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The state transfer problem of a class of nonideal quantum systems is investigated. It is known that traditional Lyapunov methods
may fail to guarantee convergence for the non-ideal case. Hence, a hybrid impulsive control is proposed to accomplish a more
accurate convergence. In particular, the largest invariant sets are explicitly characterized, and the convergence of quantum impulsive
control systems is analyzed accordingly. Numerical simulation is also presented to demonstrate the improvement of the control
performance.

1. Introduction

One of major concerns in quantum control is how to steer
quantum states to a desired target state precisely and effi-
ciently. A solution to this quantum state transfer problem
will help us to advance some promising applications such
as quantum computation and quantum chemistry. The main
difficulty in quantum control is due to the limitations on the
application of observation and feedback in quantum systems.
Open-loop control has therefore been a commonly adopted
approach in quantum control, where recorded control signals
obtained from numerical simulations are implemented to
real quantum systems. Among existing open-loop control
design methods, the Lyapunov method could be the most
popular one and has been tested in real applications [1–
6]. Despite great advances have been made in Lyapunov
methods, they may fail to achieve the control goal if the
internal Hamiltonian is not strong regular [7]. This nonideal
case means that distances between the eigenvalues of the
internal Hamiltonian are not distinct. It is worth pointing out
that this nonideal case does exist in many practical quantum
systems such as coupled spin systems and harmonic oscillator
systems [3, 4].

In particular, this paper will study the state trans-
fer for closed quantum systems modeled as the following
Schrödinger equation:

𝑖
󵄨󵄨󵄨󵄨𝜓̇ (𝑡)⟩ = 𝐻

0

󵄨󵄨󵄨󵄨𝜓 (𝑡)⟩ , (1)

where 𝐻
0
is the internal Hamiltonian. For quantum sys-

tems, the control is implemented to the system through
electromagnetic fields. Our basic problem is to transfer a
quantum state from an initial state to a desired target state.
The difficulty for the Lyapunov control of nonideal quantum
system mainly comes from the fact that the system could be
driven to undesired limit points in the invariant set. There
exist a few results in the recent literature handling such
a nonideal case. In [7], the complete controllability of the
quantum systems with twofold degeneracy was investigated,
and the basic idea is to apply aweak constant field to eliminate
the degeneracy. In [4], the implicit Lyapunov method was
used to deal with such a nonideal case. However, it is
difficult to characterize invariant sets which are critical for
the following convergence analysis. Therefore, we propose a
new hybrid impulsive control strategy for closed quantum
systems under the nonideal case. Nowadays, the impulsive
control has proved to be an effective method to accomplish
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good performance for classical systems [8–12].Thismotivates
us to apply such a control idea to quantum systems.

The basic idea of the hybrid impulsive control is to divide
the control into a piecewise continuous open-loop coherent
control 𝑢

1
(𝑡) and an impulsive control 𝑢

2
. 𝑢
1
(𝑡) design is

similar to the traditional Lyapunov control which drives
states to invariant sets. Specifically, the system under the
piecewise continuous control can be described by

𝑖
󵄨󵄨󵄨󵄨𝜓̇ (𝑡)⟩ = [𝐻

0
+

𝑟

∑

𝑙=1

𝐻
𝑙
𝑢
1𝑙
(𝑡)]

󵄨󵄨󵄨󵄨𝜓 (𝑡)⟩ , 𝑡 ̸= 𝑡
𝑘
, (2)

where𝐻
𝑙
is the control Hamiltonian and 𝑢

1𝑙
(𝑡) is real-valued

control function (𝑙 ∈ 𝐽 = {1, 2, . . . , 𝑟}). The continuous-time
coherent control 𝑢

1
(𝑡) is implemented through the control

Hamiltonians 𝐻
𝑙
when 𝑡 ̸= 𝑡

𝑘
. Due to the nonideal quantum

system, this control cannot guarantee the convergence to the
desired target state. After a certain instant 𝑡

𝑘
, the controlled

state would sufficiently approach an undesired limit point.
Hence, the control could fail to drive the system state. Then
we need to “kick” the state out of undesired limit points
and drive it re-converge to new, hopefully desired, state. At
𝑡 = 𝑡

𝑘
, the piecewise continuous control 𝑢

1
(𝑡) is switched

off, and the “kicking” effect is accomplished by the impulsive
control 𝑢

2
(𝑡), by which the controlled system at the instant 𝑡

𝑘

becomes

𝑖
󵄨󵄨󵄨󵄨𝜓̇ (𝑡)⟩ = [𝐻

0
+ 𝐵
𝑘
𝛿 (𝑠 − 𝑡

𝑘
)]
󵄨󵄨󵄨󵄨𝜓 (𝑡)⟩ , 𝑡 ̸= 𝑡

𝑘
, (3)

where the introduced Hermitian operator 𝐵
𝑘
is the impulsive

control Hamiltonian to be designed, 𝛿(⋅) is the Dirac impulse
function with 𝑢

2
(𝑡) = 0, 𝑡 ̸= 𝑡

𝑘
, and 𝑡

𝑘
is the impulsive instant

at which the impulsive control is implemented, satisfying
lim
𝑘→∞

𝑡
𝑘

= ∞. With the impulsive control 𝑢
2
(𝑡), the

state satisfies |𝜓(𝑡
𝑘
+ ℎ)⟩ = 𝑒

−𝑖 ∫
𝑡
𝑘
+ℎ

𝑡
𝑘

[𝐻
0
+𝐵
𝑘
𝛿(𝑠−𝑡
𝑘
)]𝑑𝑠

|𝜓(𝑡
𝑘
)⟩, for

sufficiently small ℎ > 0. As ℎ → 0
+, we have lim

ℎ→0
+ |𝜓(𝑡
𝑘
+

ℎ)⟩ = |𝜓(𝑡
+

𝑘
)⟩ = 𝑒

−𝑖𝐵
𝑘 |𝜓(𝑡
𝑘
)⟩ and define |𝜓(𝑡

𝑘
)⟩ = |𝜓(𝑡

−

𝑘
)⟩ =

lim
ℎ→0

+ |𝜓(𝑡
𝑘
− ℎ)⟩. In the control process, in order to keep

the coherence of the controlled state, the proposed control
strategy is the open-loop coherent control.

In practical implementations, the 𝛿 function in the impul-
sive control can be substituted with pulses of finite duration
if the duration is sufficiently short compared with the time
scale of quantum systems [13]. In recent years, the impulsive
control idea has been used in the control of open quantum
systems to suppress decoherence, for example, bang-bang
pulses [13–18], and the minimal time control of spin systems
[19, 20]. It is realized by a sequence of unitary operations,
characteristic of instantaneous pulses. The feasibility of this
impulsive control was supported by physical experiments; see
[14–17] and the references therein. The so called hard pulses
in NMR are analogous to this picture.

With this understanding, this paper will focus on the
development of hybrid impulsive control design itself to
achieve more accurate convergence under the nonideal
cases. Moreover, the invariant set of the controlled system
is characterized explicitly, which is shown to be strictly
smaller than that obtained using classical Lyapunovmethods.

The convergence analysis is then obtained via an extending
LaSalle invariance principle for impulsive systems in [21].
Simulation studies show improved control performance.

The rest of this paper is organized as follows. In Section 2,
we design the hybrid impulsive control for nonideal systems
by the Lyapunov function based on the state distance. Prop-
erties of the controlled system are discussed, and the conver-
gence is analyzed by explicit characterization of the LaSalle
invariant set. In Section 3, using the Lyapunov function based
on the state error, the hybrid impulsive control of quantum
systems is investigated. Section 4 includes numerical simu-
lation to demonstrate the effectiveness and advantage of the
proposed methods. Finally, some conclusions are drawn in
Section 5.

2. Hybrid Impulsive Control Based on
the State Distance

In practice, we do not have much freedom to choose the
control Hamiltonian due to the structure limitations of the
control fields [3, 4]. The impulsive control Hamiltonian
cannot be chosen arbitrarily to achieve the state transfer
instantaneously. Thus in this paper, 𝐻

𝑙
is fixed and assumed

to be known beforehand. Denote 𝐵
𝑘
= 𝑒
−𝑖𝐵
𝑘 , which is unitary.

With the hybrid impulsive control fields 𝑢(𝑡), system (1)
becomes a closed quantum impulsive control system as follows:

𝑖
󵄨󵄨󵄨󵄨𝜓̇ (𝑡)⟩ = [𝐻

0
+

𝑟

∑

𝑙=1

𝐻
𝑙
𝑢
1𝑙 (𝑡)]

󵄨󵄨󵄨󵄨𝜓 (𝑡)⟩ , 𝑡 ̸= 𝑡
𝑘
,

󵄨󵄨󵄨󵄨𝜓 (𝑡
+

𝑘
)⟩ = 𝐵

𝑘

󵄨󵄨󵄨󵄨𝜓 (𝑡𝑘)⟩ .

(4)

In the following, we denote𝐻 = 𝐻
0
+ ∑
𝑟

𝑙=1
𝐻
𝑙
𝑢
1𝑙
(𝑡).

2.1. Hybrid Impulsive Control Design and Dynamical Prop-
erties of Controlled Systems. In quantum control, the goal
state |𝜓

𝑓
⟩ is usually chosen to be an eigenstate of 𝐻

0
, that

is, 𝐻
0
|𝜓
𝑓
⟩ = 𝜆

𝑓
|𝜓
𝑓
⟩. We select a Lyapunov function based

on the Hilbert-Schmidt distance between |𝜓⟩ and |𝜓
𝑓
⟩, that

is, 𝑉
1
(𝜓(𝑡)) = 𝑉

1
(𝑡) = (1/2)(1 − |⟨𝜓

𝑓
|𝜓⟩|
2
). When 𝑡 ̸= 𝑡

𝑘
, the

time derivative of 𝑉
1
is given by

𝑉̇
1 (𝑡) = −

𝑟

∑

𝑙=1

𝑢
1𝑙
I [⟨𝜓

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩ ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑙

󵄨󵄨󵄨󵄨𝜓⟩] , (5)

where I(⋅) andR(⋅) denote the imaginary part and real part
of a complex number, respectively. When 𝑡 = 𝑡

𝑘
, the Dini

derivative of 𝑉
1
is given by 𝐷−𝑉

1
(𝑡
𝑘
) ≜ lim

ℎ→0
+ ((𝑉
1
(𝑡
𝑘
) −

𝑉
1
(𝑡
𝑘
− ℎ))/ℎ). The difference of 𝑉

1
is described as Δ𝑉

1
(𝑡
𝑘
) =

𝑉
1
(𝑡
+

𝑘
) − 𝑉
1
(𝑡
𝑘
).

In order that the designed control can work in the case of
the initial state being orthogonal to the goal state, we rewrite
(5) as 𝑉̇

1
(𝑡) = −∑

𝑟

𝑙=1
𝑢
1𝑙
|⟨𝜓|𝜓
𝑓
⟩|I[𝑒𝑖∠⟨𝜓|𝜓𝑓⟩⟨𝜓

𝑓
|𝐻
𝑙
|𝜓⟩]. We

need to design the control law such that 𝑉̇
1
(𝑡) ≤ 0, 𝑡 ̸= 𝑡

𝑘
and

Δ𝑉
1
(𝑡
𝑘
) ≤ 0. Choose the piecewise continuous control law as

follows:

𝑢
1𝑙 (𝑡) = 𝐾

𝑙
𝑓
𝑙
(I [𝑒
𝑖∠⟨𝜓|𝜓

𝑓
⟩
⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑙

󵄨󵄨󵄨󵄨𝜓⟩]) , 𝑙 ∈ 𝐽, 𝑡 ̸= 𝑡
𝑘
,

(6)
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where 𝐾
𝑙
> 0 is the control gain and the function 𝑓

𝑙
(⋅)

passes through the origin of plane 𝑥
𝑙
− 𝑦
𝑙
monotonically

satisfying 𝑓
𝑙
(𝑥
𝑙
)𝑥
𝑙
≥ 0 with 𝑥

𝑙
= I[⟨𝜓

𝑓
|𝐻
𝑙
|𝜓⟩]. To avoid the

confusion, we define∠⟨𝜓|𝜓
𝑓
⟩ = 0
∘ if ⟨𝜓|𝜓

𝑓
⟩ = 0. In addition,

the impulsive control matrix 𝐵
𝑘
should be chosen to satisfy

Δ𝑉
1
(𝑡
𝑘
) ≤ 0; that is,

𝐵
∗

𝑘
𝜌
𝑓
𝐵
𝑘
− 𝜌
𝑓
≥ 0, (7)

where 𝜌
𝑓
= |𝜓
𝑓
⟩⟨𝜓
𝑓
| is the densitymatrix of target state |𝜓

𝑓
⟩.

Inequality (7) holds at least for the unitary matrix 𝐵
𝑘
which

commutes with 𝜌
𝑓
. The control law satisfying (6) and (7) is

the designed control law. In the following, the properties of
system (4) will be studied to show that 𝑢(𝑡) can make the
system leave the initial state even if |𝜓(0)⟩ is an eigenstate of
𝐻
0
.

Lemma 1. For control law (6) and (7), if the initial state is an
eigenstate of𝐻

0
with𝐻

0
|𝜓(0)⟩ = 𝜆

0
|𝜓(0)⟩ and ⟨𝜓(0)|𝜓

𝑓
⟩ = 0,

then the following conclusions hold:

(i) if there exists 𝑙 ∈ 𝐽 such that I⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩ ̸= 0, then

⟨𝜓(𝑡)|𝜓
𝑓
⟩ ̸= 0 (𝑡 > 0);

(ii) if I⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩ = 0, for all 𝑙 ∈ 𝐽, and there exists

𝑙 ∈ 𝐽 such that R⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩ ̸= 0 and 𝜆

0
̸= 0, then

⟨𝜓(𝑡)|𝜓
𝑓
⟩ ̸= 0, 𝑡 > 𝑡

󸀠
> 0, where 𝑡󸀠 is sufficiently small;

otherwise, the designed control fields cannot achieve the
state steering of the closed-loop system.

Proof. (i) For a sufficiently small 𝑑𝑡, as 𝑡 ̸= 𝑡
𝑘
, we have

𝑖|𝜓̇(0)⟩ = 𝑖 lim
𝑑𝑡→0

[|𝜓(𝑑𝑡)⟩ − |𝜓(0)⟩]/𝑑𝑡 = 𝐻|𝜓(0)⟩; that
is, as 𝑑𝑡 → 0, |𝜓(𝑑𝑡)⟩ = (𝐼 − 𝑖𝐻𝑑𝑡)|𝜓(0)⟩. Since
⟨𝜓(0)|𝜓

𝑓
⟩ = 0, the inequality ⟨𝜓

𝑓
|𝜓(𝑑𝑡)⟩ ̸= 0 is equivalent

to ∑
𝑟

𝑙=1
𝑢
1𝑙
⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩ = ∑

𝑟

𝑙=1
𝑢
1𝑙
(𝑖I⟨𝜓

𝑓
|𝐻
𝑙
|𝜓(0)⟩ +

R⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩) ̸= 0. By (6), we have 𝑢

1𝑙
I⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩ ≥ 0,

for all 𝑙 ∈ 𝐽. It follows from the assumption in case (i) that
there exists 𝑙 ∈ 𝐽 such that 𝑢

1𝑙
I⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩ > 0, and

consequently, ⟨𝜓
𝑓
|𝜓(𝑑𝑡)⟩ ̸= 0. Since 𝑉̇

1
≤ 0, we obtain that

⟨𝜓(𝑡)|𝜓
𝑓
⟩ ̸= 0, 𝑡 ∈ (0, 𝑡

1
). By (7) we have |⟨𝜓

𝑓
|𝜓(𝑡
+

1
)⟩| ≥

|⟨𝜓
𝑓
|𝜓(𝑡
1
)⟩| = |⟨𝜓

𝑓
|𝜓(𝑡
−

1
)⟩| > 0. Hence, we obtain that

⟨𝜓(𝑡)|𝜓
𝑓
⟩ ̸= 0, (𝑡 > 0).

(ii) Initially, the system evolves freely because 𝑢
1𝑙
(0) =

0, 𝑙 ∈ 𝐽. For a sufficiently small 𝑡∗ < 𝑡
1
, one can obtain

that |𝜓(𝑡∗)⟩ = 𝑒
−𝑖𝐻
0
𝑡
∗

|𝜓(0)⟩ = 𝑒
−𝑖𝜆
0
𝑡
∗

|𝜓(0)⟩. Moreover, as
𝑑𝑡 → 0, we have ⟨𝜓

𝑓
|𝜓(𝑡
∗
+ 𝑑𝑡)⟩ = ⟨𝜓

𝑓
|(𝐼 − 𝑖𝐻𝑑𝑡)|𝜓(𝑡

∗
)⟩ =

𝑑𝑡[−𝑖 cos(𝜆
0
𝑡
∗
)− sin(𝜆

0
𝑡
∗
)] ∑
𝑟

𝑙=1
⟨𝜓
𝑓
|𝐻
𝑙
𝑢
1𝑙
(𝑡
∗
)|𝜓(0)⟩. Notic-

ing that there exists 𝑙 ∈ 𝐽 such that ⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩ ̸= 0,

we have 𝑢
1𝑙
(𝑡
∗
) = 𝐾

𝑙
𝑓
𝑙
[I(𝑒−𝑖𝜆0𝑡

∗

⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩)] =

𝐾
𝑙
𝑓
𝑙
[− sin(𝜆

0
𝑡
∗
)⟨𝜓
𝑓
|𝐻
𝑙
|𝜓(0)⟩] ̸= 0. Similar to the discussion

in case (i), we obtain that ⟨𝜓
𝑓
|𝜓(𝑡
∗
+ 𝑑𝑡)⟩ ̸= 0, and then

⟨𝜓(𝑡)|𝜓
𝑓
⟩ ̸= 0, 𝑡 > 𝑡

∗. This completes the proof.

For the characterization of invariant sets, properties of the
states such that 𝑉̇

1
= 0 are studied. Since the proof is similar

to that of Proposition 4 in [1], we omit it here.

Lemma 2. If ⟨𝜓
0
|𝜓
𝑓
⟩ = 0 and the conditions (i) or (ii) in

Lemma 1 hold, the following conclusions are equivalent:

(i) 𝑉̇
1
(𝑡) = 0, 𝑡 ̸= 𝑡

𝑘
,

(ii) 𝑖|𝜓̇(𝑡)⟩ = 𝐻
0
|𝜓(𝑡)⟩, 𝑡 ̸= 𝑡

𝑘
,

(iii) there exists 𝜆
𝑙
∈ R such that ⟨𝜓

𝑓
|(𝜆
𝑙
𝐼 −𝐻
𝑙
)|𝜓(𝑡)⟩ = 0,

𝑡 ̸= 𝑡
𝑘
, 𝑙 ∈ 𝐽.

Lemma 2 only characterizes the states guaranteeing that
𝑉̇
1
= 0 at specific instants. We need to characterize the states

from which the system trajectories stay in the set 𝑉̇
1
= 0 and

Δ𝑉
1
= 0. We first present the extensive LaSalle invariance

principle for impulsive systems in [21].

Lemma3. Consider the following differential impulsive system
on an open setD:

𝑥̇ (𝑡) = 𝑓
𝑐 (𝑥 (𝑡)) , 𝑥 (0) = 𝑥

0
, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡) = 𝑓
𝑑
(𝑥 (𝑡)) , 𝑡 = 𝑡

𝑘
.

(8)

If there exists a continuous function 𝑉 such that 𝑉󸀠(𝑥)𝑓
𝑐
(𝑥) ≤

0, 𝑡 ̸= 𝑡
𝑘
and Δ𝑉(𝑡

𝑘
) ≤ 0, then 𝑥(𝑡) → M as 𝑡 → ∞,

where M is the largest invariant set contained in E ≜ {𝑥 :

𝑉
󸀠
(𝑥)𝑓
𝑐
(𝑥) = 0} ∩ {𝑥 : Δ𝑉(𝑥) = 0}.

2.2. Convergence Analysis. The following theorem presents
the characterization of the invariant set for the nonideal
systems under the hybrid impulsive control, by which the
invariant set is smaller compared with that obtained by the
conventional Lyapunovmethod. In the following, the unitary
matrix 𝐵

𝑘
is designed such that it commutes with𝐻

0
, 𝑘 ∈ Z+.

Theorem 4. Consider system (4) with the hybrid impulsive
control satisfying (6) and (7). The largest invariant set is
given by 𝐺 = S2𝑛−1⋂𝐸

1
⋂𝐸
2
with 𝐸

1
= {|𝜓⟩ : |𝜓⟩ ∈

𝑀
𝑙

𝑘
, for all 𝑙 ∈ 𝐽, 𝑘 = 1, 2, . . .}, 𝐸

2
= {|𝜓⟩ : |𝜓⟩ ∈ 𝑁

𝑘
, 𝑘 =

1, 2, . . .}, and

𝑀
𝑙

1
:= {

󵄨󵄨󵄨󵄨𝜓⟩ : I (⟨𝜓
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩ ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑠
𝑙

𝑙

󵄨󵄨󵄨󵄨𝜓⟩) = 0,

𝑠
𝑙
= 1, 2, . . . , 𝑚

𝑙
} ,

𝑀
𝑙

𝑘

:=
{

{

{

󵄨󵄨󵄨󵄨𝜓⟩ : I(⟨𝜓
󵄨󵄨󵄨󵄨

𝑘−1

∏

𝑗=1

𝐵
∗

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩ ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑠
𝑙

𝑙

1

∏

𝑗=𝑘−1

𝐵
𝑗

󵄨󵄨󵄨󵄨𝜓⟩)

= 0, 𝑠
𝑙
= 1, 2, . . . , 𝑚

𝑙

}

}

}

, 𝑘 ≥ 2,

𝑁
𝑘

:=
{

{

{

󵄨󵄨󵄨󵄨𝜓⟩ :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝜓
󵄨󵄨󵄨󵄨

𝑘−1

∏

𝑗=1

𝐵
𝑗

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
⟨𝜓

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩
󵄨󵄨󵄨󵄨󵄨

2

= 0
}

}

}

, 𝑘 ≥ 1,

(9)

where𝑋1
𝑙
, 𝑋
2

𝑙
, . . . , 𝑋

𝑚
𝑙

𝑙
constitute the basis of the set {(𝑖)𝑠[𝐻(𝑠)

0
,

𝐻
𝑙
], 𝑠 = 0, 1, 2, . . .}, 𝑙 ∈ 𝐽. Hence, system (4) converges to 𝐺

under the hybrid impulsive control.
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Proof. When 𝑡 = 𝑡
0
, from (6), we obtain that

𝑉̇
1
(𝑡
0
) = 0 ⇐⇒

󵄨󵄨󵄨󵄨󵄨
⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩
󵄨󵄨󵄨󵄨󵄨

×I [𝑒
𝑖∠⟨𝜓(𝑡

0
)|𝜓
𝑓
⟩
⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑙

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩] = 0, 𝑙 ∈ 𝐽

⇐⇒ I (⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩ ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑙

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0.

(10)

Themain idea of the proof is sketched as follows.The interval
[𝑡
𝑘−1

, 𝑡
𝑘
] is divided into 𝑛

𝑘
sufficiently small intervals with

duration 𝑑𝑡. We apply the Taylor expansion on the system
state and omit the high order terms of 𝑑𝑡. By Lemma 2, the
requirements 𝑉̇

1
(𝑡) = 0 (𝑡 ̸= 𝑡

𝑘
) and Δ𝑉

1
(𝑡
𝑘
) = 0 for the whole

system trajectory will be transformed to the conditions on
the initial state. By the Taylor expansion and commutativity
between𝐻

0
and 𝐵

𝑘
, it yields that

𝑉̇
1
(𝑡
0
+ 𝑑𝑡) = 0

⇐⇒ I (⟨𝜓 (𝑡
0
+ 𝑑𝑡)

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩ ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑙

󵄨󵄨󵄨󵄨𝜓 (𝑡0 + 𝑑𝑡)⟩) = 0

⇐⇒ I (⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨 (𝐼 + 𝑖𝐻0𝑑𝑡)

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

× ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑙
(𝐼 − 𝑖𝐻

0
𝑑𝑡)

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0

⇐⇒ I (𝑖 ⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩ ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
[𝐻
0
, 𝐻
𝑙
]
󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0,

...

𝐷
−
𝑉
1
(𝑡
1
) = 0

⇐⇒ I ((𝑖)
𝑛
1 ⟨𝜓 (𝑡

0
)
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

×⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
[𝐻
(𝑛
1
)

0
, 𝐻
𝑙
]
󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0.

(11)

At 𝑡 = 𝑡
𝑘
+ 𝑑𝑡, the free evolution of |𝜓(𝑡)⟩ is given by

󵄨󵄨󵄨󵄨𝜓 (𝑡𝑘 + 𝑑𝑡)⟩ = (𝐼 − 𝑖𝐻
0
𝑑𝑡)

󵄨󵄨󵄨󵄨𝜓 (𝑡
+

𝑘
)⟩

= 𝐵
𝑘
(𝐼 − 𝑖𝐻

0
𝑑𝑡)

󵄨󵄨󵄨󵄨𝜓 (𝑡𝑘)⟩ , 𝑘 = 1, 2, . . . .

(12)

Similar to the previous deduction, it follows from (11) and (12)
that

𝑉̇
1
(𝑡
1
+ 𝑑𝑡) = 0

⇐⇒ I (⟨𝜓 (𝑡
1
+ 𝑑𝑡)

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩ ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑙

󵄨󵄨󵄨󵄨𝜓 (𝑡1 + 𝑑𝑡)⟩) = 0

⇐⇒ I ((𝑖)
𝑠
⟨𝜓 (𝑡
+

1
)
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

× ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
[𝐻
(𝑠)

0
, 𝐻
𝑙
]
󵄨󵄨󵄨󵄨𝜓 (𝑡
+

1
)⟩) = 0, 𝑠 = 0, 1

⇐⇒ I ((𝑖)
𝑠
⟨𝜓 (𝑡
1
− 𝑑𝑡)

󵄨󵄨󵄨󵄨 𝐵
∗

1

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

×⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
[𝐻
(𝑠)

0
, 𝐻
𝑙
] 𝐵
1

󵄨󵄨󵄨󵄨𝜓 (𝑡1 − 𝑑𝑡)⟩ ) = 0,

𝑠 = 0, 1, 2,

⇐⇒ I ((𝑖)
𝑠
⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨 𝐵
∗

1

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

× ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
[𝐻
(𝑠)

0
, 𝐻
𝑙
] 𝐵
1

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0,

𝑠 = 0, 1, . . . , 𝑛
1
+ 1,

𝐷
−
𝑉
1
(𝑡
2
) = 0

⇐⇒ I ((𝑖)
𝑠
⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨 𝐵
∗

1

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

×⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
[𝐻
(𝑠)

0
, 𝐻
𝑙
] 𝐵
1

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0,

𝑠 = 0, 1, . . . , 𝑛
1
+ 𝑛
2
. (13)

Consequently, it can be obtained that

𝐷
−
𝑉
1
(𝑡
𝑘
) = 0

⇐⇒ I((𝑖)
𝑠
⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨

𝑘−1

∏

𝑗=1

𝐵
∗

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

×⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
[𝐻
(𝑠)

0
, 𝐻
𝑙
]

1

∏

𝑗=𝑘−1

𝐵
𝑗

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0,

(14)

where 𝑠 = 0, 1, . . . , ∑
𝑘

𝑖=1
𝑛
𝑖
. Noticing that the set {(𝑖)𝑠[𝐻(𝑠)

0
,

𝐻
𝑙
], 𝑠 = 0, 1, . . . , ∑

𝑘

𝑖=1
𝑛
𝑖
}, 𝑙 ∈ 𝐽 has finite dimension, we

denote its basis to be𝑋1
𝑙
, 𝑋
2

𝑙
, . . . , 𝑋

𝑚
𝑙

𝑙
, 𝑙 ∈ 𝐽. Since the division

of the interval [𝑡
𝑘−1

, 𝑡
𝑘
] is random, (14) can be rewritten as

𝐷
−
𝑉
1
(𝑡
𝑘
) = 0

⇐⇒ I(⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨

𝑘−1

∏

𝑗=1

𝐵
∗

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

×⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑠
𝑙

𝑙

1

∏

𝑗=𝑘−1

𝐵
𝑗

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0,

𝑠
𝑙
= 1, . . . , 𝑚

𝑙
.

(15)

For convenience, the set of the states satisfying (15) is denoted
as𝑀𝑙
𝑘
in (9), 𝑙 ∈ 𝐽, 𝑘 ≥ 2.

In the following, we will discuss the conditions on the
initial states from which the trajectories stay in the set {|𝜓⟩ :

Δ𝑉
1
(𝑡
𝑘
) = 0, 𝑘 = 1, 2, . . .}:

Δ𝑉
1
(𝑡
1
) = 0

⇐⇒
󵄨󵄨󵄨󵄨󵄨
⟨𝜓 (𝑡
1
)
󵄨󵄨󵄨󵄨 𝐵
∗

1

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
⟨𝜓 (𝑡
1
)
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩
󵄨󵄨󵄨󵄨󵄨

2

= 0
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⇐⇒
󵄨󵄨󵄨󵄨󵄨
⟨𝜓 (𝑡
1
− 𝑑𝑡)

󵄨󵄨󵄨󵄨 𝐵
∗

1

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
⟨𝜓 (𝑡
1
− 𝑑𝑡)

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩
󵄨󵄨󵄨󵄨󵄨

2

= 0

⇐⇒
󵄨󵄨󵄨󵄨󵄨
⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨 𝐵
∗

1

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩
󵄨󵄨󵄨󵄨󵄨

2

= 0. (16)

Applying the similar technique, it follows that

Δ𝑉
1
(𝑡
𝑘
) = 0 ⇐⇒

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨

𝑘

∏

𝑗=1

𝐵
∗

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
⟨𝜓 (𝑡
0
)
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑓
⟩
󵄨󵄨󵄨󵄨󵄨

2

= 0.

(17)

We denote the set of the states guaranteeing (17) to be 𝑁
𝑘
in

(9).
In conclusion, all the states which stay in the intersection

𝐸
1
∩ 𝐸
2
constitute the largest invariant set of system (4). By

Lemma 3, we complete the proof.

It should be noticed that the basis of the set
{(𝑖)
𝑠
[𝐻
(𝑠)

0
, 𝐻
𝑙
], 𝑠 = 0, 1, 2, . . . , ∑

𝑘

𝑖=1
𝑛
𝑖
} can be obtained in

finite steps, 𝑙 ∈ 𝐽. If the first 𝑛2 elements in the set are linearly
independent, then they constitute the basis. If [𝐻(𝑠𝑙+1)

0
, 𝐻
𝑙
]

can be represented by the first 𝑠
𝑙
elements, it is easy to obtain

that [𝐻(𝑘)
0
, 𝐻
𝑙
] can be represented by the linear combination

of𝐻
𝑙
, [𝐻
0
, 𝐻
𝑙
], . . . , [𝐻

(𝑠
𝑙
)

0
, 𝐻
𝑙
], for all 𝑘 > 𝑠

𝑙
.

Corollary 5. Consider system (4)with control field (6)without
the impulsive control, that is, 𝐵

𝑘
= 𝐼, 𝑘 = 1, 2, . . .. The largest

invariant set is 𝐸⋂S2𝑛−1, where 𝐸 = {|𝜓⟩ : |𝜓⟩ ∈ 𝑀
𝑙

𝑘
, 𝑙 ∈

𝐽, 𝑘 = 0, 1, . . .},𝑀𝑙
𝑘
= {|𝜓⟩ : I(𝑖𝑘⟨𝜓|𝜓

𝑓
⟩⟨𝜓
𝑓
|[𝐻
(𝑘)

0
, 𝐻
𝑙
]|𝜓⟩) =

0}, 𝑘 ≥ 0, and 𝑙 ∈ 𝐽.

Remark 6. If 𝐻
0

is strong regular, then the result in
Corollary 5 reduces to Theorem 2 in [1]. For the nonideal
case, it is clear that 𝐺 ⊂ 𝐸. From the viewpoint of physics,
this implies that the proposed hybrid impulsive control can
achieve more accurate convergence under the nonideal case.
In general, the matrix 𝐵

𝑘
can be chosen to guarantee that 𝐸

1

and 𝐸
2
contain finite sets𝑀𝑙

𝑘
and𝑁

𝑘
. It can be found that the

invariant set 𝐺 depends on the choice of impulsive control
matrix 𝐵

𝑘
. The optimal determination of 𝐵

𝑘
and impulsive

instants 𝑡
𝑘
to minimize the invariant set are under study.

3. Hybrid Impulsive Control Based on
the State Error

It is known that different Lyapunov functions may have
different control effects. The relations among them were
studied in our previous work [4]. In this section, we consider
the hybrid impulsive control of quantum systems based on
the state error between the controlled state and the goal state.
Let 𝑉
2
(𝜓(𝑡)) = 𝑉

2
(𝑡) = (1/2)⟨𝜓(𝑡) − 𝜓

𝑓
|𝜓(𝑡) − 𝜓

𝑓
⟩ = 1 −

R⟨𝜓
𝑓
|𝜓(𝑡)⟩. Similar to the hybrid control design in Section 1,

we consider the following quantum impulsive control system
which is different from (4):

𝑖
󵄨󵄨󵄨󵄨𝜓̇ (𝑡)⟩ = (𝐻

0
+ 𝑢
1
𝐻
1
+ 𝜔𝐼)

󵄨󵄨󵄨󵄨𝜓 (𝑡)⟩ , 𝑡 ̸= 𝑡
𝑘
,

󵄨󵄨󵄨󵄨𝜓 (𝑡
+

𝑘
)⟩ = 𝐵

𝑘

󵄨󵄨󵄨󵄨𝜓 (𝑡𝑘)⟩ ,

(18)

where𝜔 is a new real scalar control field. For the convenience
of the computation, the introduced 𝜔 may be used to adjust
the global phase without changing the physical quantities
regarding |𝜓⟩. While in practical implementation, it is not
necessary to be implemented to the system. Similar con-
clusion can be drawn if there exists more than one control
Hamiltonian𝐻

𝑙
, 𝑙 ≥ 2. The time derivative of 𝑉

2
is

𝑉̇
2
(𝑡) = − (𝜆

𝑓
+ 𝜔)I (⟨𝜓

𝑓

󵄨󵄨󵄨󵄨𝜓⟩)

−I (⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
1

󵄨󵄨󵄨󵄨𝜓⟩) 𝑢1, 𝑡 ̸= 𝑡
𝑘
.

(19)

Let 𝑢
0
= 𝜆
𝑓
+ 𝜔. We design the following control to ensure

𝑉̇
2
(𝑡) ≤ 0, 𝑡 ̸= 𝑡

𝑘
:

𝜆
𝑓
+ 𝜔 = 𝑢

0
= 𝐾
0
𝑓
0
(I ⟨𝜓

𝑓

󵄨󵄨󵄨󵄨𝜓⟩) ,

𝑢
1
= 𝐾
1
𝑓
1
(I ⟨𝜓

𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
1

󵄨󵄨󵄨󵄨𝜓⟩) ,

(20)

where 𝐾
1
> 0, and the function 𝑦

1
= 𝑓
1
(⋅) is defined as that

in (6).

Theorem 7. Consider system (18) with control fields (7) and
(20). The largest invariant set is given by𝐾 = 𝐹

1
⋂𝐹
2
⋂S2𝑛−1,

where 𝐹
1
= {|𝜓⟩ : |𝜓⟩ ∈ 𝑈

𝑘
, 𝑘 = 1, 2, . . .}, 𝐹

2
= {|𝜓⟩ : |𝜓⟩ ∈

𝑊
𝑘
, 𝑘 = 1, 2, . . .}, and 𝑈

1
:= {|𝜓⟩ : I(⟨𝜓

𝑓
|𝑋
𝑠
|𝜓⟩) = 0, 𝑠 =

1, . . . , 𝑚
1
},

𝑈
𝑘

:=
{

{

{

󵄨󵄨󵄨󵄨𝜓⟩ : I(⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑠

1

∏

𝑗=𝑘−1

𝐵
𝑗

󵄨󵄨󵄨󵄨𝜓⟩) = 0, 𝑠 = 1, . . . , 𝑚
1

}

}

}

,

𝑘 ≥ 2,

𝑊
𝑘

:=
{

{

{

󵄨󵄨󵄨󵄨𝜓⟩ : R ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨𝜓⟩ −R ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨

𝑘

∏

𝑗=1

𝐵
𝑗

󵄨󵄨󵄨󵄨𝜓⟩ = 0
}

}

}

, 𝑘 ≥ 1,

(21)

where𝑋1, 𝑋2, . . . , 𝑋𝑚1 are the basis of the set {𝐼, (𝑖)𝑠[𝐻(𝑠)
0
, 𝐻
1
],

𝑠 = 0, 1, 2, . . .}. Therefore, system (18) converges to 𝐾 with the
hybrid impulsive control satisfying (7) and (20).

Proof. Let 𝜔 = −𝜆
𝑓
. When the system satisfies 𝑉̇

2
= 0, that is,

𝑢
1
= 0, the evolution of system (18) becomes

𝑖
󵄨󵄨󵄨󵄨𝜓̇ (𝑡)⟩ = (𝐻

0
− 𝜆
𝑓
𝐼)
󵄨󵄨󵄨󵄨𝜓 (𝑡)⟩ , 𝑡 ̸= 𝑡

𝑘
,

󵄨󵄨󵄨󵄨𝜓 (𝑡
+

𝑘
)⟩ = 𝐵

𝑘

󵄨󵄨󵄨󵄨𝜓 (𝑡𝑘)⟩ .

(22)
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It follows from (22) that
󵄨󵄨󵄨󵄨𝜓 (𝑡𝑘−1 + 𝑑𝑡)⟩

=
󵄨󵄨󵄨󵄨𝜓 (𝑡𝑘−1)⟩ +

󵄨󵄨󵄨󵄨𝜓̇ (𝑡𝑘−1)⟩ 𝑑𝑡

= [𝐼 − 𝑖 (𝐻
0
− 𝜆
𝑓
𝐼) 𝑑𝑡]

󵄨󵄨󵄨󵄨𝜓 (𝑡𝑘−1)⟩ .

(23)

From (20), we obtain the following relation:

𝑉̇
2
(𝑡
0
) = 0 ⇐⇒ I (⟨𝜓

𝑓

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0,

I (⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐻
1

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0.

(24)

Similarly, we divide the interval [𝑡
𝑘−1

, 𝑡
𝑘
] into 𝑛

𝑘
sufficiently

small intervals. From (22)–(24), we have 𝐷−𝑉
2
(𝑡
1
) = 0 ⇔

I(𝑖𝑛1⟨𝜓
𝑓
|[𝐻
(𝑛
1
)

0
, 𝐻
1
]|𝜓(𝑡
0
)⟩) = 0. According to the similar

method in the proof of Theorem 4, when 𝑡 = 𝑡
𝑘
, it yields that

𝐷
−
𝑉
2
(𝑡
𝑘
) = 0

⇐⇒ I ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨

1

∏

𝑗=𝑘−1

𝐵
𝑗

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩ = 0,

I(𝑖
𝑠
⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
[𝐻
(𝑠)

0
, 𝐻
1
]

1

∏

𝑗=𝑘−1

𝐵
𝑗

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩) = 0,

(25)

where 𝑠 = 0, . . . , ∑
𝑘

𝑖=1
𝑛
𝑖
. Denote the basis of the set

{𝐼, (𝑖)
𝑠
[𝐻
(𝑠)

0
, 𝐻
1
], 𝑠 = 0, 1, . . . , ∑

𝑘

𝑖=1
𝑛
𝑖
} to be 𝑋1, 𝑋2, . . . , 𝑋𝑚1 .

Equation (25) can be rewritten as 𝐷
−
𝑉
2
(𝑡
𝑘
) = 0 ⇔

I⟨𝜓
𝑓
|𝑋
𝑠
∏
1

𝑗=𝑘−1
𝐵
𝑗
|𝜓(𝑡
0
)⟩ = 0, 𝑠 = 1, 2, . . . , 𝑚

1
. This equality

is denoted as 𝑈
𝑘
in (21).

Next, we characterize the initial states from which the
system trajectories stay in {|𝜓⟩ : Δ𝑉

2
(𝑡
𝑘
) = 0, 𝑘 = 1, 2, . . .}.

From the definition of 𝑉
2
, we have Δ𝑉

2
(𝑡
1
) = R⟨𝜓

𝑓
|𝜓(𝑡
+

1
)⟩ −

R⟨𝜓
𝑓
|𝜓(𝑡
1
)⟩ = R⟨𝜓

𝑓
|𝐵
1
|𝜓(𝑡
1
)⟩ −R⟨𝜓

𝑓
|𝜓(𝑡
1
)⟩. The follow-

ing relations can be obtained:

Δ𝑉
2
(𝑡
1
) = 0

⇐⇒ R ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨𝜓 (𝑡1)⟩ −R ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐵
1

󵄨󵄨󵄨󵄨𝜓 (𝑡1)⟩ = 0

⇐⇒ R ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
(𝐼 − 𝐵

1
) [𝐼 − 𝑖 (𝐻

0
− 𝜆
𝑓
𝐼) 𝑑𝑡]

×
󵄨󵄨󵄨󵄨𝜓 (𝑡1 − 𝑑𝑡)⟩ = 0

⇐⇒ R ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩ −R ⟨𝜓
𝑓

󵄨󵄨󵄨󵄨󵄨
𝐵
1

󵄨󵄨󵄨󵄨𝜓 (𝑡0)⟩ = 0.

(26)

By similar deduction, it yields that Δ𝑉
2
(𝑡
𝑘
) = 0 ⇔

R⟨𝜓
𝑓
|𝜓(𝑡
0
)⟩ − R⟨𝜓

𝑓
|∏
𝑘

𝑗=1
𝐵
𝑗
|𝜓(𝑡
0
)⟩ = 0, which can be

denoted as𝑊
𝑘
in (21).

In conclusion, all the states which remain in the intersec-
tion 𝐹

1
∩ 𝐹
2
constitute the largest invariant set of controlled

system (18). By Lemma 3, the proof is completed.

Similar to the discussion inCorollary 5,Theorem 7 can be
reduced to Theorem 8 in [1] if there is no impulsive control,
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Figure 1:The population of the system state by the hybrid impulsive
control based on the state distance.

and 𝐻
0
is strong regular. We can see that our result reduces

the invariant set for the nonideal case. This implies that the
proposed hybrid impulsive control scheme can accomplish
more accurate state transfer.

4. Numerical Simulation

Example 1. Consider the five-level system with the internal
Hamiltonian and impulsive control Hamiltonian given by
𝐻
0

= diag{1.0, 1.2, 1.2, 2.0, 2.15} and 𝐵
𝑘

= diag{0, 0,
−𝜋, −𝜋, 0}, respectively. The unitary operation 𝐵

𝑘
= 𝑒
−𝑖𝐵
𝑘 =

diag{1, 1, −1, −1, 1} can be realized by performing the planar
rotation on system states. It can be found that the system is
a nonideal system. The control Hamiltonians are given by

𝐻
1
= (

0 0 𝑖 𝑖 0

0 0 𝑖 0 𝑖

−𝑖 −𝑖 0 0 0

−𝑖 0 0 0 0

0 −𝑖 0 0 0

),𝐻
2
= (

0 𝑖 0 0 0

−𝑖 0 0 𝑖 0

0 0 0 𝑖 𝑖

0 −𝑖 −𝑖 0 𝑖

0 0 −𝑖 −𝑖 0

). Let the target state

be |𝜓
𝑓
⟩ = [0 0 1 0 0]

⊤, let the initial state be |𝜓
0
⟩ =

[0 1 0 0 0]
⊤, and let the controlled state be |𝜓⟩ =

[𝑐
1
, 𝑐
2
, . . . , 𝑐

5
]
⊤. Take the control function to be 𝑓

𝑖
(𝑥) = 𝑥, 𝑖 =

1, 2. Choose the impulsive instant to be 𝑡
𝑘
= 3𝑘 − 1, 𝑘 ∈ Z+

and𝐾
1
= 𝐾
2
= 0.2. Using the hybrid impulsive control based

on the state distance, simple computation yields that the
invariant set 𝐺 = {|3⟩} (without regard to the global phase),
which implies that under the hybrid impulsive control the
system converges to |𝜓

𝑓
⟩. The populations of the controlled

system are illustrated in Figure 1.
Now we compare performance of the hybrid impul-

sive control with that of classical Lyapunov control. If the
impulsive control is not applied to the system, then the
hybrid impulsive control is reduced to the classical Lyapunov
control, by which the performance of the controlled system
is shown in Figure 2. Hence, the proposed hybrid impulsive
control improves the control performance.

Example 2. Consider the five-level system with the same
internal Hamiltonian as the previous example. Let the target
state and the initial state be |𝜓

𝑓
⟩ = [0 0 0 0 1]

⊤ and
|𝜓
0
⟩ = [1 0 0 0 0]

⊤, respectively, and the impulsive
control Hamiltonian 𝐵

𝑘
= diag{−𝜋, 0, 0,−𝜋, 0}. The unitary

operation is chosen as 𝐵
𝑘
= 𝑒
−𝑖𝐵
𝑘 = diag{−1, 1, 1, −1, 1}. The

system is a nonideal system.The control Hamiltonian is given
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Figure 2: The population of the system state by the Lyapunov
control without impulsive control.
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Figure 3:The population of the system state by the hybrid impulsive
control based on the state error.

by 𝐻
1
= (

0 𝑖 0 0 𝑖

−𝑖 0 0 𝑖 𝑖

0 0 0 0 𝑖

0 −𝑖 0 0 𝑖

−𝑖 −𝑖 −𝑖 −𝑖 0

). Let the control function be 𝑓
1
(𝑥) =

𝑥, and 𝐾
0
= 0.1, 𝐾

1
= 0.2. Choose the impulsive instant

as 𝑡
𝑘
= 3𝑘 − 1, 𝑘 ∈ Z+. Using the hybrid impulsive control

based on the state error, simple computation yields that the
invariant set 𝐾 = {|5⟩} (without regard to the global phase),
which implies that under the hybrid impulsive control the
system converges to |𝜓

𝑓
⟩. Simulation results are illustrated in

Figure 3.
When the hybrid impulsive control is reduced to the clas-

sical Lyapunov control, the trajectory of the controlled system
is plotted in Figure 4. Moreover, if the implicit Lyapunov
control strategy in [4] is employed with the same parameters,
it fails to drive the system, as illustrated in Figure 5.Therefore,
the proposed hybrid impulsive control improves the control
performance.

5. Conclusion

In this paper, the coherent hybrid impulsive control for closed
quantum systems has been investigated for the nonideal case
that 𝐻

0
is not strong regular. The dynamical properties of

the resulted quantum impulsive control system have been
discussed to facilitate the convergence analysis. Based on two
kinds of Lyapunov functions, the largest invariant sets have
been characterized explicitly. Consequently, more accurate
convergence of the controlled system has been achieved by
the extensive LaSalle invariance principle. Compared with
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Figure 4: The population of the system state by the Lyapunov
control without impulsive control.
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Figure 5: The population of the system state by the implicit
Lyapunov control in [4].

some existing results, the improved control performance
has been shown for the nonideal case. Since the practical
implementation of impulsive control has been studied in
known literature, we believe that it is feasible. The optimal
determination of the impulsive control Hamiltonian and
impulsive instants is worth to be explored in the future work.
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