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A GENERALIZED BETA FUNCTION AND ASSOCIATED
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We introduce and establish some properties of a generalized form of the beta function.
Corresponding generalized incomplete beta functions are also defined. Moreover, we de-
fine a new probability density function (pdf) involving this new generalized beta function.
Some basic functions associated with the pdf, such as moment generating function, mean
residue function, and hazard rate function are derived. Some special cases are mentioned.
Some figures for pdf, hazard rate function, and mean residue life function are given. These
figures reflect the role of shape and scale parameters.
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1. Introduction. Recently, many authors have defined and studied generalized form
of different special functions [4, 5, 8, 12, 13]. Virchenko et al. [12] have treated a gen-
eralized gamma function in the form,

h. . [}
B(a’ ,c,v) = v’“J t“’le”’tﬁl(a,b;c;—E)dt, (1.1)
u,u 0 v

where a, b, and ¢ are complex parameters, w > 0, Rep,Reu > 0, |argv| < 1, and
c+0,-1,-2,.... The case where w = p =1, b = c reduces to Kobayashi’s generalized
gamma function [8]. Moreover, if we take a = 0 in this equation, we get the well-known
gamma function. Kalla and Al-Sagabi [6] have used this function to define a probability
density function, which generalizes results of Kobayashi [8] and Kalla et al. [7].

DEFINITION 1.1. Continue with the preceding assumptions on the parameters a,
b, c, w, u, and v. Then for Re(a+ u) and Re(b + u) > 0, we define a generalized form
of the beta function as

w(a,b;c;v
B

) év’“J t”’l(l+t)’“’”21u3)1(a,b;c;—£)dt, (1.2)
u,u 0 v

w
where >R;(a,b;c;x) is the w-Gauss hypergeometric function [12, 13] whose series
representation is given by,

)

I'(c) S (@)l (b +wk) xk

2Ri(a,bicix) = £ T(c+wk) kI’

Ix] <1 (1.3)
k=0
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and its integral representation in the form,

1
21‘31 (a,b;c;x) = LJ A -1 (1 —xt @) dt
0

[ (1.4)
_ Lt b/w-1(1 _ +1/w\c=b=1 4 -a
- JO (/=1 (1 — @) ) epy-aqy,
where
Re(C)>Re(b)>0, L= % (1.5)

For w =1, (1.4) is the classical Gauss hypergeometric function, hence (1.2) becomes

b. . o]
B (“' ’C’v> - v’“J FL(] 4 1) ~H F (a,b;c;—i)dt, (1.6)
u,u 0 v

and by letting b = ¢, we have [11]

B (“’b;b;v> - ro ECN(1+6)H T (v 1) 4t
u,u 0 (1.7)

=V B(u,u+a)F, (u,a;u+a+u;1 - %)
Further, if we take a = 0 then (1.2) reduces to the well-known beta function, that is,
B(u,u) = J: t“=I(1+t)"H%dt, Re(u),Re(u) > 0. (1.8)
In Section 2, we establish a number of analytic properties, such as recurrence re-

lations and the asymptotic expansions for our generalized beta function. We express
this generalized beta function in terms of w-hypergeometric functions [13]

(1.9)

@ ai,az:b;x 1"(c) i ar)y(az), T (b+wk) xk
L cid & (c)kl"(d+wk) K

In Section 3, we define generalized incomplete beta functions associated with the func-
tion defined by (1.2). These incomplete forms of the generalized beta functions are
used to study some statistical functions in later sections. Moreover, we introduce and
study a new probability density function (pdf) involving the generalized beta function
in Section 4. Finally, we derive some basic functions associated with this density func-
tion, namely, the kth moment, moment generating function, the hazard rate function,
and the mean residue life function. Corresponding results for beta distribution are
listed. Some figures are given for pdf, hazard rate function, and mean residue life
function.

2. The generalized beta function. We begin this section by observing that (1.2) can
be rewritten as

ﬁ(ﬂ,b;c;v

) =v”‘“J t”‘l(l+vt)‘“‘”2ﬁ1(a,b;c;—t)dt. (2.1)
u, i 0
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We express this generalized beta function in terms of w-hypergeometric functions
in the following theorem.

w
THEOREM 2.1. The generalized beta function B(*5<V) can be represented as

u,p
w (a,b;c, w fa,b;c; w (a,b;c;
B(a cv)=E1<a cv>+E2<a cv)l 2.2)
u,p u,u u,u
where,
w f(a,b;c;v w ua:b'l
Eq =V *xB(u,u) x3Rz| v |,
u,p 1-u:c
(2.3)
,b;c; e , : =
£2<a cv)zv " “xll‘")(*)xﬁz a+uu+pu:b+owp "
u,u l+u:c+wu
with
w o _fc,atp,b+wp,—u
r(*)_r< ab.c+wp ) (2.4)

w
PROOF. Using (1.4), the integral representation for >R, yields

wla,b;c;v P yeu @
B( >=v “I X1 +x)7H ”2R1<a,b;c;—£)dx
u,u 0 v

1 o0 %%} —-a
=v9L, J th-1(1—)cb-1 (J XU (14x)Hu (1+%x> dx)dt
0 0

1
tw
= v*“LZJ trl(1-0) P hE (u,u;a+u+u;1 - 7)dt,
0

(2.5)
where
_ 1 _ B(u,a+u)
h=gwcpy B Bw.eob) (2.6)
Using the transformation formulae [1, 9], yvields
tw tw H tw
F=L3><2F1<a,u;1—u;?)+L4><<7) ><2F1<u+u,a+u;1+u;7>, (2.7)

where

@ ,a+u-+ -u,a+u+
F:2F1<a,u;a+u+u;1ft—), L3=F<u ”), L4:r< H “).
v a+uu+p a,u
2.8)



470 Y. B. NAKHI AND S. L. KALLA

Let

o (a,b;c;v 1 tw
El( ) év’“xLngxJ th-1(1-t)ct-LF (a,u;l—u;—)dt
u,u 0 v

s S @ VTR eb
=v ><L2L3><k§0 Oome <’ Lt (1-t) bttt
I'(c) i (@)x (Wil (b + wk)

:UiaXB(U;u)Xr(b) vk(lfu)kr(C‘i‘wk)k!

k=0

w ua:b'l
UV EXB(u,u)3Rz | 7 v |,

l-u:c
) (2.9)
w b:c: w\H w
E» (a, 'C’v) 2 LoLy X (t—) XJ th-1(1—t)e-b-1,F (u+u,a+u;1+u;t—)dt
u,u va v 0 v
= LoLy i (a+u)k(u+“)k L_kJI tb+wk+wu71(1_t)c—b—ldt
vati = (14 )k k! Jo
e, @ IFc+wh) — (a+iu+p)l(b+wu+ wk)
=V UTHXT (%)X
v () F(b+wu)k§0 vk(1+ ) (c+ wp+ wk)k!
w w fa+u quu:loeru'l
=V UTHXT (%) X3R> ’ ‘v
l+u:c+wu
and the proof is complete. a

REMARK 2.2. For w = 1, we get the representation of B in terms of hypergeometric
functions given in [11, page 315], that is,

,b;c; yb;c; ,b;c;
B(a c v) _E (a c v) +E, (a c v)y 2.10)
u,u u,p u,u
where
a,b;c;v B(u,u) uab'l
El("’>= ;“3F2 abi
u’“ v I*U;C
1 (2.11)
E2<a’b;c;v>—v““xr(*)X3Fz u+u,a+u.b+u;; ’
u,u 1+u,c+u
with
_ Cva“'l«l,b“'l«‘,—u
F(*)_F( a,b.c+pu ) (2.12)

w .
ASYMPTOTIC EXPANSIONS FOR B (“’fi’fj”). Now we establish the asymptotic expan-

sions for the generalized beta function using the previous theorem.
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w
THEOREM 2.3. Recall 3R>(x), then asv — oo, it leads to

w fa,b;c;v w ua:lo-l
B( ~V *XB(u,u) x3Ro [ ‘v . (2.13)
u,u 1-pu:c

w
RECURRENCE RELATIONS. The following recurrence relations for B can be easily

w
derived from its definition and the recurrence relations of R given in [12, equations
(8)-(12)].

THEOREM 2.4. The following relations hold:

e b+1;c; +1,b;c;
):bg (a, ,c,v>_(ww§ (a : ,c,v>’
Yl u,u u,u

a,b;c;v> C - <a,b;c—1;v> s <a+ 1,b;c;v)’
u,u u, u,
(2.14)
c—b-Di (% ,c,v):(c_1)§<a, ;C ,v)_b§<a, + ,c,v),
u,pn u, u,u

o (a,b;c;v) _ (c—b)ﬁ (a,b;c+ 1;v> e (a,b+l;c+1;v) .
U, u, u,

Moreover, using [12, equation (17)] and integration by parts to the integral repre-

w
sentation of B we obtain the following result.

LEMMA 2.5. With the preceding assumptions, one can easily derive

%’ a,b;c;v :u+u§ a,b;c;v +£§ a+1,b+w;c+w;v 2.15)
u,u u u+1l,u ru u+l,u—1
with
~ al(e)I'(b+w)
L= [(b)(c+w) (2.16)

We conclude this section by giving the partial derivatives of the generalized beta
function.

w
LEMMA 2.6. The partial derivatives of B(*{5") are

on E(a,b;c;v

— ) :v’“J D)™ [ In(1+6)]" (1 + t)’“’“zﬁl (a,b;c;—£>dt,
oun u, 0 v

o" wfla,b;c;v\ n w(a+mn,b;c;v
(2.17)
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PROOF. The first formula is obtained by observing that

%[t"—l(ut)*”*”] = (D" I+ 0] A F ) E (2.18)

w
The second formula is obtained by using the integral representation of R, that is,

w £y o~ (! _ b1 £t \4 ~ 1
R cr—— ) =1 b/w-1 1— 1/w\¢ <1 - ) I =
2 1(“’b’c’ v) Jos (1=577) ts) s wxB(b,c—b)
(2.19)
and recalling that,
an
av—n(v +st) = (-1)"(a)p, (v +st) 2™, (2.20)
This ends the proof. O

3. The generalized incomplete beta functions. We define for x,w > 0, Reu,Re(a+
u),Re(b+u) >0, and |argv| < m, the related functions:

w. (a,b;c; A ueu ®
BX (“u ‘;v) —v aJO LT (1) H qul(a,b;c;—£>dt, 3.1)

and call it the generalized incomplete beta function, and its companion function,

b. . 00 )
B (“' ’”) _ v’“J Pl (14 0) R, (a,b;c;—ﬁ)dt (3.2)
u, U v

X

which may be called the generalized complementary incomplete beta function. In other

words, we have
E(a,b;c;v) =§6‘ (a;,b;c;v)jLﬁ;0 (a,b;c;v). 33)
u,u u,u u,u

The next theorem lists some differential properties and recurrence relations of
these incomplete functions. For simplicity, we let

w_(a,b;c;v w 9 (a,b;cv
Bé‘éBé‘( w ) BXéBX< w ) (3.4)

THEOREM 3.1. Continue with the preceding notations, to obtain the following
formulas:

w. (a,b;c; w. (a,b;c; vt @
Bg<a Cv)—u+“36‘(a cv>+x (1+x) le(a,b;c;—%)

u,u u u+1l,u va
N (3.5)
L +1,b+w;c+ w;
+—(§6( a w;C+ w;v
vu u+l,u—1
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with L = aT ()T (b+ w) /T(D)T(c + w).

w (a,b;c;v +uw (a,b;c;v U (14x) U w
BS’?( >=—u “Bf?< )——X (e zR1<a.b;C;—%)

Uu,t u u+1l,u va 3.6
+£§m a+1,b+w:c+w;v '
vu ¥ u+l,u—1 ’
d 1-upx —U px —-a —U—-u @ P, X
— [x" "B =1 -wx "By +v (1 +x) " “:Ri|a,b;c;—= ),
dx v
%[(1 +2)HTUBE ] = (u+p)(1 +X)“+ule(’f+v7“x“’lzﬁl (a,b;c;—i),
(3.7)
i[xl’“B""] =(1-u)x "B —v 4(1+x)Hu R (a b'C'—i)
dx X X PRAS | y Uy Gy ) 5

d +U oo +u—1po —ayu-1.% X

— [ +x)"* B = (u+p) (1 +x)H B —v x""L,Rya,b;c;—= ).

dx v

The proof of the formulas (3.5), (3.6), and (3.7) is straight forward from the respec-

tive definitions.

4. The probability density function. In a systematic study of generalized pdf and
their statistical properties, special functions have played a significant role [2, 3, 6, 7,
10]. Chaudhry and Zubair [5, 4] have used modified Bessel functions to extend the
gamma function, and then used them to define some densities. Kalla et al. [7] have
used a generalized form of hypergeometric function to study a new pdf Ismail Ali et al.
[3] have used T-confluent hypergeometric function to define and study a generalized
inverse Gaussian distribution. Here we study a new probability density involving the
function defined by (1.2).

The pdf of a random variable X associated with (1.2) is defined by,

voaxu-l(1 +x)’“’“2%1(a,b;c;—x/v)
@ (a,b;c;v)
uyu
It is obvious that j0°° f(t)dt = 1. We observe that the behavior of f(x) at zero de-
pends on u, that is,

f(x) = x1[x > 0]. 4.1)

0, u>1

-1
f(0) = [ w(a,b;c;v)] 4.2)
v4B , u=1.
1,u

Moreover, we have limy g+ f(x) = o0, u < 1, and limy . f(x) = 0. It can be easily
shown that

w
u-1 p+u _£2R1(a+1,b+w;c+w;—x/v)
w
xo e 2Ry (a,b;c;—x/v)

where L =al'(¢)I'(b+ w) /T (b)I'(c+ w).

%f(x) = [ ]f(X), (4.3)
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FIGURE 4.1. The probability density function f(x) whenv =1, u =4, m =2,

a=3,b=2,c=7.The lower graph represents f(x) when w = 4 whereas
the upper graph represents f(x) when w = 1.

Figure 4.1 represents the pdf for the indicated parameters. It shows the effect of
the parameter .
SPECIAL CASES. If we set w = 1, the density function becomes

vax¥ (1 +x)"H %, F (a,b;c; —x V)
B (a,b;c;v)
u,p

Furthermore, if we let b = ¢, the density function (4.4) reduces to

f(x) = x1[x > 0]. (4.4)

XU (1 +x)H (1 +x/v) “x1[x > 0]

f00 = Bu,u+a)Fi(u,a,u+a+u;1-1/v) ° @.5)
The beta density function of second kind is recovered from (4.1) when a = 0
u-1 —-u-u
Floo = X LR s o, (4.6)

B(u,u)

5. Some statistical function. The aim of this section is to obtain some basic func-
tions associated with the pdf f(x), such as the population moments, the cumulative
distribution function (cdf), the survivor function, the hazard rate function, and the
mean residue life function.

5.1. Population moments. We derive several types of moments such as the kth
moment and the moment generating function. We begin by evaluating the kth moment,
since it will be used to obtain the remaining basic moments, such as the mean, the
variance and the moment generating function

THE kTH MOMENT. The kth moment about the origin of the random variable X
whose pdf f(x) given by (4.1), is defined by

E[Xx¥] 2 J:tkf(t)dt. (5.1)
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By virtue of (4.1), we get

ﬁ( a,b;c;v )
w
E[x¥] = vtk (L4 £)H R (a, by -t /v)dt - \u+k,u—k 5.2)
a ﬁ(a,b;c;v) a ﬁ(a,b;c;v) ’ ’
u,u u,u

Now since the mean, expected value of the random variable X, is a special case of
this moment, namely, the mean is the first moment

© bc:
©( abicv
u+l,u—1
w(a,b;c;v)
B
u,u

Similarly, we can obtain the variance of the random variable X, 0')%, using (5.2) with
k =2, and (5.3), since it is defined as

E[X] éj: tf(t)dt = (5.3)

2

0% 2 E[X?] - (E[X])". (5.4)

MOMENT GENERATING FUNCTION. The moment generating function of the ran-
dom variable X is defined by

M(t) 2 E[e"X] = J: e f(x)dx. (5.5)

To avoid the difficulty of this integration, we observe, using Taylor expansion, that

® 1k
Ele] = 3 L E[x¥]. (5.6)
k=0

Using this beside (5.2), we obtain

E( a,b;c;v )
i u+k,u—k k
M) =Y —“x%
P a,b;c;v !
u,pu

(5.7)

5.2. The distribution function. The cdf F(x) of the random variable X is given by,

w (a,b;c;v)
By
u,u

s 5.8
E(a,b;c;v) (>:8)
u,p

F(x)AP(X<x)= J:f(t)dt =
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hence the survivor function S (x) can be expressed as
w f(a,b;c;v
B (")
u,IJ
w (a,b;c;v) |
B
u,u

5.3. The hazard rate function. For a pdf f(x) the hazard rate function is defined
by

S(x)éP(XZX):lfF(x):rof(t)dtz (5.9

. S
hix) 2 S0 (5.10)
Using (5.2) and (5.9), it follows that
w
—AAu—1 —U-u .
nix) = LA HR(@,6iG X)) (5.11)
w (a,b;c;v)
B%
u,u
A particular case of the hazard function h(x) results when w = 1, that is,
—asu—1 —U-u e
hix) = XA ) R (@ bici=x V) g o (5.12)
. (a,b;c;v)
By
u:u
Further, for b = ¢, the hazard function (5.12) reduces to
u-1 —H-u —-a
h(x):x (1+x) (v+x)2x1[x > 0] (5.13)

. (a,b;b;v)
By
u! l"l
The hazard function of the beta distribution of the second kind is recovered from

(5.11) whena =0

X (T4 x) R

hix) = B (i) x1[x > 0]. (5.14)

5.4. The mean residue life function. For a random variable X, the mean residue
life function is defined by

K(x) = E[X —x/X = x] = E=X)fDdt _ [ tfdt (5.15)
S(x) S(x)

E"" a,b;c;v
*\u+1l,u—-1

E(a,b;c;v) ’
u,pu

Now since

Jwtf(t)dt= (5.16)
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2 4 6 8 10
FIGURE 5.1. The hazard function h(x) when v =1, u =4, m =2, a = 3,

b = 2, ¢ = 7. The lower graph represents h(x) when w = 4 whereas the
upper graph represents h(x) when w = 1.

—

2.5 5 : 10 12.5 15

FIGURE 5.2. The mean residue life function K(x) whenv =1, u =4, m =2,
a=3,b=2,c=7.The lower graph represents K(x) when w = 1 whereas
the upper graph represents K(x) when w = 4.

therefore, using this and (5.9), we get

E“’ a,b;c;v
*\u+1,u-1
Kix)=——F—"— " —x. (5.17)

w b:c:
oo (a, i v)
u, U
For a = 0, we obtain the mean residue life function K(x) of the beta distribution of
the second kind

BY(u+1l,u-1)

K == st

(5.18)
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Figures 5.1 and 5.2 represent the hazard function h(x) and the mean residue life
function K (x). They show the effect of the parameter w.
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