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Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit
packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes
the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra
delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper
are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce
a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the
push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii)
we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness
of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and
coding ratio of our system can be significantly improved, especially in dynamic environments.

1. Introduction

P2P has become a dominant solution for distributing live
video content to large populations of users in recent years,
by leveraging clients’ resources to serve each other. To
provide the robustness and meet the streaming bandwidth
requirement, most existing large-scale P2P live streaming
systems organize peers into mesh. However, the streaming
quality of them is not so satisfactory, especially in dynamic
environments [1]. The performance bottleneck is due to the
lack of a proper and optimal scheduling design.

Given a number of neighbors, a peer needs to decide
which packets are transmitted by which neighbors, which is
called scheduling. Existing scheduling can be broadly divided
into two categories: pull and push. In the pull scheduling
[2], the streaming is divided into blocks and a data structure
called buffer map is periodically exchanged to reflect a peer
which has blocks in its cache. According to the received buffer
maps, each peer explicitly requests the desired blocks from
its neighbors using some pull strategies, such as rarest-first

or sequence-first. However, the packet delay is very large
for this receiver-driven delivery and the bandwidth is not
fully utilized since each block is only served by a peer at a
time. To reduce the packet delay, the tree push scheduling
[3] is introduced. Nevertheless, this strategy is not suitable
for large-scale P2P live streaming. The reason lies in the
following aspects: (1) the tree structure has largemaintenance
and repair costs in dynamic P2P environment; (2) since the
leaf peers of the tree will not deliver content to any other
peers, the bandwidth of the leaf peers is wasted. In the mesh
push scheduling [4], the video streaming is divided into some
substreams, and each peer reassembles all the substreams
through receiving packets pushed by different neighbors.
This method cannot solve the problems about performance
degradation when the intensive system dynamic happens.

Network coding has been shown to be an effective way
to improve the performance of P2P streaming bymaximizing
the network throughput andmaking the push scheduling fea-
sible in mesh P2P [5]. Moreover, a missing segment of a peer
can be served by multiple neighbors simultaneously. Mea
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and Baochun proposed a random push scheduling for net-
work coding based P2P live streaming system called 𝑅

2 [6].
Through reducing the complexity of coordinated scheduling
and improving the bandwidth resources, 𝑅2 improves the
system performance. However, they do not optimize the
QoS metrics of transmission performance and the streaming
quality so that they do not reach the optimal solution.
Moreover, in𝑅2, before pushing a block, a peer has to produce
a new coding block, which brings a lot of coding overhead
since the operation of encoding consumes the computational
resources. To generate new coding blocks by reencoding, a
peer must receive enough coding blocks, which increases the
extra packet delay. Since current scheduling cannot fully take
advantages of network coding, it is necessary to redesign a
QoS driven push scheduling approach for network coding
based P2P live streaming system.

In this paper, we propose a novel QoS driven scheduling
approach for network coding based P2P live streaming
system with the following contributions. First, we introduce
a new coding method, through combing the substreams
with network coding. Second, we formulate the scheduling
optimization problem and transform it to an equivalent min-
cost flow problem for solving it in polynomial time. Third,
we design a simple yet effective push scheduling algorithm
to reduce the coding overhead and improve the robustness
in dynamic environments. To evaluate the performance and
effectiveness, we implement our approach on an event-driven
P2P streaming simulator [7] and compare it with Cool-
Streaming [2] and 𝑅

2 [6]. The simulation results show that
our approach improves the transmission performance and
streaming quality by reducing the packet delay and improving
the continuity index. Meanwhile, the coding overhead is
lower by reducing the coding ratio, which reflects the better
robustness of our approach in dynamic environments.

The rest of the paper is organized as follows. In Section 2,
we discuss the related work. In Section 3, we present the
details of our analysis model and introduce a new coding
method. We propose the optimization and algorithm of our
scheduling approach in Section 4. The simulation results are
discussed in Section 5. Finally, Section 6 concludes our work.

2. Related Work

The tree-based P2P live streaming systems, such as [3, 8, 9],
could reduce the playback delay. In the tree topology, the root
is the streaming servers and all other peers are organized
into one or more multicast trees. The streaming content of
the server is decomposed into substreams that are pushed
through corresponding trees from the server to all nodes
in that tree. Although such tree-based push scheduling
algorithm is beneficial in reducing the delays of transmitting
data, they are not suitable to deploy in real-world large-scale
streaming systems.Themain reason is its complexity and cost
involved in maintaining the tree topology in dynamic P2P
environment.

CoolStreaming [2] is a mesh based P2P live streaming
system and it can serve large-scale users. In the mesh based
systems, the streaming content is divided into a series of

segments and each represents a short duration content of
playback. A new concept, called buffer map, is introduced
to represent the segment available information of each peer.
To know which segments each neighbor has, the buffer
map is periodically exchanged among peers. CoolStreaming
proposes a rarest-first pull scheduling algorithm, which
means the rarest segment among its neighbors is transmitted
preferentially. Although the systems with the mesh topology
and pull scheduling algorithm are more robust to peers
dynamic than the systems with the tree topology and push
scheduling algorithm, they inevitably increase the delay of
data transmission from servers to all participating peers.
These delays mainly come from the periodic exchange of
buffer map and explicit segment request. Zhang et al. [4]
propose Grid Media to improve the delay of CoolStreaming,
which is also a mesh based P2P live streaming system. It
combines a hybrid scheduling algorithm, consisting of the
pull and push modes. In Grid Media, a peer requests the
streaming packets with the pull mode at startup and then
relays streaming packets in the push mode. Essentially, to
utilize the push mode, the streaming content is divided into
multiple substreams, each of which is pushed in a different
tree structure.However, it also needs to exchange the segment
available information among peers and is not robust due to
the dynamic environment.

For dealing with the defects of mesh based P2P streaming
system, some coding methods are introduced into P2P
streaming system, the most representatives of which are
rateless codes and network coding. The rateless fountain
codes, including LT codes [10], Raptor codes [11], and online
codes [12], can be readily used in peer-to-peer streamingwith
substantial advantage. The typical P2P system with rateless
codes is rStream. In rStream [13], the Raptor codes are used
in P2P streaming system to eliminate the coordination of the
content available information. The peer selection and rate
allocation are formulated as an optimization problem and the
algorithm is also proposed to solve the optimization problem.
Although it improves the end-to-end latency, it neglects the
other QoS metrics, such as throughput and redundancy.

Recently, network coding [14–16] has been widely used
to improve the performance of P2P systems. Gkantsidis and
Rodriguez [17, 18] have proposed that randomized network
coding can significantly reduce the downloading times in P2P
content distribution and file downloading systems. Lava [5]
fairly evaluates the feasibility and effectiveness of randomnet-
work coding [19] for P2P live streaming systems. While Lava
has focused on a fair comparison study without improving
the P2P live streaming traditionalmechanism, the advantages
of network coding have not been fully explored. Inspired
by Lava, Mea and Baochun [6] redesign the scheduling
algorithm and propose a random push with random network
coding scheduling algorithm called 𝑅2 to take full advantage
of network coding.The randompush scheduling algorithmof
𝑅
2 is revised to be suitable for UUSee [20], which is a popular

P2P VoD system. It demonstrates that network coding with
random push scheduling algorithm can also improve the
P2P VoD system. Sarkar and Wang [21] give the details of
the setup through a measurement study of network coding
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in real P2P VoD system. Sarkar and Wang [22] propose
a prefetch strategy for network coding based P2P VoD
systems. Nguyen and Nakazato [23] discuss that the rare-
first scheduling algorithm is not enough for P2P streaming
with network coding. Sheikh et al. [24] propose a distributed
media-aware scheduling algorithm for P2P streaming with
network coding, which considers the feedback information
of neighbors, including loss rate and decoding ratio.

Although the network coding in P2P streaming is effec-
tive and practical, the research of the scheduling algorithm
in network coding based P2P streaming systems is still an
open research area, especially in optimizing several QoS
metrics. Hsu [25] produces a knowledge sharing method and
Mishra and Srivastava [26] discuss the information spreading
behavior in the distributed systems, both of which enlighten
our work indirectly. Our idea of QoS driven scheduling
algorithm is partly inspired by the previous research, but we
introduce a new coding method, formulate an optimization
for the scheduling problem, and propose the corresponding
distributed solution.

3. The Analysis Model and Coding Method

We let 𝑅 bits/s be the streaming rate of the live stream. To
realize the push scheduling inmesh [4], we also divide the live
stream into several substreams. Let each substream’s rate be
𝛾. It means the live stream is divided into𝑁 substreams,𝑁 =

𝑅/𝛾 (assuming that 𝑅 is divisible by 𝛾). On the other hand, as
for the traditional P2P live streaming with network coding,
the live stream is divided into several segments, and each
segment is divided into several blocks.The network coding is
only used in each segment to generate coding blocks, without
encoding blocks across different segments.

In our approach, we propose a network coding method
by combining the substream with network coding, called
coding substream.Thedetails of the codingmethod of coding
substream are described as follows. We let the live stream be
divided into segments. Each segment has a sequence number
called 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑑 and is divided into 𝑀 blocks further. The
network coding is used in each segment to generate 𝑀



coding blocks. We directly utilize random network coding
and progressive decoding method [5]. Whenever a peer
wants to encode a block, it first independently and randomly
chooses a set of coding coefficients [𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑚
] in the

Galois fieldGF(28) and then produces a coding block 𝑥, using
the following equation:

𝑥 =

𝑀

∑

𝑖=1

𝑒
𝑖
⋅ 𝑏
𝑖
. (1)

When a peer receives 𝑀 linearly independent coding
blocks 𝑥 = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑀
], it can decode the original

segment as follows. It extracts the coefficients of each encoded
block 𝑥

𝑖
to form the 𝑀 × 𝑀 coefficient matrix 𝐸. Then,

it recovers the original segment 𝑏 = [𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑀
] as (2).

We utilize Gaussian elimination [5] to solve this equation.
Consider the following:

𝑏 = 𝐸
−1
𝑥
𝑇
. (2)

Coding blocks are divided into coding substreams
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Figure 1: The coding method and the coding substreams.

The 𝑀
 coding blocks are interleaved into 𝑁

 coding
substreams, 𝑁 = ⌊𝐵

𝑠
/𝛾⌋, 𝑀 = 𝑀 ∗ (𝑁


/𝑁) (𝐵

𝑠
is

the upload bandwidth of source server). Each substream
has a sequence number called 𝑠𝑢𝑏-𝑠𝑡𝑟𝑒𝑎𝑚 𝑖𝑑. Each coding
block in one coding substream has a sequence number called
𝑏𝑙𝑜𝑐𝑘 𝑖𝑑. Thus, each coding block is identified by a triple,
<𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑑, 𝑠𝑢𝑏 − 𝑠𝑡𝑟𝑒𝑎𝑚 𝑖𝑑, 𝑏𝑙𝑜𝑐𝑘 𝑖𝑑>. A diagram of this
coding method and coding substreams is shown in Figure 1.

We take an example to explain this method. Assume that
𝑁 = 3,𝑀 = 6, and 𝐵

𝑠
= 2𝑅, which means the original

segment includes 6 blocks and each segment is divided into 3
substreams; namely, each substream has 2 blocks. To generate
the coding substreams, it will produce𝑀 = 2𝑀 = 12 coding
blocks (with the 𝑏𝑙𝑜𝑐𝑘 𝑖𝑑 1,2,3,11,12), for a segment and these
12 coding blocks are divided into 𝑁


= 2𝑁 = 6 coding

substreams, that is, coding substreams 1 with coding blocks
{1, 7}, coding substreams 2 with coding blocks {2, 8}, . . ., and
coding substreams 6 with coding blocks {6, 12}.

In our approach, the network coding operation is also
employed both on the source server side and on the peers
side.However, the encoding operationsmainly happen on the
server and occasionally happen on the peers when necessary
(this situation will be discussed later), which is different from
the traditional network coding based P2P streaming systems,
such as Lava [5] and 𝑅

2 [6]. This design could effectively
reduce the coding overhead.

In the traditional push scheduling and non-network cod-
ing systems [4], each peer needs to collect all 𝑁 substreams
for smooth playback.This brings the limitation that the peers
may fail to get enough substreams since the system is highly
dynamic. However, in our approach, we apply the network
coding to the 𝑀 original blocks of a segment for producing
𝑀
 coding blocks with little probability of duplication, which

also means that it can produce more available substreams,
that is, from 𝑁 substreams to 𝑁

 substreams. On the one
hand, our approach increases the diversity of the content and
robustness of the system. On the other hand, it decreases the
complexity of the substreams scheduling. Each peer could
subscribe to any 𝑁 substreams from these 𝑁

 substreams.
As long as the peer collects 𝑀 linearly independent coding
blocks from𝑁 substreams, it can decode the original content.

We formulate this simple coding substreams scheduling
as the following model. In the transmission process based
on coding substreams, each peer subscribes to 𝑁 coding
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Figure 2: The scheduling process of a child and its parents.

substreams via its neighbors. Once a peer receives coding
blocks from its subscribed substreams, it also relays the
content to its downstream neighbors that requested the cor-
responding substreams. We can decompose the transmission
process of the whole system into several transmission units.
A typical transmission unit is illustrated in Figure 2, in
which the focused peer is called child and the peers serving
substreams are called parents. Without loss of generality, we
can solve the substreams scheduling problem by focusing
on a certain child and its parents in Figure 2. The child
has a set of parents denoted by 𝑁𝐵𝑅. For each parent 𝑖 in
𝑁𝐵𝑅, it will allocate a certain upload bandwidth 𝐵

𝑖
bits/s

to the child for the coding substreams transmission. Let
ℎ(𝑖, 𝑗) ∈ {0, 1} denote whether parent 𝑖 could provide
substream 𝑗. ℎ(𝑖, 𝑗) has value 1 if parent 𝑖 could provide
the substreams 𝑗 and 0 otherwise. When a child first joins
the system, it requests a neighbor list as its parent set 𝑁𝐵𝑅
from the bootstrap server. Actually, any neighbor selection
algorithm can be used in our approach. After obtaining
the parent set, the child asks each parent for their buffer
information about the coding substreams (i.e., the vector
[ℎ(𝑖, 𝑗)] = (ℎ(𝑖, 1), ℎ(𝑖, 2), . . . , ℎ(𝑖, 𝑁


))). Upon receiving each

parent’s vector [ℎ(𝑖, 𝑗)] = (ℎ(𝑖, 1), ℎ(𝑖, 2), . . . , ℎ(𝑖, 𝑁

)), the

child solves the scheduling problem about arranging the
coding substreams that means it needs to decide to subscribe
to which coding substream via which parent for obtaining the
𝑁 coding substreams.

4. The Optimization and Algorithm for
the Scheduling Problem

We first formulate the scheduling problem as a cost opti-
mization problem and introduce a polynomial time solution
in Section 4.1. And then, we give the details of the push
scheduling algorithm of our approach in Section 4.2.

4.1. The Optimization of the Scheduling Problem. Let 𝑜
𝑖
be the

maximal substreams which can be pushed to the child from
parent i, 𝑖 ∈ 𝑁𝐵𝑅. It is calculated by (3), in which 𝐵

𝑖
is the

upload bandwidth that parent 𝑖 allocated to the child and 𝛾 is
the streaming rate of each coding substream. Consider

𝑜
𝑖
= ⌊

𝐵
𝑖

𝛾
⌋ . (3)

Before formulating the optimal scheduling problem, we
define a cost function𝐶(𝑖, 𝑗) as (4), which represents the aver-
age transmission delay of a packet considering the packet loss
probability when the substream 𝑗 is assigned to parent 𝑖. The
larger 𝐶(𝑖, 𝑗)means higher transmission delay. 𝜌

𝑖,𝑗
represents

the child’s packet loss probability of coding substream 𝑗 from
parent 𝑖. 𝐷

𝑖,𝑗
denotes the child’s link latency of substream 𝑗

from parent 𝑖. We use an example to explain our design of the
cost function 𝐶(𝑖, 𝑗). For two parents 𝑖 and 𝑘, we assume that
𝐷
𝑖,𝑗
= 3 seconds,𝐷

𝑘,𝑗
= 1 second, 𝜌

𝑖,𝑗
= 0.1, 𝜌

𝑘,𝑗
= 0.3, and 10

packets are transmitted in each sending period. For parent
𝑖, the child receives 9 packets in 3 seconds, namely, using
1/3 second per packet, and for parent 𝑘, the child receives
7 packets in 1 second, namely, using 1/7 second per packet.
Apparently, the child should prefer to subscribe to coding
substream 𝑗 via parent 𝑘. Consider the following:

𝐶 (𝑖, 𝑗) = 𝐷
𝑖,𝑗
×

1

𝜌
𝑖,𝑗

. (4)

Given the coding substreams vector [ℎ(𝑖, 𝑗)] =

(ℎ(𝑖, 1), ℎ(𝑖, 2), . . . , ℎ(𝑖, 𝑁

)) from parent 𝑖 and the maximal

substreams allocated to the child 𝑜
𝑖
, ∀𝑖 ∈ 𝑁𝐵𝑅, the goal of

the scheduling problem is to find a solution of subscribing
to which coding substream via which parent, achieving the
minimum total transmission cost of the𝑁 subscribed coding
substreams for the child. We formulate it as the optimization
scheduling problem with some given restrictions in the
following equation:

Minimize
𝑁


∑

𝑗=1

∑

𝑖∈𝑁𝐵𝑅

𝑥
𝑖𝑗
ℎ (𝑖, 𝑗) 𝐶 (𝑖, 𝑗)

subject to (a) 𝑥 (𝑖, 𝑗) ∈ 0, 1, 𝑖 ∈ 𝑁𝐵𝑅,

𝑗 ∈ {1, 2, . . . , 𝑁

}

(b) ∑

𝑖∈𝑁𝐵𝑅

𝑥 (𝑖, 𝑗) = 1, ∀𝑗

(c)
𝑁


∑

𝑗=1

𝑥 (𝑖, 𝑗) ≤ 𝑜
𝑖
,

(d)
𝑁


∑

𝑗=1

∑

𝑖∈𝑁𝐵𝑅

𝑥
𝑖𝑗
= 𝑁.

(5)

From constraint (a), 𝑥
𝑖𝑗
is a decision variable, which has

value 1 if the substream 𝑗 is assigned to parents 𝑖 and 0
otherwise. It indicates this scheduling optimization is a 0-1
programming problem. The constraint (b) means the child
can only subscribe to one coding substream via one parent.
The constraint (c) means parent i’s number of subscribed
coding substreams must be smaller than its upper bound
𝑜
𝑖
. The constraint (d) means the child only needs 𝑁 coding

substreams.
The classical min-cost flow problem could be formulated

as (6). The min-cost flow problem is a well-known optimiza-
tion problem. Since the min-cost flow problem is a convex
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problem, which could be used by several algorithms to get
the solution in polynomial time. Consider

min ∑

(𝑖,𝑗)∈𝐴

𝑐 (𝑖, 𝑗) 𝑥 (𝑖, 𝑗)

subject to (a) ∑

𝑗:(𝑖,𝑗)∈𝐴

𝑥 (𝑖, 𝑗) − ∑

𝑗:(𝑗,𝑖)∈𝐴

𝑥 (𝑗, 𝑖) = 𝑑
𝑖
,

∀𝑖 ∈ 𝑉

(b) 0 ≤ 𝑥 (𝑖, 𝑗) ≤ 𝑢 (𝑖, 𝑗) , ∀ (𝑖, 𝑗) ∈ 𝐴.

(6)

For solving this optimization problem in polynomial
time, we propose some transformation rules to transform
this scheduling optimization problem to an equivalent min-
cost flow problem. The transformation rules are described in
Table 1, which includes two aspects: vertexes and edges. The
key idea of our transformation rules lies in two aspects: (1)
we use two type vertexes to represent the parents and coding
substreams; (2) besides the edges between the vertex 𝑝

𝑖
and

vertex 𝑠𝑠
𝑗
, the cost of other edges is 0.

Figure 3 shows the transform result. We use the double
scaling algorithm [27] to solve this min-cost flow problem in
polynomial time. In the optimal solution, the flow amount on
edges (𝑝

𝑖
, 𝑠𝑠
𝑗
) is the value of𝑥(𝑖, 𝑗).With the optimal solution,

we can also get the scheduling decision of the child; that is, for
each 𝑥(𝑖, 𝑗) = 1, the substream 𝑗 is assigned to parent i.

4.2. Push Scheduling Algorithm. We also design a push
scheduling algorithm to ensure the coding blocks trans-
mission of substreams with low delay and overhead. As
traditional P2P live streaming, each peer has a buffer with a
limited constant length.When a child receives a coding block
from the subscribed coding substream, it puts this block into
its buffer and does one step progressive decoding operation
by applying Gauss-Jordan elimination [5], which can reduce
the decoding time. For serving the child, a parent has two
modes to push its content: Forwarding Push and Reencoding
Push. According to the status of child’s buffer, the parent
makes a choice from these two modes.

4.2.1. Forwarding Push. The parent directly forwards the
coding block in its buffer to the child only if the child lacks
the block in the corresponding and subscribed substreams.
When a child subscribes to a coding substream via a parent, it
should inform the largest 𝑏𝑙𝑜𝑐𝑘 𝑖𝑑 of the block it has received
of each segment in that substream. If the parent has some
blocks, the 𝑏𝑙𝑜𝑐𝑘 𝑖𝑑 of which is larger than its child’s largest
𝑏𝑙𝑜𝑐𝑘 𝑖𝑑, it can directly forward them to its child and at the
same time it updates the child’s largest 𝑏𝑙𝑜𝑐𝑘 𝑖𝑑.

4.2.2. Reencoding Push. If the parent cannot find any block
in its buffer that can be directly forwarded to the child (it
means that the child has received the whole coding blocks
of its subscribed substreams from this parent), it will try to
produce a new coding block through reencoding the received
coding blocks in its buffer and push the new coding block to
the child. To ensure the newproduced coding block is linearly

independent of the child, we import the concept of coding
aggressiveness 𝛼(0 < 𝛼 < 1) [5]. A parent can produce a new
coding block by re-encoding the received coding blocks only
if the percentage of received coding blocks in that segment
is larger than 𝛼 (the segment is called segment exists). After
producing a new coding block by re-encoding, the parent will
push it to the child. Upon receiving this block, the child will
insert it into amissing substream and assign it with the largest
𝑏𝑙𝑜𝑐𝑘 𝑖𝑑 in that substream.

This design of Reencoding Push makes our system more
robust in dynamic environment. We explain it through an
example in Figure 2. Assume the child subscribes to coding
substream 𝑗 via parent 𝑖 and the parent 𝑖 suddenly leaves
the system. At this time, the child needs to search for
another parent by contacting the bootstrap server or any
other membership mechanisms. Anyway, this parent repair
process will take some time. During this period, the child
may not receive the content in time and have to suffer from
the incomplete streaming that is decreasing the streaming
quality. However, with Reencoding Push, the child’s other
parents will discover coding substream 𝑗 ismissing. Although
the child does not subscribe to the coding substream 𝑗 via any
parent of them, they will reencode to produce new coding
blocks, in order to supply the missing substream 𝑗. After
receiving enough reencoding blocks, the child could decode
the original content and provide smooth playback. Besides,
in traditional push-mesh system, the child has to find a new
parent which can provide the exact same substream 𝑗. In
our approach, the child need not find the exact same coding
substream 𝑗, and it needs only to find a coding substream
𝑗
, which has not been subscribed before. Since the coding
substream 𝑗

 is linear independence with the remaining𝑁−1

coding substreams of the child, it can replace substream 𝑗

to be used for decoding and therefore the parent repairing
process could be shortened effectively.

We summarize our QoS driven scheduling approach by
describing the flowchart as in Figure 4. In the beginning
of a new child joining the system, it contacts the server
to get the neighbor list as its parent set. Then it asks for
parents’ buffer information (i.e., the vector [ℎ

𝑖,𝑗
]’s). Upon

receiving the vector ℎ
𝑖,𝑗
from all parents, the child computes

a new scheduling for these substreams, through solving the
optimization as (5). The child recomputes the scheduling
when it meets large changes about network conditions,
such as the departure of parents or congestion in a certain
connection. After deciding the substreams subscription, the
child will receive content from parents and push the content
to its child via two modes of our push scheduling algorithm.

5. Evaluation

5.1. Simulation Setup andMetrics. Weutilize a discrete event-
driven packet level simulator [7] and realize the network
coding operation and our scheduling approach on it. We
conduct a series of extensive simulations to study the impacts
of our scheduling approach. For comparison, we simulate
two conventional systems: the classic system CoolStreaming
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Table 1: Transformation rules.

Transformation rules of vertexes
(1) We add two virtual vertexes, source vertex 𝑆 and terminal vertex 𝑇.
(2) We add |𝑁𝐵𝑅| parent vertexes, each of which is represented by 𝑝

𝑖
, 𝑖 ∈ 𝑁𝐵𝑅.

(3) We add the vertex 𝑠𝑠
𝑗
to express the substream 𝑗, 𝑗 ∈ {1, 2, . . . , 𝑁


}.

(4) We add the vertex 𝐶 to express the child node, which makes the scheduling strategy.
Transformation rules of edges

(5) We add the edge between vertex 𝑆 and vertex 𝑝
𝑖
, the cost of which is 0 and capacity of which is 𝑜

𝑖
.

(6) For ∀𝑗 ∈ {1, 2, . . . , 𝑁

}, if ℎ(𝑖, 𝑗) = 1, we add the edge between the vertex 𝑝

𝑖
and vertex 𝑠𝑠

𝑗
, the cost of which is 𝐶(𝑖, 𝑗) and the

capacity of which is 1.

(7) For ∀𝑗 ∈ {1, 2, . . . , 𝑁

}, we add the edge between the vertex 𝑠𝑠

𝑗
and the vertex 𝐶, the cost of which is 0 and the capacity of

which is 1.
(8) We add the edge between vertex 𝐶 and vertex 𝑇, the cost of which is 0 and capacity of which is𝑁.
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Figure 3: A min-cost-transformation example.

[2] with traditional pull and state-of-the-art network coding
based system 𝑅

2 [6] with random push.
In our simulation, all streaming and control packets

including the sending and receiving buffer of each peer are
carefully simulated. In all experiments, unless specified oth-
erwise, we set the original streaming rate 𝑅 = 400Kbit/s and
the substream rate 𝛾 = 50Kbit/s. Each segment represents
1 second of the playback, which means each segment is
400Kbit/s long. The segments are divided into 𝑀 = 320

blocks. According to literature [5], the coding aggressiveness
𝛼 = 0.5. Each peer has 15 parents. The upload capacity of the
source server is 𝐵

𝑠
= 5Mbit/s, which is a reasonable ratio

in practice. The default number of peers is 200. The default
parameters of the simulated system are set as Table 2. We
employ real-world end-to-end latency matrix (2500 × 2500)
measured on Internet [28] and the transmission loss rate for
data packets between two peers as uniformly distributed from
0.02 to 0.1, which are typical in Internet. To simulate the
bandwidth heterogeneity of peers, we define three different

typical ADSL peers. The default of the peer bandwidth
distribution is presented in Table 3, which is measured on
Internet [29].

Besides the simulation with default parameters values in
Table 2, we also change the peer number and streaming rate to
do extra experiments. As the values of the peer number and
streaming rate change, the peer bandwidth distribution has
to be reset, in order to meet the increase of system demand
for peers bandwidth. The details of the corresponding peer
bandwidth distribution are described in Table 4.

We focus on the following metrics in our evaluation.

Packet Delay. It refers to the delay between the time when
the packet is sent out from the source server and when it is
received at a peer after several hops.

Continuity Index. It is defined as the fraction of the segments
that could be received and decoded before their playback
deadlines.
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Table 2: The default parameters of the simulation.

Category Parameter value
Peer number 200
Substream rate 𝛾 50Kbit/s
Streaming rate 𝑅 400Kbit/s
Segment length 1 s (320 blocks)
Parent count 15
Upload bandwidth of streaming server 𝐵

𝑠
5Mbit/s

Coding aggressiveness 𝛼 0.5

Table 3: Peer bandwidth distribution.

Category Downlink Uplink Ratio (default)
A 768Kbit/s 128 Kbit/s 30%
B 1.5Mbit/s 384Kbit/s 40%
C 3Mbit/s 1Mbit/s 30%

Coding Ratio. It is defined as the percentage of the transmitted
blocks produced by encoding operation over all the transmit-
ted blocks that are sent by peers.

5.2. Simulation Results

5.2.1. Packet Delay. Figure 5 shows the average packet delay
of the three systems versus the number of peers. Generally,
the average packet delay increases with the number of peers,
since the network scale of systems becomes large.The average
packet delay of CoolStreaming is the largest, as the pull
scheduling algorithm accumulates large packet delay along
the transmission path. Since network coding makes the push
scheduling feasible in mesh P2P systems, 𝑅2 reduces packet
delay. However, it uses random push scheduling without
considering the link transmission delay and the frequent
reencoding operations make the coding ratio too high (in
Figure 9). So, its packet delay is still larger than ours. Our
system achieves the smallest packet delay.The reasons are that
our scheduling optimization chooses the parents with low
link transmission delay to push coding substreams in a timely
mode and our scheduling algorithm reduces the reencoding
operations as much as possible.

The average packet delay of the three systems versus
streaming rate is illustrated in Figure 6. In general, the
average packet delay becomes larger with the increase of
streaming rate, as the quantity of transmitted data increases.
The reason is that with larger streaming rate, a segment
has more blocks and it has to take more times to receive
these blocks and decode them. Overall, as the streaming rate
increases, although the packet delay inevitably increases, our
approach can keep it at amore reasonable and lower level than
those of CoolStreaming and 𝑅2, which means our algorithm
has better scalability.

5.2.2. Continuity Index. The streaming quality is measured
by continuity index. Figure 7 shows the average continuity
index of the three systems versus simulation duration. To
simulate the dynamic environment, we let 50 peers and 20

Each peer
start

Collect parent list and
buffer information of parents

Arrange the coding substreams among
parents through solving the

optimization scheduling problem

Network
condition
changes

N

N

Y

Y

Receive contents
from parents

Find blocks could be directly
forwarded to its children

Directly forward
blocks

Produce a new
coding block and

forward it

Figure 4: The flowchart of our QoS driven scheduling approach.
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Figure 5: Average packet delay versus number of peers.

peers leave the system, respectively, at 500 s and 800 s of
the duration. Our system achieves the highest continuity
index. The continuity index of ours has the least reduc-
tion, which means our systems have the best robustness in
dynamic environment.The reason mainly lies in two aspects.
(i) Our approach considers the packet loss probability
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Table 4: Peer bandwidth distribution versus peers number and streaming rate.

The variation of peers number The variation of streaming rate
Peer number Category ratio (A/B/C) Streaming rate (Kbit/s) Category ratio (A/B/C)
300 35%/45%/20% 300 40%/40%/20%
400 35%/40%/25% 350 35%/45%/20%
500 30%/45%/25% 400 30%/40%/30%
600 40%/30%/30% 450 30%/35%/35%
700 20%/35%/45% 500 20%/35%/45%
800 20%/30%/50%
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Figure 6: Average packet delay versus streaming rate.

and transmission delay in the optimization scheduling prob-
lem. This optimization solution ensures the packet delay can
be reduced as much as possible; that is, most segments could
be received and decoded before their playback deadlines. (ii)
The design of Reencoding Push mode ensures the child can
still receive enough blocks in dynamic environment.

The average continuity index of the three systems versus
the number of peers is illustrated in Figure 8. In general, the
average continuity index becomes smaller with the increase
of system scale. However, the decrease amplitude of our con-
tinuity index is slight and the continuity index of our approach
can still keep at a high level, which demonstrates that our
approach can keep good scalability. The reason mainly lies
in two aspects. (i) The packet delay of CoolStreaming and
𝑅
2 becomes larger (described in Figure 5), so that, as for

CoolStreaming, some segments cannot arrive at the peers
before the playback deadline of these segments, and as for
𝑅
2, the peers also cannot receive enough blocks to decode

the segments in time. (ii) In our approach, the segments, not
decoded and close to the playback deadline, still have chances
to obtain the absent coding blocks through our Reencoding
Push mode, which will increase the decoding probability of
these segments. Our approach has improved CoolStreaming
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Figure 7: Average continuity index versus simulation duration.

and 𝑅
2 in terms of these two aspects. Thus, more segments

could be decoded before their playback deadline.

5.2.3. Coding Ratio. The encoding operation of network
coding not only consumes the computing resources but
also increases the packet transmission delay. Since encoding
operations bring obvious coding overhead, it should be
reduced as much as possible. We use coding ratio to measure
the coding overhead. To simulate the dynamic environment,
we let 20 peers leave the system at 600 s of the duration.
Figure 9 shows the average coding ratio of the two systems,
our system and 𝑅

2 versus simulation duration. For 𝑅2, the
coding ratio is nearly always 100% since each peer has to
produce a new coding block by encoding operation before
serving a packet to its neighbor. In our push algorithm, most
coding blocks are directly forward to the child and a new
coding block will be produced for the child by Reencoding
Push only if necessary. Therefore, the coding ratio of our
system is less than 30% most of the time. When some peers
leave the system, the reencoding operations briefly increase to
supply missing substreams in the parent repair process. So,
our system achieves better overhead control and robustness
in dynamic environment.
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The average coding ratio of the two systems, our system
and 𝑅

2, versus the streaming rate is illustrated in Figure 10.
The average coding ratio of 𝑅2 is also nearly always 100%.
Whatever the streaming rate is, each peer of 𝑅2 needs to
generate a new coding block before transmitting a packet to
any of its neighbors.The average coding ratio of our approach
increases as the streaming rate becomes larger. The reason is
that both the quantities of transmitted data and packet delay
increase, so that the peers have to use longer time to obtain
all the blocks and the quantity of loss packets becomes larger.
This situation leads to the probability that the parent cannot
forward any block in its buffer to its child will increase a little.
According to our approach, the reencoding operations will
increase slightly.The increase amplitude of our coding ratio is
slight and the coding ratio of our algorithm can still keep at
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Figure 10: Average coding ratio versus streaming rate.

a low level, which demonstrates that our algorithm can keep
good scalability.

6. Conclusions

In this paper, we study and propose a QoS driven scheduling
approach for network coding based P2P live streaming
system. Through introducing a new network coding method
for substreams, we reduce the complexity of the scheduling
problem, which is formulated as an optimization problem.
Furthermore, we transform the optimization problem to
an equivalent min-cost flow problem to solve it in poly-
nomial time and propose a push scheduling algorithm to
reduce the coding overhead. We conducted extensive simu-
lation to validate the performance and effectiveness of our
approach compared with other traditional and state-of-the-
art schemes. Experimental results show that our approach
achieves better transmission performance and streaming
quality with substantially much lower overhead in dynamic
environments.
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