriving for service may become impatient
and renege after joining during vacations and breakdown
periods. Reneging is assumed to follow exponential distribu-
tion with parameter 𝜓. Thus, 𝑓 (𝑡) = 𝜓𝑒

−𝜓𝑡
𝑑𝑡, 𝜓 > 0. Thus

𝜓𝑑𝑡 is the probability that a customer can renege during a
short interval of time (𝑡, 𝑡 + 𝑑𝑡).

The system may fail or be subjected to breakdown at
random. The customer receiving service during breakdown
returns back to the head of the queue. Let us assume that the
interval between breakdowns occurs according to a Poisson
process with a mean rate of breakdown 𝛽 > 0.

Furthermore, the repair times follow a general (arbitrary)
distribution with the distribution function 𝐺(𝑥) and density
function 𝑔 (𝑥). Let the conditional probability of comple-
tion of the repair process be Υ (𝑥) 𝑑𝑥 such that Υ (𝑥) =

𝐺(𝑥)/ (1 − 𝐺(𝑥)), and, thus, 𝐺 (𝑟) = Υ (𝑟) 𝑒
(− ∫
𝑟

0

Υ(𝑥)𝑑𝑥).

4. Definitions and Notations

We assume that steady state exists and define 𝑃𝑛,𝑗 (𝑥) as the
probability that there are n (≥1) customers in the system
including one customer in type 𝑗 service, 𝑗 = 1, 2, . . . , 𝑁,
and elapsed service time is 𝑥. 𝑃𝑛,𝑗 = ∫

∞

0
𝑃𝑛,𝑗 (𝑥) 𝑑𝑥 is

the corresponding steady-state probability irrespective of
elapsed time 𝑥. 𝑉𝑛 (𝑥) is the probability that there are n (≥0)
customers in the queue and server is on vacation and elapsed
vacation time is 𝑥.
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𝑉𝑛 = ∫
∞

0
𝑉𝑛 (𝑥) 𝑑𝑥 is the corresponding steady-state

probability irrespective of elapsed vacation time 𝑥.
Q is the steady-state probability of the server being idle as

the server takes vacation.
The probability generating functions are defined as

𝑃𝑗 (𝑥, 𝑧) =

∞

∑

𝑛=1

𝑧
𝑛
𝑃𝑛,𝑗 (𝑥) ;

𝑃𝑗 (𝑥, 𝑧) =

∞

∑

𝑛=1

𝑧
𝑛
𝑃𝑛,𝑗 |𝑧| ≤ 1; 𝑗 = 1, 2, . . . , 𝑁,

𝑅 (𝑥, 𝑧) =

∞

∑

𝑛=1

𝑧
𝑛
𝑅𝑛 (𝑥) ;

𝑅 (𝑧) =

∞

∑

𝑛=1

𝑧
𝑛
𝑅𝑛; |𝑧| ≤ 1,

𝑉 (𝑥, 𝑧) =

∞

∑

𝑛=1

𝑧
𝑛
𝑉 (𝑥) ;

𝑉 (𝑧) =

∞

∑

𝑛=1

𝑧
𝑛
𝑉𝑛; |𝑧| ≤ 1,

𝐶 (𝑧) =

∞

∑

𝑖=1

𝑧
𝑖
𝐶𝑖.

(4)

5. Equations Governing the System

We frame the difference equations with Poisson input related
to birth-death process.

Let 𝑛 be the size of customers at time 𝑥. Let 𝑃𝑛(𝑥) be the
probability of “n” customers in the system.

Let

(1) 𝜆𝑛 be the average arrival rate when “𝑛” customers are
in the system;

(2) 𝜇𝑛 the average service rate when “𝑛” customers are in
the system;

(3) 𝑃𝑛(𝑥+Δ𝑥) the probability of “𝑛” customers at (𝑥+Δ𝑥);
(4) 𝛽 the probability of breakdown arrival;
(5) 𝜆𝐶𝑖 the probability of batch arrival.

Consider the following

𝑃𝑛,1 (𝑥, Δ𝑥) = (1 − {𝜆 + 𝜇1 (𝑥) + 𝛽} Δ𝑥)

× 𝑃𝑛,1 (𝑥) + 𝑃𝑛−1,1 (𝑥) 𝜆𝐶1Δ𝑥

+ 𝑃𝑛−2,1 (𝑥) 𝜆𝐶2Δ𝑥

+ ⋅ ⋅ ⋅ + 𝑃1,1 (𝑥) 𝜆𝐶𝑛−1Δ𝑥,

𝑃𝑛,1 (𝑥 + Δ𝑥) − 𝑃𝑛,1 (𝑥)

Δ𝑥
+ {𝜆 + 𝜇1 (𝑥) + 𝛽} 𝑃𝑛,1 (𝑥)

=

𝑛

∑

𝑖=1

𝜆𝐶𝑖𝑃𝑛−𝑖,1 (𝑥) .

(5)

From above we have

𝑑

𝑑𝑥
𝑃𝑛,1 (𝑥, 𝑧) + {𝜆 + 𝜇1 (𝑥) + 𝛽} 𝑃𝑛,1 (𝑥)

= 𝜆

𝑛

∑

𝑖=1

𝑐𝑖𝑃𝑛−𝑖,1 (𝑥) 𝑛 ≥ 1.

(6)

Similarly we have

𝑑

𝑑𝑥
𝑃𝑛,2 (𝑥, 𝑧) + {𝜆 + 𝜇2 (𝑥) + 𝛽} 𝑃𝑛,2 (𝑥)

= 𝜆

𝑛

∑

𝑖=1

𝑐𝑖𝑃𝑛−𝑖,2 (𝑥) 𝑛 ≥ 1.

(7)

For Nth stage,𝑁 ≥ 3,

𝑑

𝑑𝑥
𝑃𝑛,𝑁 (𝑥, 𝑧) + {𝜆 + 𝜇𝑁 (𝑥) + 𝛽} 𝑃𝑛,𝑁 (𝑥)

= 𝜆

𝑛

∑

𝑖=1

𝑐𝑖𝑃𝑛−𝑖,𝑁 (𝑥) 𝑛 ≥ 1,

(8)

𝑑

𝑑𝑥
𝑅𝑛 (𝑥) + {𝜆 + Υ (𝑥) + 𝜓} 𝑅𝑛 (𝑥)

= 𝜆

𝑛

∑

𝑖=1

𝑐𝑖𝑅𝑛−𝑖 (𝑥) + 𝜓𝑅𝑛 (𝑥) 𝑛 ≥ 1,

(9)

𝑑

𝑑𝑥
𝑅0 (𝑥) + (𝜆 + Υ (𝑥)) 𝑅0 (𝑥) = 𝜓𝑅1 (𝑥) ,

(10)

𝑑

𝑑𝑥
𝑉𝑛 (𝑥) + {𝜆 + 𝜉 (𝑥) + 𝜓}𝑉𝑛 (𝑥)

= 𝜆

𝑛

∑

𝑖=1

𝑐𝑖𝑉𝑛−𝑖 (𝑥) + 𝜓𝑉𝑛+1 (𝑥) 𝑛 ≥ 1,

(11)

𝑑

𝑑𝑥
𝑉0 (𝑥) + {𝜆 + 𝜉 (𝑥) + 𝜓}𝑉0 (𝑥) = 𝜓𝑉0 (𝑥) ,

(12)

𝜆𝑄 = (1 − 𝜃) ∫

∞

0

𝑃0,𝑁 (𝑥) 𝜇𝑁 (𝑥) 𝑑𝑥

+ ∫

∞

0

𝑅0 (𝑥) Υ (𝑥) 𝑑𝑥.

(13)

The abovementioned differential equations should be solved
based on the following boundary conditions:

𝑃𝑛,1 (0) = 𝜆𝑐𝑛𝑄 + (1 − 𝜃) ∫

∞

0

𝑃𝑛+1,𝑁 (𝑥) 𝜇𝑁 (𝑥) 𝑑𝑥

+ ∫

∞

0

𝑅𝑛+1 (𝑥) Υ (𝑥) 𝑑𝑥

+ ∫

∞

0

𝑉𝑛 (𝑥) 𝜓 (𝑥) 𝑑𝑥 𝑛 ≥ 1,

(14)

𝑃𝑛,2 (0) = ∫

∞

0

𝑃𝑛,1 (𝑥) 𝜇1 (𝑥) 𝑑𝑥 𝑛 ≥ 1. (15)
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For Nth stage,

𝑃𝑛,𝑁 (0) = ∫

∞

0

𝑃𝑛,𝑁−1 (𝑥) 𝜇𝑁−1 (𝑥) 𝑑𝑥 𝑛 ≥ 1, (16)

𝑉𝑛 (0) = 𝜃∫

∞

0

𝑃𝑛+1,𝑁 (𝑥) 𝜇𝑁 (𝑥) 𝑑𝑥 𝑛 ≥ 0, (17)

𝑅𝑛+1 (0) =

𝑁

∑

𝑗=1

∫

∞

0

𝑃𝑛,𝑗 (𝑥) 𝑑𝑥, (18)

𝑅0 (0) = 0. (19)

Note. LHS of (14) indicates that there are n customers in the
system and the service is about to start in stage 1.

RHS of (14) indicates the various situations in which the
system has n customers and the service is about to start in
stage 1.

The first term of RHS of (14) indicates that the system is in
idle (𝑄), an arrival of batch consisting of 𝑛 customers occurs,
and 1st stage service is about to start.

The second term indicates that there are 𝑛 + 1 customers
in the system including one customer whose service is
completed in Nth stage (𝑁 ≥ 2) with probability 𝜇𝑁(𝑥)

remaining 𝑛 customers are there in the system. 1st stage of
service is about to start. Moreover the server is not going for
vacation; instead stays in the system with probability 1 − 𝜃.

The third term indicates the repair process gets completed
with probabilityΥ (𝑥). So one customer just enters into the 1st
stage service. Now there are 𝑛 customers in the system.

The fourth term indicates that vacation gets completed
with probability 𝜓 (𝑥). There are 𝑛 customers in the system.
1st stage of service is about to start.

The combination of all the four terms gives the LHS of
(14).

The integral in the RHS of (15) states that, after comple-
tion of 1st stage of service, there are 𝑛 customers in the system
to whom 2nd stage of service is about to start which gives the
LHS of (15).

Similarly (16) indicates that the Nth stage of service is
about to start.

RHS of (17) explains the fact that, after completion of
vacation with probability 𝜃, the server has just returned to the
system consisting of n customers and the 1st stage of service
is about to start. This leads to the LHS of (17).

6. Queue Size Distribution at Random Epoch

Weuse supplementary variable technique to get the following
comprehensive idea about the model.

Multiplying (6) to (12) by 𝑧
𝑛 and summing over n from 1

to∞ yields that we can obtain

𝑑

𝑑𝑥
𝑃1 (𝑥, 𝑧) + {(𝜆 − 𝜆𝐶 (𝑧)) + 𝜇1 (𝑥) + 𝛽} 𝑃1 (𝑥, 𝑧) = 0,

(20)𝑑

𝑑𝑥
𝑃2 (𝑥, 𝑧) + {(𝜆 − 𝜆𝐶 (𝑧)) + 𝜇2 (𝑥) + 𝛽} 𝑃2 (𝑥, 𝑧) = 0.

(21a)

For Nth stage,
𝑑

𝑑𝑥
𝑃𝑁 (𝑥, 𝑧) + {(𝜆 − 𝜆𝐶 (𝑧)) + 𝜇𝑁 (𝑥) + 𝛽} 𝑃𝑁 (𝑥, 𝑧) = 0,

(21b)

𝑑

𝑑𝑥
𝑅 (𝑥, 𝑧) + {𝜆 − 𝜆𝐶 (𝑧) + Υ (𝑥) + 𝜓 −

𝜓

2
}𝑅 (𝑥, 𝑧) = 0,

(22)

𝑑

𝑑𝑥
𝑉 (𝑥, 𝑧) + {𝜆 − 𝜆𝐶 (𝑧) + 𝜉 (𝑥) + 𝜓 −

𝜓

𝑧
} = 0. (23)

Further integration of (20)–(23) over limits 0 to 𝑥, in general,
will result in

𝑃𝑗 (𝑥, 𝑧) = 𝑃𝑗 (0, 𝑧) 𝑒
[(𝜆−𝜆𝐶(𝑧)+𝛽)𝑥−∫

∞

0

𝜇
𝑗
(𝑡)𝑑𝑡]

𝑗 = 1 to 𝑁,

𝑅 (𝑥, 𝑧) = 𝑅 (0, 𝑧) 𝑒
[(𝜆−𝜆𝐶(𝑧)+𝜓−(𝜓/𝑧))𝑥−∫

∞

0

Υ(𝑡)𝑑𝑡]
,

𝑉 (𝑥, 𝑧) = 𝑉 (0, 𝑧) 𝑒
[(𝜆−𝜆𝐶(𝑧)+𝜓−(𝜓/𝑧))𝑥−∫

∞

0

𝜉(𝑡)𝑑𝑡]
.

(24)

Next, by multiplying the boundary conditions by suitable
powers of 𝑧𝑛+1, taking summation over all possible values of
𝑛, and using the probability generating functions, we get

𝑧𝑃1 (0, 𝑧) = (𝜆𝐶 (𝑧) − 𝜆)𝑄 + (1 − 𝜃) ∫

∞

0

𝑃𝑁 (𝑥, 𝑧) 𝜇𝑁 (𝑥) 𝑑𝑥

+ ∫

∞

0

𝑅 (𝑥, 𝑧) Υ (𝑥) 𝑑𝑥

+ ∫

∞

0

𝑉 (𝑥, 𝑧) 𝜉 (𝑥) 𝑑𝑥,

𝑃2 (0, 𝑧) = ∫

∞

0

𝑃1 (𝑥, 𝑧) 𝜇1 (𝑥) 𝑑𝑥.

(25)

For Nth stage,

𝑃𝑁 (0, 𝑧) = ∫

∞

0

𝑃𝑁−1 (𝑥, 𝑧) 𝜇𝑁−1 (𝑥) 𝑑𝑥, (26)

𝑧𝑉 (0, 𝑧) = 𝜃∫

∞

0

𝑃𝑁 (𝑥, 𝑧) 𝜇𝑁 (𝑥) 𝑑𝑥, (27)

𝑅 (0, 𝑧) = 𝛼𝑧

𝑁

∑

𝑗=1

𝑃𝑗 (𝑧) . (28)

Again integrating (24) with respect to 𝑥, in general, will result
in

𝑃𝑗 (𝑧) = 𝑃𝑗 (0, 𝑧) [

1 − 𝐾𝑗 (𝜆 − 𝜆𝐶 (𝑧) + 𝛽)

𝜆 − 𝜆𝐶 (𝑧) + 𝛽
] 𝑗 = 1 to 𝑁,

(29)

𝑉 (𝑧) = 𝑉 (0, 𝑧) [
1 −𝑀(𝜆 − 𝜆𝐶 (𝑧) + 𝜓 − (𝜓/𝑧))

𝜆 − 𝜆𝐶 (𝑧) + 𝜓 − (𝜓/𝑧)
] , (30)

𝑅 (𝑧) = 𝑅 (0, 𝑧) [
1 − 𝐺 (𝜆 − 𝜆𝐶 (𝑧) + 𝜓 − (𝜓/𝑧))

𝜆 − 𝜆𝐶 (𝑧) + 𝜓 − (𝜓/𝑧)
] , (31)
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where

𝐾𝑗 (𝜆 − 𝜆𝐶 (𝑧) + 𝛽) = ∫

∞

0

𝑒
−(𝜆−𝜆𝐶(𝑧)+𝛽)𝑥

𝑑𝐾𝑗 (𝑥) ,

𝐺 (𝜆 − 𝜆𝐶 (𝑧) + 𝜓 −
𝜓

𝑧
) = ∫

∞

0

𝑒
−(𝜆−𝜆𝐶(𝑧)+𝜓−(𝜓/𝑧))𝑥

𝑑𝐺 (𝑥) ,

𝑀(𝜆 − 𝜆𝐶 (𝑧) + 𝜓 −
𝜓

𝑧
) = ∫

∞

0

𝑒
−(𝜆−𝜆𝐶(𝑧)+𝜓−(𝜓/𝑧))𝑥

𝑑𝑀(𝑥)

(32)

are the Laplace-Stieltjes transform of the jth stage repair time
and vacation time, respectively.

By multiplying the RHS of (24) by 𝜇𝑗 (𝑥), Υ (𝑥), and 𝜉(𝑥),
respectively, and integrating with respect to 𝑥, we can obtain

∫

∞

0

𝑃𝑗 (𝑥, 𝑧) 𝜇𝑗 (𝑥) 𝑑𝑥 = 𝑃𝑗 (0, 𝑧)𝐾𝑗 (𝜆 − 𝜆𝐶 (𝑧) + 𝛽)

𝑗 = 1 to 𝑁,

∫

∞

0

𝑅 (𝑥, 𝑧) Υ (𝑥) 𝑑𝑥 = 𝑅 (0, 𝑧) 𝐺 (𝜆 − 𝜆𝐶 (𝑧) + 𝜓 −
𝜓

𝑧
) ,

∫

∞

0

𝑉 (𝑥, 𝑧) 𝜉 (𝑥) 𝑑𝑥 = 𝑉 (0, 𝑧)𝑀(𝜆 − 𝜆𝐶 (𝑧) + 𝜓 −
𝜓

𝑧
) .

(33)

Let us take

𝜆 − 𝜆𝐶 (𝑧) + 𝛽 = ℎ1; 𝜆 − 𝜆𝐶 (𝑧) + 𝜓 −
𝜓

𝑧
= ℎ2. (34)

By using (33) in (25)–(27), we can obtain

𝑧𝑃1 (0, 𝑧) = (𝜆𝐶 (𝑧) − 𝜆)𝑄 + (1 − 𝜃)𝐾𝑁 (ℎ1) 𝑃𝑁 (0, 𝑧)

+ 𝑅 (0, 𝑧) 𝐺 (ℎ2) + 𝑧𝑉 (0, 𝑧)𝑀 (ℎ2) ,

(35)

𝑃2 (0, 𝑧) = 𝑃1 (0, 𝑧)𝐾1 (ℎ1) . (36a)

For Nth stage

𝑃𝑁−1 (0, 𝑧) = 𝑃𝑁−1 (0, 𝑧)𝐾𝑁−1 (ℎ1) , (36b)

𝑉 (0, 𝑧) = 𝜃𝑃𝑁 (0, 𝑧)

𝑁

∏

𝑗=1

𝐾𝑗 (ℎ1) . (37)

By employing (36b) in (37), we can get

𝑧𝑉 (0, 𝑧) = 𝜃𝑃1 (0, 𝑧)

𝑁

∏

𝑗=1

𝐾𝑗 (ℎ1) . (38)

Again, by using (28) in (29), we get

𝑅 (0, 𝑧) =
𝛽𝑧

ℎ1

[

[

𝑁

∑

𝑗=1

𝑃𝑗 (0, 𝑧) (1 − 𝐾𝑗 (𝑚))]

]

. (39)

Now by employing (36b), (38), and (39) in (35), we can solve
for 𝑃1(0, 𝑧):

𝑃1 (0, 𝑧) =
ℎ1 (𝜆𝐶 (𝑧) − 𝜆)𝑄

𝐷 (𝑧)
, (40)

𝐷 (𝑧)

= ℎ1
[

[

𝑧 − (1 − 𝜃)

𝑁

∏

𝑗=1

𝐾𝑗 (ℎ1) − 𝜃

𝑁

∏

𝑗=1

𝐾𝑗 (ℎ1)𝑀 (𝑘)]

]

− 𝛽𝑧𝐺 (𝑘)

{

{

{

1 −

𝑁

∏

𝑗=1

𝐾𝑗 (ℎ1)

}

}

}

,

(41)

𝑃2 (0, 𝑧) =
ℎ1 (𝜆𝐶 (𝑧) − 𝜆)𝐾1 (ℎ1) 𝑄

𝐷 (𝑧)
, (42)

𝑃𝑁 (0, 𝑧) =
ℎ1 (𝜆𝐶 (𝑧) − 𝜆)𝐾𝑁−1 (ℎ1) 𝑄

𝐷 (𝑧)
, (43)

𝑉 (0, 𝑧) =

𝜃ℎ1 (𝜆𝐶 (𝑧) − 𝜆)∏
𝑁

𝑗=1𝐾𝑗 (ℎ1) 𝑄

𝐷 (𝑧)
. (44)

By substituting (40), (42), (43), and (44) in (29)–(31), we can
obtain

𝑃1 (𝑧) =

(𝜆𝐶 (𝑧) − 𝜆) [1 − 𝐾1 (ℎ1)]𝑄

𝐷 (𝑧)
,

𝑃2 (𝑧) =

(𝜆𝐶 (𝑧) − 𝜆)𝐾1 (ℎ1) [1 − 𝐾2 (ℎ1)]𝑄

𝐷 (𝑧)
.

(45)

For Nth stage

𝑃𝑁 (𝑧) =

(𝜆𝐶 (𝑧) − 𝜆)𝐾𝑁−1 (ℎ1) [1 − 𝐾𝑁 (ℎ1)]𝑄

𝐷 (𝑧)
, (46)

𝑅 (𝑧) =

𝛽𝑧 (𝜆𝐶 (𝑧) − 𝜆) [1 − ∏
𝑁

𝑗=1𝐾𝑗 (ℎ1)]𝑄

𝐷 (𝑧)
[
1 − 𝐺 (ℎ2)

ℎ2

] ,

(47)

𝑉 (𝑧) =

𝜃ℎ1 (𝜆𝐶 (𝑧) − 𝜆) [1 − ∏
𝑁

𝑗=1𝐾𝑗 (ℎ1)]𝑄

𝐷 (𝑧)

× [
1 −𝑀(ℎ2)

ℎ2

] .

(48)

Let 𝑃𝑄 (𝑧) denote the probability generating function of the
queue size irrespective of the state of the system:

𝑃𝑄 (𝑧) = 𝑃1 (𝑧) + 𝑃2 (𝑧) + 𝑃3 (𝑧) + 𝑅 (𝑧) + 𝑉 (𝑧) =
𝑁 (𝑧)

𝐷 (𝑧)
.

(49)

To determine the probability of idle time 𝑄, we use the
normalizing condition

𝑃𝑄 (1) + 𝑄 = 1. (50)
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Again, as (49) is indeterminate of the form 0/0 at 𝑧 = 1,
L’Hopital’s rule is employed in (49) to obtain

𝑃1 (1) =

𝜆𝐸 (𝐼) (1 − 𝐾1 (𝛽))𝑄

𝐷𝑅
,

(51)

𝑃2 (1) =

𝜆𝐸 (𝐼)𝐾1 (𝛽) (1 − 𝐾2 (𝛽))𝑄

𝐷𝑅
,

(52)

𝑃𝑁 (1) =

𝜆𝐸 (𝐼)𝑄∏
𝑁

𝑗=1𝐾𝑗−1 (𝛽) (1 − 𝐾𝑗 (𝛽))

𝐷𝑅
.

(53)

Equations (51), (52) and (53) indicate the steady-state proba-
bility of the server in stages 1, 2, and𝑁, respectively.

It must be noted that

𝑅 (1) =

𝛽𝜆𝐸 (𝐼) 𝐸 (𝑅) [1 − ∏
𝑁

𝑗=1𝐾𝑗 (𝛽)]𝑄

𝐷𝑅
,

𝑉 (1) =

𝜃𝛽𝜆𝐸 (𝐼) 𝐸 (𝑉)∏
𝑁

𝑗=1𝐾𝑗 (𝛽)𝑄

𝐷𝑅
,

(54)

where 𝐷𝑅 = −(𝜆𝐸 (𝐼) + 𝛽(𝜆𝐸 (𝐼) − 𝜓)𝐸 (𝑅)) + [𝛽 + 𝜆𝐸 (𝐼) +

𝛽 (𝜆𝐸 (𝐼) − 𝜓) 𝐸 (𝑅) − 𝜃𝛽(𝜆𝐸 (𝐼) − 𝜓)𝐸(V)]∏𝑁𝑗=1𝐾𝑗 (𝛽).
Thus the normalization condition yields

𝑄 = 1

− ((𝜆𝐸 (𝐼) [

[

{1 + 𝛽𝐸 (𝑅)}

− {1 + 𝛽𝐸 (𝑅) − 𝜃𝛽𝐸 (𝑉)}

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)
]

]

)

× (𝛽𝜓𝐸 (𝑅)

{

{

{

1 −

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)

}

}

}

+ 𝜃𝛽𝜓

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽))

−1

) ,

(55)

and the utilization factor 𝜌 = 1 − 𝑄 is

𝜌 = (𝜆𝐸 (𝐼) [

[

{1 + 𝛽𝐸 (𝑅)}

− {1 + 𝛽𝐸 (𝑅) − 𝜃𝛽𝐸 (𝑉)}

×

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)
]

]

)

× (𝛽𝜓𝐸 (𝑅)

{

{

{

1 −

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)

}

}

}

+ 𝜃𝛽𝜓

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽))

−1

< 1.

(56)

7. Average Queue Size and Average
Waiting Time

As 𝐿𝑞 = (𝑑/𝑑𝑧) 𝑃𝑞 (𝑧) |𝑧=1,with the mean queue size is of the
0/0 form, the L’Hopital’s rule is applied twice to obtain

𝐿𝑞 = lim
𝑧→1

𝐷

(𝑧)𝑁

(𝑧) − 𝑁


(𝑧)𝐷

(𝑧)

2 (𝐷

(𝑧))
2

, (57)

where the primes and double primes denote the first and
second derivatives, respectively:

𝑁

(1) = 𝑄[

[

𝜆𝐸 (𝐼) {1 + 𝛽𝐸 (𝑅)}

− 𝜆𝐸 (𝐼) {1 + 𝛽𝐸 (𝑅) − 𝜃𝛽𝐸 (𝑉)}

×

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)
]

]

,

𝑁

(1) = 𝑄[

[

𝜆𝐸(
𝐼

𝐼 − 1
)

×

{

{

{

{

{

{

[

[

1 −

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)
]

]

+ 𝛽[

[

1 −

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)
]

]

𝐸 (𝑅)

+ 𝜃𝛽

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽) 𝐸 (𝑉)

}

}

}

+ 𝛽 (𝜆𝐸 (𝐼) − 𝜓) 𝐸 (𝑅
2
)
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× [

[

1 −

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)
]

]

+ (𝜆𝐸 (𝐼) − 𝜓) 𝐸 (𝑅
2
)

×

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)

}

}

}

]

]

,

𝐷

(1) = − {𝜆𝐸 (𝐼) + 𝛽 (𝜆𝐸 (𝐼) − 𝜓) 𝐸 (𝑅)}

+ {𝜆𝐸 (𝐼) + 𝛽 (𝜆𝐸 (𝐼) − 𝜓) 𝐸 (𝑅)

− 𝜃𝛽 (𝜆𝐸 (𝐼) − 𝜓) 𝐸 (𝑉) + 𝛽}

×

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽) ,

𝐷

(1) = −𝜆𝐸(

𝐼

𝐼 − 1
)

× [

[

(1 + 𝛽𝐸 (𝑅)) −

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)

× {1 − 𝛽𝐸 (𝑅) + 𝜃𝛽𝐸 (𝑉)} ]

]

− 2𝛽𝜓𝐸 (𝑅)

{

{

{

1 −

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽)

}

}

}

+ 𝛽 (𝜆𝐸 (𝐼) − 𝜓)
2
𝐸 (𝑅
2
)

× (1 −

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽))

− 𝜃𝛽 {2𝜓𝐸 (𝑉) − (𝜆𝐸 (𝐼) − 𝜓)
2
𝐸 (𝑉
2
)}

×

𝑁

∏

𝑗=1

𝐾𝑗 (𝛽) .

(58)

By utilizing (58) in (57), we can obtain the mean length of the
queue size 𝐿𝑞 while the mean waiting time of the queue 𝑊𝑞

can be derived by using𝑊𝑞 = 𝐿𝑞/𝜆. Furthermore, we can also
determine 𝐿 = 𝐿𝑞 +𝜌, the mean queue size of the system, and
𝑊 = 𝐿/𝜆, the mean waiting time of the system.

8. Particular Cases

Case 1 (no server vacations). In this case, the server has no
vacation. Hence, 𝑉 (𝑧) = 0. Thus 𝜃 = 0 in (45)–(47). Our

model reduces to multistage batch arrivals with reneging
during breakdowns, and we have

𝑃1 (𝑧) =

(𝜆𝐶 (𝑧) − 𝜆) [1 − 𝐾1 (ℎ1)]𝑄

𝐷 (𝑧)
,

𝑃2 (𝑧) =

(𝜆𝐶 (𝑧) − 𝜆)𝐾1 (ℎ1) [1 − 𝐾2 (ℎ1)]𝑄

𝐷 (𝑧)
.

(59)

For Nth stage,

𝑃𝑁 (𝑧) =

(𝜆𝐶 (𝑧) − 𝜆)𝐾𝑁−1 (ℎ1) [1 − 𝐾𝑁 (ℎ1)]𝑄

𝐷 (𝑧)
,

𝑅 (𝑧) =

𝛽𝑧 (𝜆𝐶 (𝑧) − 𝜆) [1 − ∏
𝑁

𝑗=1𝐾𝑗 (ℎ1)]𝑄

𝐷 (𝑧)
[
1 − 𝐺 (ℎ2)

ℎ2

] ,

𝐷 (𝑧) = ℎ1
[

[

𝑧 −

𝑁

∏

𝑗=1

𝐾𝑗 (ℎ1)
]

]

− 𝛽𝑧𝐺 (ℎ2)

𝑁

∏

𝑗=1

𝐾𝑗 (ℎ1) .

(60)

The probability of idle time is

𝑄 = 1 −

𝜆𝐸 (𝐼) [{1 + 𝛽𝐸 (𝑅)} − {1 + 𝛽𝐸 (𝑅)}∏
𝑁

𝑗=1𝐾𝑗 (𝛽)]

𝛽𝜓𝐸 (𝑅) {1 − ∏
𝑁

𝑗=1𝐾𝑗 (𝛽)}

(61)

and the traffic intensity 𝜌 is

𝜌 =

𝜆𝐸 (𝐼) [{1 + 𝛽𝐸 (𝑅)} − {1 + 𝛽𝐸 (𝑅)}∏
𝑁

𝑗=1𝐾𝑗 (𝛽)]

𝛽𝜓𝐸 (𝑅) {1 − ∏
𝑁

𝑗=1𝐾𝑗 (𝛽)}

.

(62)

Furthermore by considering 𝜃 = 0 in (58) we can obtain the
mean queue size 𝐿𝑞 and mean waiting time𝑊𝑞.

Case 2 (exponential service time and exponential vacation
time). In this case, we assume that the service time for the
multistage of service with service rate 𝜇𝑗 > 0, 𝑗 = 1 to 𝑁, is
exponentially distributed. Furthermore, the repair time and
vacation time are exponentially distributed with a repair rate
Υ > 0 and vacation time 𝜉 > 0.

Thus,

𝐾1 (ℎ1) =

𝜇𝑗

𝜇𝑗 + ℎ1

; 𝑗 = 1 to 𝑁,

𝐺 (ℎ2) =
Υ

Υ + ℎ2

; 𝑀 (ℎ2) =
𝜉

𝜉 + ℎ2

,

𝐸 (𝑅) =
1

Υ
; 𝐸 (𝑅

2
) =

2

Υ
2
,

𝐸 (𝑉) =
1

𝜉
; 𝐸 (𝑉

2
) =

2

𝜉
2
,

(63)

where ℎ1 = 𝜆 − 𝜆𝐶 (𝑧) + 𝛽; ℎ2 = 𝜆 − 𝜆𝐶 (𝑧) + 𝜓 − (𝜓/𝑧).
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By utilizing the abovementioned relations in (44)–(46),
we can obtain

𝑃1 (𝑧) =
(𝜆𝐶 (𝑧) − 𝜆) [1 − (𝜇1/ (𝜇1 + ℎ1))] 𝑄

𝐷 (𝑧)
,

𝑃2 (𝑧)=
(𝜆𝐶 (𝑧) − 𝜆) (𝜇1/ (𝜇1 + ℎ1)) [1 − (𝜇2/ (𝜇2 + ℎ1))] 𝑄

𝐷 (𝑧)
.

(64)

For Nth stage,

𝑃𝑁 (𝑧) = ((𝜆𝐶 (𝑧) − 𝜆)
𝜇1

𝜇𝑁−1 + ℎ1

[1 −
𝜇𝑁

𝜇𝑁 + ℎ1

]𝑄)

× (𝐷 (𝑧))
−1

,

𝑅 (𝑧) = ((𝜆𝐶 (𝑧) − 𝜆)[

[

1 −

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + ℎ1)

]

]

×
1

(Υ + ℎ2)
𝑄) × (𝐷 (𝑧))

−1
,

𝑉 (𝑧) = (𝜃ℎ1 (𝜆𝐶 (𝑧) − 𝜆)

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + ℎ1) (𝜓 + ℎ2)

𝑄)

× (𝐷 (𝑧))
−1

,

(65)

where

𝐷 (𝑧) = (𝜆 − 𝜆𝐶 (𝑧) + 𝛽)

× [

[

𝑧 − {(1 − 𝜃) + 𝜃
𝜉

𝜉 + ℎ2

}

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + ℎ1)

]

]

− 𝛽𝑧

{

{

{

1 −

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + ℎ1)

}

}

}

Υ

(Υ + ℎ2)
.

(66)

Therefore, the probability that the server is providing service
in the first, second, and Nth stages at a random point of time
can be given as presented in (67), (68), and (69), respectively.
Consider the following:

𝑃1 (1) = (𝜆𝐸 (𝐼) [1 −
𝜇1

𝜇1 + 𝛽
]𝑄)

× −[

[

(𝜆𝐸 (𝐼) +
𝛽 (𝜆𝐸 (𝐼) − 𝜓)

Υ
)

+ [𝛽 + 𝜆𝐸 (𝐼) + 𝛽 (𝜆𝐸 (𝐼) − 𝜓)

×{
1

Υ
−

𝜃

𝜉
}] ×

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

]

]

−1

,

(67)

𝑃2 (1) = (𝜆𝐸 (𝐼)
𝜇1

𝜇1 + 𝛽
[1 −

𝜇2

𝜇1 + 𝛽
]𝑄)

× −[

[

(𝜆𝐸 (𝐼) +
𝛽 (𝜆𝐸 (𝐼) − 𝜓)

Υ
)

+ [𝛽 + 𝜆𝐸 (𝐼) + 𝛽 (𝜆𝐸 (𝐼) − 𝜓)

×{
1

Υ
−

𝜃

𝜓
}] ×

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

]

]

−1

,

(68)

𝑃𝑁 (1) = (𝜆𝐸 (𝐼)
𝜇𝑁−1

𝜇1 + 𝛽
[1 −

𝜇𝑁

𝜇𝑁 + 𝛽
]𝑄)

× −[

[

(𝜆𝐸 (𝐼) +
𝛽 (𝜆𝐸 (𝐼) − 𝜓)

Υ
)

+ [𝛽 + 𝜆𝐸 (𝐼) + 𝛽 (𝜆𝐸 (𝐼) − 𝜓)

×{
1

Υ
−

𝜃

𝜉
}] ×

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

]

]

−1

.

(69)

Furthermore, the probability that server is under repairs at
random point of time is

𝑅 (1) = ([
𝛽𝐸 (𝐼)

Υ
][

[

1 −

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

]

]

𝑄)

× −[

[

(𝜆𝐸 (𝐼) +
𝛽 (𝜆𝐸 (𝐼) − 𝜓)

Υ
)

+ [𝛽 + 𝜆𝐸 (𝐼) + 𝛽 (𝜆𝐸 (𝐼) − 𝜓)

×{
1

Υ
−

𝜃

𝜉
}] ×

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

]

]

−1

.

(70)
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The probability that server is on vacation at random point of
time is given by

𝑉 (1) = (𝜃𝛽 [
𝜆𝐸 (𝐼)

𝜉
]

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

𝑄)

× −[

[

(𝜆𝐸 (𝐼) +
𝛽 (𝜆𝐸 (𝐼) − 𝜓)

Υ
)

+ [𝛽 + 𝜆𝐸 (𝐼) + 𝛽 (𝜆𝐸 (𝐼) − 𝜓)

×{
1

Υ
−

𝜃

𝜉
}] ×

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

]

]

−1

.

(71)

The probability that the server is idle but available in the
system is given by

𝑄 = 1 − 𝜆𝐸 (𝐼)

× [

[

{1 +
𝛽

Υ
} − {1 +

𝛽

Υ
−

𝜃𝛽

𝜓
}

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

]

]

× (
𝛽𝜓

Υ

{

{

{

1 −

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

}

}

}

+ 𝜃𝛽𝜓

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

)

−1

.

(72)

Similarly the mean queue size and mean waiting time can be
derived by determining𝑁 (1),𝑁 (1),𝐷 (1), and𝐷


(1) and

utilizing them in (57). Consider the following:

𝑁

(1) = 𝑄[

[

𝜆𝐸 (𝐼) {1 +
𝛽

Υ
} − 𝜆𝐸 (𝐼) {1 +

𝛽

Υ
−

𝜃𝛽

Υ
}

×

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

]

]

,

𝑁

(1)

= 𝑄[

[

𝜆𝐸(
𝐼

𝐼 − 1
)

×

{

{

{

(1 +
𝛽

Υ
)

× (1 −

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

)

+
𝜃𝛽

Υ

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

}

}

}

− 2𝜆𝐸 (𝐼)

×

{

{

{

𝛽 (𝜆𝐸 (𝐼) − 𝜓)

Υ
2

× (1 −

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

)

+
𝜃 (𝜆𝐸 (𝐼) − 𝜓)

𝜉
2

×

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

}

}

}

]

]

,

𝐷

(1)

= − [𝜆𝐸 (𝐼) +
𝛽 (𝜆𝐸 (𝐼) − 𝜓)

Υ
]

+ {𝛽 + 𝜆𝐸 (𝐼) +
𝛽 (𝜆𝐸 (𝐼) − 𝜓)

Υ

−
𝜃𝛽 (𝜆𝐸 (𝐼) − 𝜓)

𝜉
}

×

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

,

𝐷

(1) = −𝜆𝐸(

𝐼

𝐼 − 1
)

×

{

{

{

(1 +
𝛽

Υ
)

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

(1 −
𝛽

Υ
+

𝜃𝛽

𝜉
)

}

}

}

− 2[
𝛽𝜓

Υ
+

(𝜆𝐸 (𝐼) − 𝜓)
2

Υ
2

]

× [

[

1 −

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

]

]

− 2𝜃𝛽[
𝜓

𝜉
+

(𝜆𝐸 (𝐼) − 𝜓)
2

𝜉
2

]

×

∏
𝑁

𝑗=1𝜇𝑗

∏
𝑁

𝑗=1 (𝜇𝑗 + 𝛽)

− {𝜆𝐸 (𝐼) +
𝛽 (𝜆𝐸 (𝐼) − 𝜓)

Υ

−
𝜃𝛽 (𝜆𝐸 (𝐼) − 𝜓)

𝜉
+ 𝛽}

×

{

{

{

𝑁

∏

𝑗=1

𝜇𝑗 × (1
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𝜌

Figure 5: Effect of reneging 𝜓 = 5, 9, 10, and 12 and breakdown at
𝛽 = 1 on the proportion of idle time𝑄 and utilization factor 𝜌. From
the figure, it is clear that as the idle time of the server 𝑄 increases, it
leads to a decrease in utilization factor 𝜌.

× [

[

(𝜇1 + 𝛽)
2
𝑁

∏

𝑗=2

(𝜇𝑗 + 𝛽)

+ (𝜇1 + 𝛽) (𝜇2 + 𝛽)
2

×

𝑁

∏

𝑗=3

(𝜇𝑗 + 𝛽) + ⋅ ⋅ ⋅

+ [ (𝜇1 + 𝛽) (𝜇2 + 𝛽) ⋅ ⋅ ⋅

× (𝜇𝑁 + 𝛽)
2
] ]

]

−1

)

}}

}}

}

.

(73)

9. Numerical Illustration

To compute the numerical results we consider the number of
stages to be𝑁 = 3; we assume service time, vacation time, and
repair time to be exponentially distributed. Furthermore, let
us assume that the arrivals come one after the other; that is,
𝐸 (𝐼) = 1 and 𝐸(𝐼/𝐼 − 1) = 0.

To monitor the effect of reneging 𝜓 and breakdown 𝛽 on
the behavior of the queueing model, let us consider 𝜆 = 2,
𝜃 = 0.5, 𝜆 = 2, 𝜇1 = 3, 𝜇2 = 4, 𝜇3 = 5, Υ = 8, and 𝜉 = 6, with
the values of 𝜓 being 5, 9, 10, and 12 and 𝛽 varying between 1
and 4 (Table 1).

From the values presented in Table 1, it can be concluded
that, with the increase in the value of the parameter of
customer’s impatience reneging 𝜓, for varying values of the
breakdown parameter 𝛽, the utilization factor 𝜌 decreases,
whereas the probability of the server idle time 𝑄 increases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 0.8102

0.4501
0.4051

0.3376

0.1898

0.5499
0.5949

0.6634

5 9 10 12

Q

𝜌

Reneging 𝜓

Figure 6: Effect of reneging 𝜓 = 5, 9, 10, and 12 and breakdown at
𝛽 = 2 on the proportion of idle time 𝑄 and utilization factor. The
graph indicates that as the idle time of the server 𝑄 increases, the
utilization factor 𝜌 decreases.
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Figure 7: Effect of reneging 𝜓 = 5, 9, 10, and 12 and breakdown
at 𝛽 = 3 on the proportion of idle time 𝑄 and utilization factor 𝜌.
The figure explains that as the idle time of the server𝑄 increases, the
utilization factor 𝜌 decreases.

Figures 5, 6, 7, and 8 clearly show that owing to the
breakdown of the system and reneging, the proportion of
the idle time of the server increases and the utilization factor
decreases. Furthermore, Figures 9, 10, 11, and 12 demonstrate
the effect of reneging and breakdown on the mean queue size
𝐿𝑞 and the mean waiting time𝑊𝑞 and evidently indicate that,
as the breakdown occurs as well as customers reneging from
the queue, the average length of the queue decreases and the
average waiting time decreases.
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Table 1: Effect of reneging and breakdown.

𝜓 𝛽 𝜌 𝑄 𝐿𝑞 𝐿 𝑊𝑞 𝑊

5

1 0.7733 0.2267 4.3678 5.141 2.184 2.571
2 0.8102 0.1898 3.6436 4.454 1.822 2.227
3 0.8155 0.1845 3.0592 3.875 1.530 1.937
4 0.8233 0.1767 2.1651 2.988 1.083 1.494

9

1 0.4296 0.5704 6.5243 6.954 3.262 3.477
2 0.4501 0.5499 5.5682 6.018 2.784 3.009
3 0.4530 0.5470 4.8194 5.272 2.410 2.636
4 0.4571 0.5429 4.1254 4.583 2.063 2.291

10

1 0.3866 0.6134 5.8164 6.203 2.908 3.102
2 0.4051 0.5949 4.5921 4.997 2.296 2.499
3 0.4077 0.5923 3.2457 3.653 1.623 1.827
4 0.4080 0.5920 2.1352 2.543 1.068 1.272

12

1 0.3222 0.6888 4.5824 4.905 2.291 2.452
2 0.3376 0.6634 4.0261 4.364 2.013 2.182
3 0.3397 0.6603 3.5024 3.842 1.751 1.921
4 0.3398 0.6602 2.9254 3.265 1.463 1.633
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Figure 8: Effect of reneging 𝜓 = 5, 9, 10, and 12 and breakdown
at 𝛽 = 4 on the proportion of idle time 𝑄 and utilization factor 𝜌.
The figure gives the fact that as idle time of the server𝑄 increases, it
leads to a decrease in utilization factor 𝜌.

10. Conclusion

The present study clearly analyzed the multistage batch
arrival queue with reneging during vacation and breakdown
periods. The steady-state solutions are obtained by using
supplementary variable technique and themean queue length
and mean waiting time are calculated. Furthermore, some
particular cases are also discussed and numerical illustrations
are presented. It can be concluded that, with the increase in
the value of the parameter of customer’s impatience reneging
𝜓 for varying values of the breakdown parameter 𝛽, the
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Figure 9: Effect of 𝜓 = 5 and 𝛽 = 1, 2, 3, and 4 on the mean
queue size 𝐿𝑞 and mean waiting time 𝑊𝑞. The figure explains that
the average length of the queue 𝐿𝑞 decreases owing to customers
reneging from the queue, so the average waiting time 𝑊𝑞 also
decreases.

utilization factor 𝜌 decreases, whereas the probability of the
server idle time 𝑄 increases. In this model, due to reneging
and breadown the mean queue size 𝐿𝑞 and the mean waiting
time 𝑊𝑞 decteases and the average waiting time decreases.
For the future study compulsory vacation can be included
in the present model and the effect of reneging during
breakdown can be obtained. The model presented in this
study can be utilized for communication networks and large-
scale manufacturing industries.
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Figure 10: Effect of 𝜓 = 9 and 𝛽 = 1, 2, 3, and 4 on the mean
queue size 𝐿𝑞 and mean waiting time 𝑊𝑞. The graph indicates that
as the average length of the queue 𝐿𝑞 decreases, owing to customers
reneging from the queue, the averagewaiting time𝑊𝑞 also decreases.
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Figure 11: Effect of 𝜓 = 10 and 𝛽 = 1, 2, 3, and 4 on the mean queue
size 𝐿𝑞 and mean waiting time 𝑊𝑞. The figure gives the fact that
the average length of the queue 𝐿𝑞 decreases, owing to customers
reneging from the queue, which leads to decrease in average waiting
time𝑊𝑞.
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