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1. Introduction

There are reasons based on arguments of holography and finiteness of entropy to believe that
the Hilbert space for quantum theory in a de Sitter background is finite-dimensional [1–4].
Since the isometry group of de Sitter, SO(4, 1), has to be represented on this Hilbert space, and
since we expect quantum theory to be unitary, this gives rise to an immediate problem; that
is, SO(4, 1) cannot have finite-dimensional, unitary representations, because it is a noncom-
pact group. It is in this context that the possibility of considering a deformed de Sitter space
with a q-deformed isometry group becomes interesting [5–8] (some of these references work
in the context of dS/CFT). It is a well-known fact that for certain values of the deformation
parameter, (noncompact) quantum groups have unitary, finite-dimensional representations
[9–11].

But recently it was shown [12] that single-parameter quantum deformation can give
rise to deformed de Sitter space only when the deformation parameter is real. This throws a
spanner in the above program because finite-dimensional representations for one-parameter
deformations exist only when the deformation parameter q is a root of unity. One obvious
way to work around this problem is to consider multiparametric deformations of the de Sitter
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isometry group, and the aim of this paper is to take a first step in that direction by writing
down the algebra for this case explicitly.

Another reason why multiparametric deformations are interesting is because in the co-
ordinate system of a static observer in de Sitter, the full SO(4, 1) isometry group is not visible;
the manifest isometries are SO(3) and a time translation (see the appendix for an elementary
demonstration of this fact). So one of the questions we need to answer when we quantize in de
Sitter is to understand how the static observer and the full isometry group are related to each
other. One hope behind the construction of multiparametric deformations of SO(4, 1) is finding
representations of such an algebra that will shed some light on the states of the observer and
their relation to the representations of the full isometry group. We will be working at the level
of complexified algebras; so what we refer to as the algebra of SO(4, 1) or SO(5) is in fact B2 in
the Cartan scheme.

The usual one-parameter q-deformation for a Lie algebra is the Drinfeld-Jimbo (DJ) al-
gebra. We will be interested in a construction of this algebra starting with a dual description
in terms of R-matrices, using the Faddeev-Reshetikhin-Takhtadzhyan [13] approach. What we
will do in this paper is to take the DJ algebras to be defined by the FRT method, and then we
will extend the definition by using a generalized, multiparametric R-matrix [14, 15]. We will
do this explicitly for SO(5,C) and the result will be a multiparametric generalization of the DJ
algebra.

In the next section, we will provide an introduction to the DJ algebra and how it can
be derived from a dual description. In Section 4, we will write down the explicit form of the
multiparametric R-matrix for SO(5) from [15], and use that in the dual description to construct
the multiparametric algebra for SO(5). We conclude with some speculations and possibilities
for future research.

Finite-dimensionality of de Sitter Hilbert space has also been discussed in [16, 17], and
q-deformation in the context of AdS/CFT has been considered in [18, 19].

2. One-parameter DJ algebra and its dual description

Drinfeld-Jimbo algebra is a deformation of the universal enveloping algebra of the Lie algebra
of a classical group. A universal enveloping algebra is the algebra spanned by polynomials in
the generators, modulo the commutation relations. When we deform it, we mod out by a set
of deformed relations, instead of the usual commutation relations. These relations are what
defines the DJ algebra. When the deformation parameter tends to the limit unity, the algebra
reduces to the universal enveloping algebra of the usual Lie algebra.

We will write down the algebra relations on the so-called Chevalley-Cartan-Weyl basis.
The rest of the generators of the Lie algebra can be generated through commutations between
these. The Drinfeld-Jimbo algebra is constructed as a deformation of the relations between the
Chevalley generators. So, without any further ado, let us write down the form of the DJ al-
gebra [20] for a generic semisimple Lie algebra g of rank l and Cartan matrix (aij). In what
follows, q is a fixed nonzero complex number (the deformation parameter) and qi = qdi ,
with di = (αi, αi), where αi are the simple roots of the Lie algebra. The norm used in the
definition of di is the norm defined in the dual space of the Cartan subalgebra, through the
Killing form. These are all defined in the standard references [20, 21]. The indices run from 1
to l.
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With these at hand, we can define the Drinfeld-Jimbo algebra Uq(g) as the algebra gen-
erated by Ei, Fi, Ki, K−1

i , 1 ≤ i ≤ l, and the defining relations

KiKj = KjKi,

KiEj = qi
aijEjKi,

KiK
−1
i = K−1

i Ki,

KiFj = qi
−aijFjKi,

EiFj − FjEi = δij
Ki −Ki

−1

qi − q−1i
,

1−aij∑

r=0

(−1)r[[1 − aij ; r
]]

qi
E
1−aij−r
i EjE

r
i = 0, i �= j,

1−aij∑

r=0

(−1)r[[1 − aij ; r
]]

qi
F
1−aij−r
i FjF

r
i = 0, i �= j,

(2.1)

with

[[n; r]]q =
[n]q!

[r]q![n − r]q!
,

[n]q =
qn − q−n

q − q−1
, [n]q! = [1]q[2]q · · · [n]q, [0]q ≡ 1.

(2.2)

The relations containing only the Es or the Fs are called Serre relations and they should
be thought of as the price that we have to pay in order to write the algebra relations entirely
in terms of the Chevalley generators. Sometimes, it is useful to write Ki as q

Hi

i . In the limit of
q → 1, the DJ algebra relations reduce to the Lie algebra relations written in the Chevalley basis,
withHi’s being the generators in the Cartan subalgebra and Ei’s and Fi’s being the raising and
lowering operators.

We will be interested in the specific case of SO(5) (Cartan’s B2), and we will rewrite the
DJ algebra Uq1/2(so(5)) for that case in a slightly different form for later convenience:

k1k2 = k2k1, k−1
1 = qH1+H2/2, k−1

2 = qH2/2,

k1E1 = q−1E1k1, k2E1 = qE1k2,

k1E2 = E2k1, k2E2 = q−1E2k2,

k1F1 = qF1k1, k2F1 = q−1F1k2,

k1F2 = F2k1, k2F2 = qF2k2,

[
E1, F1

]
=
k2k

−1
1 − k−1

2 k1

q − q−1
,

[
E2, F2

]
=

k−1
2 − k2

q1/2 − q−1/2
.

(2.3)

The Serre relations take the form

E2
1E2 −

(
q + q−1

)
E1E2E1 + E2E

2
1 = 0,

E1E
3
2 −

(
q + q−1 + 1

)
E2E1E

2
2 +

(
q + q−1 + 1

)
E2
2E1E2 − E3

2E1 = 0
(2.4)

with analogous expressions for the Fs.
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Drinfeld-Jimbo algebra is one way to describe a “quantum group.” Another way to do
this is to work with the groups directly and deform the group structure using the so-called
R-matrices, rather than to deform the universal envelope of the Lie algebra. It turns out that
both of these approaches are dual to each other, and one can obtain the DJ algebra by starting
with R-matrices. Faddeev, Reshetikhin, and Takhtadzhyan have constructed a formalism for
working with the R-matrices and constructing the DJ algebra starting from the dual approach.
So, a natural place to look for, when trying to generalize the DJ algebra of SO(5), is this dual
construction and try to see whether it admits any generalizations.

In the rest of this section, we will review the construction of the DJ algebra starting with
the R-matrices. In the next section, we will start with a multiparametric generalization of the
R-matrix for SO(5) and follow an analogous procedure to obtain the multiparametric SO(5)DJ
algebra.

As already mentioned, the deformation of the group structure is done in the dual pic-
ture through the introduction of the R-matrix. The duality between the two approaches is
manifested through the so-called L-functionals [20]. If one defines the L-functionals as certain
matrices constructed from the DJ algebra generators, then the R-matrix and the L-functionals
would together satisfy certain relations (which we will call the duality relations), as a conse-
quence of the fact that the generators satisfy the DJ algebra. Conversely, we could start with
L-functionals thought of as matrices with previously unconstrained matrix elements, and then
the duality relations would be the statement that the matrix elements should satisfy the DJ
algebra. Thus the L-functionals, together with the duality relations, are equivalent to the DJ
algebra.

For any R-matrix,1 we can define an algebraA(R), withN(N + 1) generators l+ij , l
−
ij , i ≤ j,

j = 1, 2, . . . ,N, and the defining relations

L±
1L

±
2R = RL±

2L
±
1 , L−

1L
+
2R = RL+

2L
−
1 ,

l+iil
−
ii = l−iil

+
ii = 1, i = 1, 2, . . . ,N,

(2.5)

where the matrices L± ≡ (l±ij) and l+ij = 0 = l−ji, for i > j (i.e., they are upper or lower triangular).
The subscripts 1 and 2 have the following meanings. L+

1 stands for L
+ tensored with theN ×N

identity matrix, and L+
2 stands for the N ×N identity matrix tensored with L+. So, the matrix

multiplication with R is well defined because the R-matrix is an N2 × N2 matrix. The above
relations will be referred to as the duality relations. It turns out that this algebra has a Hopf
algebra structure with

comultiplication: Δ
(
l±ij
)
=
∑

k

l±ik ⊗ l±kj ,

counit: ε
(
l±ij
)
= δij ,

antipode: S
(
L±) =

(
L±)−1.

(2.6)

1 It is useful here to keep in mind that R-matrices are N2 ×N2 matrices.
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Now, let us choose the R-matrix in the above case to be the one-parameter R-matrix for
SO(N), withN = 2n + 1:

R = q
2n∑

i�=i′
Eii ⊗ Eii + q−1

2n∑

i�=i′
Eii ⊗ Ei′i′ + En+1,n+1 ⊗ En+1,n+1

+
2n∑

i�=j,j ′
Eii ⊗ Ejj +

(
q − q−1

)
[

2n∑

i>j

Eij ⊗ Eji −
2n∑

i>j

qρi−ρjEij ⊗ Ei′j ′

]
.

(2.7)

Here Eij is the 2n×2nmatrix with 1 in the (i, j)-position and 0 everywhere else, and the symbol
⊗ stands for the tensoring of two matrices. i′ = 2n + 2 − i, similarly for j ′. The deformation
parameter is q. Finally (ρ1, ρ2, . . . , ρ2n) = (n − 1/2, n − 3/2, . . . , 1/2, 0,−1/2, . . . ,−n + 1/2).

Let I(so(N)) be the two-sided ideal in A(R) generated by

L±Ct(L±)t(C−1)t = I = Ct(L±)t(C−1)tL±, (2.8)

where I is the identity matrix, and the metric C defines a length in the vector space where the
quantummatrices are acting.C provides the constraint arising from the fact that the underlying
classical group is an orthogonal group: TC−1TtC = I = C−1TtCT for quantum matrices T (see
[15]). For SO(N),

C =
(
Ci

j

)
, Ci

j = δij ′q
−ρi (2.9)

and j ′ and ρi are as defined above.
Now, I(so(N)) is a Hopf ideal of A(R) [20], so the quotient A(R)/I(so(N)) is also a

Hopf algebra which we will call UL
q (so(N)). Now, there is a theorem (see, e.g., [20] or [13] for

a proof) which says that UL
q (so(N)) is isomorphic to Uq1/2(so(2n + 1)), which is the DJ algebra

for SO(2n + 1) with deformation parameter q1/2. Explicitly, this isomorphism can be written
down as

l+ii = q−H
′
i , l+i′i′ = qH

′
i ,

l+n+1,n+1 = l−n+1,n+1 = 1,

l+k,k+1 =
(
q − q−1

)
q−H

′
kEk,

l+2n−k+1,2n−k+2 = −(q − q−1
)
qH

′
k+1Ek,

l−k+1,k = −(q − q−1
)
Fkq

H ′
k ,

l−2n−k+2,2n−k+1 =
(
q − q−1

)
Fkq

−H ′
k+1 ,

l+n,n+1 =
(
q1/2 + q−1/2

)1/2(
q1/2 − q−1/2

)
q−H

′
nEn,

l+n+1,n+2 = −q−1/2(q1/2 + q−1/2
)1/2(

q1/2 − q−1/2
)
En,

l−n+1,n = −(q1/2 + q−1/2
)1/2(

q1/2 − q−1/2
)
Fnq

H ′
n ,

l−n+2,n+1 = q1/2
(
q1/2 + q−1/2

)1/2(
q1/2 − q−1/2

)
Fn.

(2.10)
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Here, i = 1, 2, . . . , n as always, and 1 ≤ k ≤ n − 1.H ′
i = Hi +Hi+1 + · · · +Hn−1 +Hn/2. The above

relations (which we will call the isomorphism relations) define the relations between elements
of the L-matrices and the Chevalley-Cartan-Weyl generators. Sometimes, it will be convenient
to call q−H

′
i as ki because it makes comparison with SO(5) DJ algebra (written earlier) more

directly.

3. The multiparametric algebra

Our procedure for constructing the multiparametric algebra is straightforward. Instead of us-
ing the usual one-parametric R-matrices in the duality relations, we use the multiparametric
R-matrices that Schirrmacher has written down [15]. We keep the isomorphism relations the
same as above and use the duality relations to define the new multiparametric algebra.

In principle, this procedure could be done for all the multiparametric R-matrices of all
the different Cartan groups using their associated isomorphism relations. We have endeavored
to do this procedure for only the case of SO(5), but at least for the smaller Cartan groups,
the exact same procedure can be performed on a computer using the appropriate R-matrices.
Writing down the form of the multiparametric DJ algebra for a generic semisimple Lie algebra
is an interesting problem which we have not attempted to tackle here.

The multiparametric R-matrix for SO(2n + 1) (which for our purposes is the same thing
as Bn) looks like

R = r
2n∑

i�=i′
Eii ⊗ Eii + r−1

2n∑

i�=i′
Eii ⊗ Ei′i′ + En+1,n+1 ⊗ En+1,n+1

+
2n∑

i<j, i�=j ′

r

qij
Eii ⊗ Ejj +

2n∑

i>j, i �=j ′

qij

r
Eii ⊗ Ejj

+
(
r − r−1

)
[

2n∑

i>j

Eij ⊗ Eji −
2n∑

i>j

rρi−ρjEij ⊗ Ei′j ′

]
.

(3.1)

The deformation parameters are r and qij and they are not all independent: qii = 1, qji = r2/qij ,
and qij = r2/qij ′ = r2/qi′j = qi′j ′ . These relations basically imply that qij with i < j ≤ n determine
all the deformation parameters. It should be noted that when all the independent deformation
parameters are set equal to each other (= q), then the R-matrix reduces to the usual one para-
metric version. In the case of SO(5), the multiparametric R-matrix has only two independent
parameters, which we will call r and q.

We extensively used a Mathematica package called NCALGEBRA (version 3.7)[22] to
do the computations since the matrix elements (being generators of an algebra) are not com-
muting objects. The first task is to obtain the duality relations between the matrix elements
explicitly. The L-matrices are chosen to be upper and lower triangular. The task is straight-
forward but tedious because the duality relations are 25 × 25 matrix relations for the case of
SO(5). So, one has to scan through the resulting output to filter out the relations that are dual
to the relations between the Chevalley-Cartan-Weyl generators. Doing the calculation for the
single-parameter case will give a hint about which relations are relevant in writing down the
algebra.
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The first line of the isomorphism relations (for the specific case of SO(5)) implies that we
can use k1, k2, 1, k−1

2 , and k−1
1 instead of l11, l22, l33, l44, and l55, respectively. With this caveat, the

algebra looks like what follows in terms of the relevant L-matrix elements:

k1k2 = k2k1,

k1l
+
12 =

r

q2
l+12k1, k2l

+
12 =

q2

r
l+12k2,

k1l
+
23 =

q

r
l+23k1, k2l

+
23 = q−1l+23k2,

k1l
−
21 = rl−21k1, k2l

−
21 =

r

q2
l−21k2,

k1l
−
32 =

q

r
l−32k1, k2l

−
32 = ql−32k2,

[
l+45, l

−
21

]
=
(
q − q−1

)(
k−2
1 − k−2

2

)
,

[
l+23, l

−
32

]
=
(
q − q−1

)(
k2 − k−1

2

)
,

l+12
2l+23 −

(
q

r
+

r

q3

)
l+12l

+
23l

+
12 +

1
q2

l+23l
+
12

2 = 0,

q2

r2
l+23

3 −
(
q2

r
+
q5

r3
+
q

r

)
l+23

2l+12l
+
23 +

(
q +

q4

r2
+
q5

r2

)
l+23l

+
12l

+
23

2 − q4

r
l+12l

+
23

3 = 0.

(3.2)

The last two equations correspond to the Serre relations (we write them down only for the L+

matrix elements). As an example of the general procedure for obtaining these algebra relations
from the duality relations (i.e., the Mathematica output), we will demonstrate the derivation
of the first Serre relation. The relevant expressions that one gets from Mathematica are

l+12l
+
23 −

q

r
l+23l

+
12 = −(q − q−1

)
l+13k2,

l+12l
+
13 =

1
q
l+13l

+
12.

(3.3)

Solving for l+13 from the first equation by multiplying by k−1
2 on the right, plugging it back into

the second equation, and using the commutation rules for k2, we get our Serre relation. This
kind of manipulation is fairly typical in the derivation of the above algebra.

As a next step, we use the isomorphism relations defined at the end of the last section to
rewrite the above algebra in terms of the Chevalley-Cartan-Weyl-type generators. The result is

k1k2 = k2k1,

k1E1 =
r

q2
E1k1, k2E1 =

q2

r
E1k2,

k1E2 =
q

r
E2k1, k2E2 =

1
q
E2k2,
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k1F1 = rF1k1, k2F1 =
r

q2
F1k2,

k1F2 =
q

r
F2k1, k2F2 = qF2k2,

q

r
E1F1 − r

q
F1E1 =

k2k
−1
1 − k−1

2 k1

q − q−1
,

[
E2, F2

]
=

k−1
2 − k2

q1/2 − q−1/2
,

E2
1E2 −

(
q2

r
+

r

q2

)
E1E2E1 + E2E

2
1 = 0,

E3
2E1 −

(
r

q
+
q2

r
+

r

q2

)
E2
2E1E2 +

(
r2

q3
+ 1 + q

)
E2E2E

2
2 −

r

q
E1E

3
2 = 0.

(3.4)

This is our final form for the multiparametric version of SO(5) Drinfeld-Jimbo algebra. To-
gether with the Hopf algebra relations from (2.6), these relations complete our definition of the
multiparametric algebra. Notice that they reduce to the one-parameter DJ algebra of SO(5) in
the limit of r → q.

4. Results and outlook

We have constructed the multiparametric version of the Drinfeld-Jimbo algebra for the
case of SO(5) with the intention of investigating possible applications in de Sitter quan-
tum mechanics and quantum gravity. As physicists, we are more interested in working
with the algebra directly than working with the groups and the R-matrix because, presum-
ably, finding representations of the algebra would be more direct (even though still non-
trivial). Finding representations is interesting because that could be a first step in embed-
ding the Hilbert space of the static patch of an observer, in the Hilbert space of the full
de Sitter space. It might be the case that embedding the SO(3)q of the observer is eas-
ier to accomplish, in the added luxury of two parameters. Also, if it turns out that this
embedding is possible only when there is a relationship between the parameters, it could
translate into a statement about the surprising smallness of the cosmological statement in
terms of scales which are more readily accessible to the observer. Of course, at this stage,
this is pure speculation. The bottom line is that it seems like there is the exciting pos-
sibility of addressing the problem of the smallness of the positive cosmological constant
using the multiparametric deformation.2 Some of these issues are currently being investi-
gated.

It is also interesting as a pure mathematical problem to write down the multiparametric
DJ algebra for a generic Lie algebra. To the best of our knowledge, this is still an open
problem.

2 We thank Willy Fischler for suggesting this to us.
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Appendix

In this appendix, we want to give an elementary demonstration that the boosts in SO(4, 1)
correspond to time translations for the static observer. The metric for the static patch is

ds2 = −(1 − r2
)
dt2 +

dr2

1 − r2
+ r2dΩ2

2. (A.1)

We take Λ/3 = 1, where Λ is the cosmological constant.
The easiest way to think about the de Sitter isometry group (SO(4, 1)) is to think of it as

being embedded in a 5DMinkowski space. In terms of these Minkowski coordinates, the static
patch can be written as

X0 =
√
1 − r2 sinh t,

X3 = r cos θ,

X1 = r sin θ cosφ,

X2 = r sin θ sinφ,

X4 =
√
1 − r2 cosh t.

(A.2)

It is easy to check that −(X0)2 + (Xi)2 = 1 and that −dX02 + dXi2 is equal to the metric on the
static patch. Boosts in SO(4, 1) look like

(
X0′

X4′

)
=

(
cosh β sinh β
sinh β cosh β

)(
X0

X4

)
. (A.3)

Plugging into the expressions for X0 and X4 in terms of r and t, multiplying out the matrices,
and simplifying them, we end up with

(
X0′

X4′

)
=

(√
1 − r2 sinh(t + β)√
1 − r2 cosh(t + β)

)
, (A.4)

which is just the time-translated version of the original expressions.
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