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The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief
historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the
paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and
numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described.
Individualmethods have been implemented inMATLAB and the examples of simulations are listed.The proposal and experimental
verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the
conclusion of the paper.

1. Introduction

Unsteady heat conduction process, described by partial dif-
ferential equation, was first formulated by Jean Baptiste
Joseph Fourier (1768–1830). In 1807, he wrote an article “Par-
tial differential equation for heat conduction in solids.” The
issue of heat conduction was addressed by other scientists
as well, such as Adolf Fick (1829–1901) [1, 2], James Clerk
Maxwell (1831–1879) [3–5], Albert Einstein (1879–1955) [6],
Lorenzo Richards (1904–1993) [7], and Geoffrey Taylor
(1886–1975) [8, 9].

The various analytical and numerical methods are used to
solve the Fourier heat conduction equation (FHCE) [10, 11].
In the case of heat conduction in materials with nonstandard
structure, such as polymers, granular and porous materials,
and compositematerials, a standard description is insufficient
and required the creation of more adequate models with
using derivatives of fractional-order [12–15]. The causes are
mainly memory systems and ongoing processes [16–20],
roughness, or porosity of the material [21–23] and also
fractality and chaotic behavior of systems [24–28].

The more adequate models of processes subsequently
require new methods to determine the parameters of these

models. In the case of FHCE, the basic parameter of this equa-
tion is thermal diffusivity, which characterizes the dynamics
of temperature changes in the substance. Measurement of
thermal diffusivity can be realized by many ways. The latest
methods for determining thermal diffusivity are mainly laser
flashmethod [29, 30],Kennedy transient heat flowmethod [31–
33], single rectangular pulse heating method [34], and thermal
wave method [35, 36].

The issue of research and development methods and
tools for processes modeling with using fractional-order
derivatives is very actual, since it means a qualitatively new
level of modeling. Important authors of the first articles were
Fourier (1768–1830), Abel, Leibniz (1646–1716), Grünwald
(1838–1920), and Letnikov (1837–1888). Mathematicians like
Liouville (1809–1882) [37, 38] and Riemann (1826–1866) [39]
mademajor contributions to the theory of fractional calculus.
Nowadays the fractional calculus interests many scientists
and engineers from different fields, such as mechanics,
physics, chemistry, and control theory [40].

At the present time, there are a number of analytical [41–
48] and numerical solutions of fractional heat conduction
equation. In the case of numericalmethods differentmethods
are developed based on the random walk models [49–52],
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the finite difference method (FDM) [53–55], the finite ele-
ment method [56–59], numerical quadrature [60–62], the
method of Adomian decomposition [63, 64], Monte Carlo
simulation [65, 66],matrix approach [12, 13, 67], or thematrix
transformmethod [68, 69].The finite differencemethod is an
extended method where an explicit [53, 70, 71], an implicit
[54, 72–74], and a Crank-Nicolson scheme [55, 75] are used.
For the Crank-Nicolson scheme, the literature describes
the use of Grünwald-Letnikov definition only for a spatial
derivative [73, 76–78].

2. Models of Heat Conduction Processes

Heat conduction is a molecular transfer of thermal energy in
solids, liquids, and gases due to the temperature difference.
The process of heat conduction takes place between the
particles of the substance to touch directly each other and
has different temperature. Existingmodels of heat conduction
processes are divided according to various criterions. We
consider a division ofmodels into two groups, namelymodels
with using derivatives of integer- and fractional-order.

Models with using derivatives of integer order are the
nonstationary and stationary models. Nonstationary models
are described by Fourier heat conduction equation, where
the temperature 𝑇 (K) is a function of spatial coordinate
𝑥 (m) and time 𝜏 (s). In the case of one-dimensional heat
conduction, it has the following form [11, 79]:

𝜕𝑇 (𝑥, 𝜏)

𝜕𝜏
= (√𝑎)

2 𝜕
2
𝑇 (𝑥, 𝜏)

𝜕𝑥2
for 0 < 𝑥 < 𝐿, 𝜏 > 0, (1)

𝑇 (0, 𝜏) = 𝑇
1
, 𝑇 (𝐿, 𝜏) = 𝑇

2
for 𝜏 > 0,

𝑇 (𝑥, 0) = 𝑓 (𝑥) for 0 ≤ 𝑥 ≤ 𝐿,

(2)

where 𝑎 = 𝜆/(𝜌𝑐
𝑝
) is thermal diffusivity (m2⋅s−1), 𝜌 is density

(kg⋅m−3), 𝑐
𝑝
is specific heat capacity (J⋅kg−1⋅K−1), and 𝜆 is

thermal conductivity (W⋅m−1⋅K−1).
Heat conduction model with using derivatives of frac-

tional-order for various one-dimensional geometric cases
was expressed by the following Oldham-Spanier equation
[22]:

𝜕𝑇 (𝑥, 𝜏)

𝜕𝑥
+

1

√𝑎

𝜕
1/2

[𝑇 (𝑥, 𝜏) − 𝑇
0
]

𝜕𝜏1/2
+
𝑔 [𝑇 (𝑥, 𝜏) − 𝑇

0
]

𝑥 + 𝑅
= 0,

(3)

where 𝑔 is a geometric factor and 𝑅 is a radius of curvature.
In the case of one-dimensional heat conduction planar

wall (𝑔 = 0), (3) will take the following form:

𝜕
1/2

[𝑇 (𝑥, 𝜏) − 𝑇
0
]

𝜕𝜏1/2
= −√𝑎

𝜕𝑇 (𝑥, 𝜏)

𝜕𝑥
⋅ (4)

A more general formulation of the task for modeling not
only one-dimensional heat conduction is based on the model
in which, on the left-hand side of (1) instead of the first

derivative with respect to time, the derivative of order 𝛼
occurs; that is, we can find it in the form [42, 79]

𝜕
𝛼
𝑢

𝜕𝜏𝛼
= (𝑏)
2 𝜕
2
𝑢

𝜕𝑥2
for 0 < 𝑥 < 𝐿, 𝜏 > 0, (5)

𝑢 (0, 𝜏) = 𝑈
1
, 𝑢 (𝐿, 𝜏) = 𝑈

2
for 𝜏 > 0,

𝑢 (𝑥, 0) = 𝑓 (𝑥) for 0 ≤ 𝑥 ≤ 𝐿,

(6)

where 𝑏 represents a constant coefficient with the unit
m⋅s−𝛼/2.

Fractional-order models can also be described by the
following equation, where 𝛼 and 𝛽 are of arbitrary order
[12, 13, 67]:

𝜕
𝛼
𝑇 (𝑥, 𝜏)

𝜕𝜏𝛼
= (√𝑎)

2 𝜕
𝛽
𝑇 (𝑥, 𝜏)

𝜕 |𝑥|
𝛽

⋅ (7)

3. Solutions

One-dimensional heat conduction models using integer and
fractional derivatives can be solved by analytical and numer-
ical methods.

3.1. Analytical Methods of Solution. Analytical methods can
be used for solving problems in a bounded, semibounded, or
unbounded interval.

Analytical solution of heat conduction model (1) for a
bounded interval ⟨0, 𝐿⟩ has the following shape [11, 42]:

𝑇 (𝑥, 𝜏) =

∞

∑

𝑛=1

sin(𝑛𝜋𝑥
𝐿

) exp(−(𝑛𝜋√𝑎
𝐿

)

2

𝜏) 𝑐
𝑘
. (8)

Analytical solution for a fractional diffusion-wave equa-
tion (5) has the form

𝑇 (𝑥, 𝜏) =

∞

∑

𝑛=1

sin(𝑛𝜋𝑥
𝐿

)𝐸
𝛼
(−(

𝑛𝜋𝑏

𝐿
)

2

𝜏
𝛼
) 𝑐
𝑘
. (9)

For models (1) and (5),

𝑐
𝑘
=
2

𝐿
∫

𝐿

0

[𝑓 (𝜉) −
1

𝐿
(𝑇
2
− 𝑇
1
) 𝜉 − 𝑇

1
] sin 𝑘𝜋𝜉

𝐿
𝑑𝜉⋅ (10)

We developed and derived the coefficient 𝑐
𝑘
for the form

of the function 𝑓(𝜉) = 𝑎
0
+ 𝑎
1
𝜉 + 𝑎
2
𝜉
2, in order to implement

simulations for different initial conditions (constant, straight
line, and parabola). Coefficient 𝑐

𝑘
has this final shape [79]:

𝑐
𝑘
=

2

𝑛𝐿
[𝑇
2
− 𝑎
0
− 𝑎
1
𝐿 + 𝑎
2
(
2

𝑛2
− 𝐿
2
)] (−1)

𝑘

− 𝑇
1
+ 𝑎
0
− 𝑎
2

2

𝑛2
,

(11)

where 𝑛 = 𝑘𝜋/𝐿.

3.2. Numerical Methods of Solution. The best known numer-
ical methods include finite element method, finite difference
method, and boundary element methods.
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Finite difference methods according to the type of differ-
ential expression can be divided into explicit, implicit, and
Crank-Nicolson scheme.

Explicit Scheme. Explicit scheme for solving the heat conduc-
tionmodel defined by (1) in the case of homogeneousmaterial
has the form

𝑇
𝑚,𝑝

= 𝑀𝑇
𝑚−1,𝑝−1

+ 𝑇
𝑚,𝑝−1

− 2𝑀𝑇
𝑚,𝑝−1

+𝑀𝑇
𝑚+1,𝑝−1

, (12)

where module𝑀 is determined by the relation

𝑀 = (
√𝑎

Δ𝑥
)

2

Δ𝜏 ≤ 0, 5, (13)

and in the case of nonhomogeneous material, it has the fol-
lowing form:

𝑇
𝑚,𝑝

= 𝑀
𝑚−1

𝑇
𝑚−1,𝑝−1

+ 𝑇
𝑚,𝑝−1

− (𝑀
𝑚−1

+𝑀
𝑚
) 𝑇
𝑚,𝑝−1

+𝑀
𝑚
𝑇
𝑚+1,𝑝−1

,

(14)

where module𝑀
𝑚
is

𝑀
𝑚
= (

√𝑎𝑚

Δ𝑥
)

2

Δ𝜏 ≤ 0, 5. (15)

Implicit Scheme. In the case of the implicit scheme, the tem-
perature at a given point is calculated for a homogeneous
body according to the following formula:

−𝑀𝑇
𝑚−1,𝑝

+ (1 + 2𝑀)𝑇
𝑚,𝑝

−𝑀𝑇
𝑚+1,𝑝

= 𝑇
𝑚,𝑝−1

, (16)

and for a nonhomogeneous body, it has the following for-
mula:

−𝑀
𝑚−1

𝑇
𝑚−1,𝑝

+ (1 +𝑀
𝑚−1

+𝑀
𝑚
) 𝑇
𝑚,𝑝

−𝑀
𝑚
𝑇
𝑚+1,𝑝

= 𝑇
𝑚,𝑝−1

.

(17)

Crank-Nicolson Scheme. For a homogeneous body, it has the
form

𝑇
𝑚,𝑝

=
𝑀

2
(𝑇
𝑚−1,𝑝

− 2𝑇
𝑚,𝑝

+ 𝑇
𝑚+1,𝑝

)

+
𝑀

2
(𝑇
𝑚−1,𝑝−1

− 2𝑇
𝑚,𝑝−1

+ 𝑇
𝑚+1,𝑝−1

) + 𝑇
𝑚,𝑝−1

(18)

and for a nonhomogeneous body it has the form

𝑇
𝑚,𝑝

=
1

2
(𝑀
𝑚−1

𝑇
𝑚−1,𝑝

− (𝑀
𝑚−1

+𝑀
𝑚
) 𝑇
𝑚,𝑝

+𝑀
𝑚
𝑇
𝑚+1,𝑝

)

+
1

2
(𝑀
𝑚−1

𝑇
𝑚−1,𝑝−1

− (𝑀
𝑚−1

+𝑀
𝑚
) 𝑇
𝑚,𝑝−1

+𝑀
𝑚
𝑇
𝑚+1,𝑝−1

)

+ 𝑇
𝑚,𝑝−1

.

(19)

Numerical Methods of Fractional-Order. For solving numeri-
cal methods of fractional-order, we use Grünwald-Letnikov
definition with using the principle of “short memory” [16,
80]:

𝜕
𝛼
𝑇 (𝑥, 𝜏)

𝜕𝜏𝛼
=

∑
𝑁𝑓

𝑗=0
𝑏𝑐
𝑗
𝑇 (𝑥, 𝜏 − 𝑗Δ𝜏)

Δ𝜏𝛼
,

(20)

where 𝐿 is the “length memory,” 𝜏 is the time step, and the
value of𝑁(𝑓) will be determined by the following relation:

𝑁(𝑓) = min {[ 𝜏

Δ𝜏
] , [

𝐿

Δ𝜏
]} ,

𝑏𝑐
0
= 1, 𝑏𝑐

𝑗
= (1 −

1 + 𝛼

𝑗
) ⋅ 𝑏𝑐
𝑗−1

,

where 𝑗 ≥ 1.

(21)

Explicit Scheme. Explicit scheme for the heat conduction
model using derivative of fractional-order (5) for a homoge-
neous material has the form

𝑇
𝑚,𝑝

= 𝑀𝑇
𝑚−1,𝑝−1

−

𝑁𝑓

∑

𝑗=1

𝑏𝑐
𝑗
𝑇
𝑚,𝑝−𝑗

− 2𝑀𝑇
𝑚,𝑝−1

+𝑀𝑇
𝑚+1,𝑝−1

(22)

and for a nonhomogeneous material it has the form

𝑇
𝑚,𝑝

= 𝑀
𝑚−1

𝑇
𝑚−1,𝑝−1

−

𝑁𝑓

∑

𝑗=1

𝑏𝑐
𝑗
𝑇
𝑚,𝑝−𝑗

− (𝑀
𝑚−1

+𝑀
𝑚
) 𝑇
𝑚,𝑝−1

+𝑀
𝑚
𝑇
𝑚+1,𝑝−1

.

(23)

Implicit Scheme. Fractional shape for a homogeneous body is
given by the following relation:

−𝑀𝑇
𝑚−1,𝑝

+ (1 + 2𝑀)𝑇
𝑚,𝑝

−𝑀𝑇
𝑚+1,𝑝

= −

𝑁𝑓

∑

𝑗=1

𝑏𝑐
𝑗
𝑇
𝑚,𝑝−𝑗

(24)

and for a nonhomogeneous body, it has the following relation:
−𝑀
𝑚−1

𝑇
𝑚−1,𝑝

+ (1 +𝑀
𝑚−1

+𝑀
𝑚
) 𝑇
𝑚,𝑝

−𝑀
𝑚
𝑇
𝑚+1,𝑝

= −

𝑁𝑓

∑

𝑗=1

𝑏𝑐
𝑗
𝑇
𝑚,𝑝−𝑗

.

(25)

Crank-Nicolson Scheme. The fractional shape for a homoge-
neous body has the form

𝑇
𝑚,𝑝

=
𝑀

2
(𝑇
𝑚−1,𝑝

− 2𝑇
𝑚,𝑝

+ 𝑇
𝑚+1,𝑝

)

+
𝑀

2
(𝑇
𝑚−1,𝑝−1

− 2𝑇
𝑚,𝑝−1

+ 𝑇
𝑚+1,𝑝−1

)

−

𝑁𝑓

∑

𝑗=1

𝑏𝑐
𝑗
𝑇
𝑚,𝑝−𝑗

(26)
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Figure 1: Comparison of analyticalmethod for four different deriva-
tives of temperature according to the time.

and for a nonhomogeneous body it has the form

𝑇
𝑚,𝑝

=
1

2
(𝑀
𝑚−1

𝑇
𝑚−1,𝑝

− (𝑀
𝑚−1

+𝑀
𝑚
) 𝑇
𝑚,𝑝

+𝑀
𝑚
𝑇
𝑚+1,𝑝

)

+
1

2
(𝑀
𝑚−1

𝑇
𝑚−1,𝑝−1

− (𝑀
𝑚−1

+𝑀
𝑚
) 𝑇
𝑚,𝑝−1

+𝑀
𝑚
𝑇
𝑚+1,𝑝−1

)

−

𝑁𝑓

∑

𝑗=1

𝑏𝑐
𝑗
𝑇
𝑚,𝑝−𝑗

.

(27)

4. Simulations

Implementation of the one-dimensional heat conduction
model was realized in the programming environment MAT-
LAB. Two toolboxes for the one-dimensional heat conduc-
tion model with using integer- and fractional-order deriva-
tives have been created. All implemented functions are pub-
lished atMathworks, Inc., MATLABCentral File Exchange as
Heat Conduction Toolbox and Fractional Heat Conduction
Toolbox [81, 82].

Simulations of heat conduction model for analytical
solution have been implemented for four different derivatives
temperatures according to time, namely, for the derivative
order of 0.5, 1, 1.5, and 2 (Figure 1). The model input param-
eters were set as follows: initial temperature in the shape of
parabolic function 𝑓(𝑥) = 2𝑥 − 𝑥

2, boundary condition of
the 1st kind for 𝑈

1
= 𝑈
2
= 0, total time simulation 2 s, time

step 0.01 s, number of items’ sum 100, distance 2m, number
of points 21, and coefficient for material properties 1m⋅s−𝛼/2.
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𝛼 = 1.5
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Time (s)
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U

Figure 2: Crank-Nicolson scheme for derivatives of 0.5, 1, and 1.5.

Simulation with a heat conduction model for explicit,
implicit, and Crank-Nicolson scheme was performed with
the time step 0.01 s and order of the derivative of 1.5. Input
parameters of the model were chosen as follows: initial value
𝑈(𝑥) = 0, boundary condition of the 1st kind for𝑈

1
= 𝑈
2
= 1,

total time simulation 2 s, time step 0.01 s, number of items’
sum 100, distance 2m, number of points 21, and coefficient
for material properties 1m⋅s−3/4.

From the numerical methods, we have chosen Crank-
Nicolson scheme, in which we can see what effect a different
order of the derivative has on the temperatures course
(Figure 2).

In Figure 3, we see the comparison of courses of individ-
ual numerical methods and analytical solution.

5. Proposal Method for Thermal
Diffusivity Determination

The method is based on the method of calculation of heat
flows:

𝑖
𝑄
= √𝑐
𝑝
𝜌𝜆⋅
0
𝐷
1/2

𝜏
𝑔 (𝜏) , 𝑔 (𝜏) = 𝑇

𝑤
(𝜏) − 𝑇

0
. (28)

Determination of the heat flow 𝑖
𝑄
is possible in two ways:

namely,

(i) from the gradient of the two measured temperatures
(𝑇
1
, 𝑇
2
),

𝑖
𝑄
= −𝜆

𝑑

𝑑𝑥
𝑇
1
(𝜏) , (29)

(ii) from the half-order derivative of one measured tem-
perature (𝑇

1
),

𝑖
𝑄
=

𝜆

√𝑎

𝑑
1/2

𝑑𝜏1/2
[𝑇
1
(𝜏) − 𝑇

0
] . (30)
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ΔxiQ

Figure 4: Measured temperatures.

Share of half-order derivative and gradient of temperature is
proportional to the square root of the thermal diffusivity:

√𝑎 =

(𝑑
1/2
/𝑑𝜏
1/2
) [𝑇
1
(𝜏) − 𝑇

0
]

− (𝑑/𝑑𝑥) 𝑇
1
(𝜏)

⋅ (31)

The differential form of (31) is shown in the shape

√𝑎 =

Δ𝜏
−1/2

∑
𝑁(𝑓)

𝑗=0
𝑏𝑐
𝑗
[𝑇
1,𝑝−𝑗

− 𝑇
0
]

Δ𝑥−1 [𝑇
2,𝑝

− 𝑇
1,𝑝
]

⋅ (32)

For the numerical calculation of the first derivative of
temperature according to the coordinate, respectively, tem-
perature gradient (31) is sufficient to measure two tempera-
tures (Figure 4).

The calculation of thermal diffusivity is based on the ratio
half-order derivative of temperature according to the time to
the temperature gradient (Figure 5) which is observed based
on the values of two neighbouring temperatures in space
obtained from simulations.

More previous values of temperature in time are used for
the calculation of the half-order derivative, as in the case of
the first derivative, which uses only one previous value [83].

0 5 10 15 20
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time (s)

(Th
er

m
al

 d
iff

us
iv

ity
)1
/2

(m
·s−

1
/2

)

√a

√a model = 0.0061314
calcul. = 0.0061001

Figure 5: Rate of half-order temperature derivative to the tempera-
ture gradient.

The method was tested on the model using Crank-Nicol-
son scheme on a brass sample.The value of thermal diffusivity
for a brass is 3.7594 × 10

−5m2⋅s−1. The initial temperature
of simulation was determined on 20∘C, boundary condition
of the 1st kind for 20∘C and 100∘C, with a time step of
the simulation 0.01 s. Input parameters of the brass: density
8,400 kg⋅m−3, specific heat capacity 380 J⋅kg−1⋅K−1, and ther-
mal conductivity 120W⋅m−1⋅K−1.

In Figure 6, we can see the effect of time step to calculate
the square root of thermal diffusivity.

The calculation accuracy of determining the value of the
square root of thermal diffusivity depends on the number of
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Figure 6: Crank-Nicolson scheme for a time step of 0.15 s and 0.05 s.
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previous values of temperatures in time and also from the
selected time step.

Reducing the number of previous values of temperatures
leads to higher inaccuracy of calculation.

6. Experimental Verification

The method has been verified on the experimental mea-
surements. Measurements were carried out on the devices
HT10XC and HT11C. Module HT11C is a physical model of
one-dimensional heat conduction [84]. It consists of a heating
and cooling section between which is inserted the sample of
material (Figure 7).

Brass sample was used in the form of a cylinder with a
diameter of 25mm and a height of 30mm. Contact areas of
the sample were coated with a thin layer of thermal paste
to minimize the transient thermal resistance. Module HT11C
uses the thermocouples of type K in the temperature range
from 0 to 133∘C and the distance among them is 15mm.
The device HT10XC with HT11C module is connected via
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for the brass.

USB to a PC. The software that comes with the device allows
setting conditions of the experiment and the measurement
data saving to a file.

Experimental measurements which are referred to in
this paper were carried out under the following conditions:
namely, heater power 1.3W, the water flow in the cooler
0.5 L/min, and the time step for recording of measured data
1.0 s. A unit jump in the heater power from 1.3 to 3.3W
was realized after stabilizing the temperatures. The transition
from one steady state to another is shown in Figure 8.

On Figure 9 is determined the square root of thermal
diffusivity from the measured values of the device HT11C
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Figure 9: Thermal diffusivity.

(Figure 8), that is, from the ratio of half-order derivative the
temperature according to the time to the temperature gradi-
ent.

The value of thermal diffusivity of the used brass sam-
ple for equipment HT11C was 3.2233 × 10

−5m2⋅s−1 and
it corresponds to the square root of thermal diffusivity
0.0056774m⋅s−1/2. Brass sample was also measured on the
device LFA [85] and the value of thermal diffusivity was
3.4130 × 10

−5m2⋅s−1, which corresponds to the square root
of thermal diffusivity 0.0058421m⋅s−1/2. Calculated relative
error between the measured values of the thermal diffusivity
of the brass sample on HT11C and LFA is 5.5591% [79].

7. Conclusion

Benefits of this work are mainly the developed analytical and
numerical methods for solving one-dimensional heat con-
duction using integer and fractional derivatives, which are
implemented in the form of libraries functions in MATLAB.
Another benefit is the designed, implemented, and verified
method of determining thermal diffusivity using the half-
order derivative of temperature according to the time on the
experimental equipment HT10XC with module HT11C.
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