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The calculation of the magnonic spectra using the plane-wave method has limitations, the origin of which lies in the formulation
of the effective magnetic field term in the equation of motion (the Landau-Lifshitz equation) for composite media. According to
ideas of the plane-wave method the system dynamics is described in terms of plane waves (a superposition of a number of plane
waves), which are continuous functions and propagate throughout the medium. Since in magnonic crystals the sought-for super-
position of plane waves represents the dynamic magnetization, the magnetic boundary conditions on the interfaces between con-
stituent materials should be inherent in the Landau-Lifshitz equations. In this paper we present the derivation of the two expres-
sions for the exchange field known from the literature. We start from the Heisenberg model and use a linear approximation and
take into account the spacial dependence of saturation magnetization and exchange constant present in magnetic composites. We
discuss the magnetic boundary conditions included in the presented formulations of the exchange field and elucidate their effect
on spin-wave modes and their spectra in one- and two-dimensional planar magnonic crystals from plane-wave calculations.

1. Introduction

For the first time the exchange effects were discovered
independently by W. Heisenberg and P.A.M. Dirac in 1926.
They proposed the energy operator (Hamiltonian) for the
exchange interaction between two particles with spins S1 and
S2 in the following form:

Hex = −2J12S1 · S2, (1)

where J12 is the exchange integral. Because the exchange
interaction is the fundamental one for magnetic materials
than it is crucial for the calculations of the spin dynamics.
An equation commonly used to describe the magnetization
dynamics is the following Landau-Lifshitz (LL) equation:

∂M(r, t)
∂t

= −γμ0[M(r, t)× (Hex(r, t) + · · · )] + · · ·, (2)

where Hex is the exchange field acting on the magnetization
vector M. This equation is a macroscopic where all terms are
in a form of continuous functions of a position vector r.

The derivation of an exchange field in a uniform
ferromagnetic material from the microscopic Heisenberg

Hamiltonian (1) can be found in many textbooks, for exam-
ple, [1–5]. We will follow ideas presented in these books but
for composite materials, that is, when the structure consists
of two or more constituent ferromagnetics being in direct
contact.

On the interface between two ferromagnetic materials,
the boundary conditions (BCs) on dynamical component of
the magnetization vector should be imposed. Such boundary
conditions were proposed by Hoffman, then developed, and
investigated by other authors [6–14]. From the LL equation
together with the set of BCs, the spin-wave (SW) dispersion
and profiles can be calculated. In many papers the calculation
of the SW spectra in composite magnetic materials is based
on the solution of the LL equation defined for a uniform
material and then matched at the boundaries [7, 12, 13, 15–
19]. In this paper we are interested in other method used to
calculate the dispersion relation of the spin waves in mag-
netic composites with periodic distribution of constituent
materials, and it is the plane-wave method (PWM). This
method is widely used in calculations of the frequency spec-
tra of an electromagnetic, elastic or electron waves propagat-
ing in a photonic crystal, phononic crystal or semiconductor



2 Advances in Condensed Matter Physics

periodic heterostructures, respectively. In this method,
described in details in Section 3, boundary conditions at
interfaces between constituent materials should be inherently
included into the equation of motion, that is, by properly
defined exchange field.

Composites with a periodic arrangement of two (or
more) different materials are extensively studied from many
years. In the past, structures with periodicity in one dimen-
sion were investigated, these are multilayered structures
which found many applications, for example, as a Bragg
mirror or in GMR devices [20, 21]. Starting from 1987 and
the discovery of photonic band gaps in photonic crystals [22,
23], the research was rapidly extended to other composites
with periodicity in two and three dimensions. Among them
there are phononic crystals, plasmonic crystals and also
magnonic crystals (MCs) [24–30]. MCs can be regarded
as magnetic analog of the photonic crystal, which uses the
spin waves, instead of electromagnetic waves, to carry the
information. MCs constitute one of the main building blocks
of magnonic—promising direction of research focused on
practical applications of spin waves [29–36]. For the develop-
ment of magnonics, the computational methods have to be
developed as well. The calculation of SW’s dispersion in MCs
can be performed with different methods, for example, with
micromagnetic simulations or dynamical matrix method
but because of their complexity the computations are very
time consuming [37–42]. It is important to develop other
analytical and semianalytical methods, like a PWM which
even though approximate will allow for efficient calculation
of the dispersion of SWs in MCs with big insight into physical
processes.

Semiconductor periodic heterostructures (SHs) allow to
tailor the electron and heat transport in nanoscale [43–45].
SHs are often described in effective mass approximation with
the use of the envelope function instead of single electron
functions. Effective mass equations derived from the Schrö-
dinger equations are not unique, and many possible defi-
nitions of the kinetic energy operator were proposed. An
extensive discussion about proper definition of the kinetic
energy operator for the electron envelop function in SHs
with position-dependent effective mass can be found in
literature [46–58]. The calculation of the SW spectra in con-
tinuous model, that is, from the LL equation (2), undergoes
similar difficulties, as we will show in this paper. However,
this topic related to the calculations of the spin-wave dynam-
ics in MCs is weakly presented in literature. In this paper we
would like to fill this gap with a detailed consideration of
different forms of the exchange field and then look at their
consequences in the SW spectra of a MC calculated using the
PWM.

In this study we will show in details the derivation from
the microscopic model different forms of the exchange field
used for SW calculations in MCs. Then we will analyze
differences in SW spectra in one- (1D) and two-dimensional
(2D) thin films of MCs calculated with PWM for three
different expressions of the exchange field. We will discuss
the boundary condition implemented in each formulation.
The paper consists of five sections. In Section 2 we show
the derivation of two forms of the exchange field from the

Heisenberg Hamiltonian in linear approximation for mag-
netic composites with pointing at surface terms neglected.
Then in Section 3 we introduce the PWM method and derive
a final algebraic eigenvalue equations for different definitions
of the exchange field. In Section 4 we present the results of
the PWM calculations of SW spectra for these different forms
of the exchange field for MCs. We will consider 1D and 2D
MC. The paper finished with Section 5 where conclusions of
our investigation are drawn.

2. Expression of the Exchange Field in
Inhomogeneous Media

We split the derivation of the expression of the exchange
field in inhomogeneous materials into two steps. First, in
Section 2.1 we obtain the formula for the exchange energy
density from the microscopic Heisenberg Hamiltonian. Here
the crucial step is a transformation from the discrete model
to the continuous one. In the second step, Section 2.2 the
formula for the exchange field will be derived from the
exchange energy density. In this step a linear approximation
will be introduced, and the space dependence of magnetic
material parameters will be considered.

2.1. Exchange Energy Functional. We start our calcula-
tions from the Heisenberg Hamiltonian Hl which defines
exchange energy of the spin Sl on the lattice point l as follows:

Hl = −2
∑

m∈(n.n.)

JlmSl · Sm, (3)

where Sm is the total spin vector on lattice point m, and the
summation is performed over all nearest neighbors (n.n.)
of a lth spin. Jlm is an exchange integral between the spins
located at l and m. When we introduce normalized unit
vector αl for the spin vector Sl

αl = Sl

|Sl| , (4)

then (3) will read

Hl = −2|Sl|
∑

m∈(n.n.)

Jlm|Sm|αl · αm. (5)

According to the definition in (4), αl · αm = cosϕ, where ϕ is
an angle between spin vectors on lattice points l and m (see
Figure 1).

Let us assume that the angle ϕ between the nearest
spin vectors is small and moreover that the spin vectors are
continuous and smooth functions of a position vector r, that
is, α = α(r) [2]. Formally we can do it through averaging S
over the unit cell; that is, we introduce magnetization vector
M(r) as follows:

M(rl) = NμBgSl, where N = N

V
(6)

defines a number of spins (N) in the unit cell volume (V).
μB is Bohr magneton, and g is a g factor (for free electrons
g ≈ 2). According to these definitions

αl = Sl

|Sl| ≡
M(rl)
M(rl)

(7)



Advances in Condensed Matter Physics 3

z a

y

. . .. . .

ϕ

Sl Sm

Figure 1: The discrete lattice of spins. The angle between neighbor-
ing spins: Sl and Sm is ϕ. We assume that ϕ and the spin deviation
from the z axis are small.

and we can write α(r) as a continuous function of the posi-
tion vector as follows:

α(r) = M(r)
M(r)

. (8)

Having the continuous function of a position vector in
hand, we can expand a unit vector α in a lattice point m
(α(rm) ≡ αm ≡ α′) in the Taylor series:

α′ = αl +
∑

i

(
∂xiαl

)
dxi +

1
2

∑

i, j

(
∂xi∂xjαl

)
dxidxj + · · ·,

(9)

where xi = x, y or z, and dxi is the distance between nearest
spins along xi axis. ∂xi is an abbreviation of the partial
derivative with respect to the Cartesian xi component. After
limiting expansion up to the quadratic terms (it means that
we assumed a small variation of α(r) in space) we can
substitute this into (5) as follows:

Hl =− 2|Sl|
∑

m∈(n.n.)

Jlm|Sm|

− 2|Sl|
∑

m∈(n.n.)

Jlm|Sm|
∑

i

αl ·
(
∂xiαl

)
dxi

− |Sl|
∑

m∈(n.n.)

Jlm|Sm|
∑

i, j

αl ·
(
∂xi∂xjαl

)
dxidxj .

(10)

The second term on the right side is equal to zero because
α is a unit vector, and the only possibility to change it is a
rota-tion: unit vectors αl fulfill obvious relation: αl · αl = 1.
Differentiate this equation with respect to xi results in the
following:

(
∂xiαl

) · αl = 0. (11)

It means that ∂xiα is zero or is orthogonal to the vector α
(i.e., αl · (∂xiαl) ≡ 0, see (11)). The Hamiltonian can be now
rewritten as follows:

Hl = − 2|Sl|
∑

m∈(n.n.)

Jlm|Sm|

− |Sl|
∑

m∈(n.n.)

Jlm|Sm|
∑

i, j

αl ·
(
∂xi∂xjαl

)
dxidxj .

(12)

For a homogeneous material the length of the spins is
preserved, |Sl| = |Sm| in each lattice point, and the exchange
integral is constant, that is, Jlm = J for each n.n. l and
m (l /=m), (this assumption is valid for inhomogeneous
material when two atomic planes (for n.n. exchange inter-
actions) at the interfaces are removed from consideration.)
With this homogenization, we obtain from (12) the following
expression:

Hl = −2Z|S|2J − |S|2J
∑

m∈(n.n.)

∑

i, j

αl ·
(
∂xi∂xjαl

)
dxidxj ,

(13)

where Z is a number of the nearest neighbors. For crystals
with cubic crystallographic structures (i.e., for simple cubic
(sc), body-centered cubic (bcc), and face-centered cubic (fcc)
lattice types) the distance between n.n. is equal along all
directions, |dxi| = a. Using this property, the summation
over nearest neighbors

∑
m∈(n.n.)(· · · )dxidxj for i /= j is equal

to 0 for each lattice type. So, we can obtain the following
Hamiltonian:

Hl = −2Z|S|2J − 2|S|2Ja2
∑

i

αl ·
(
∂xi∂xiαl

)
. (14)

Equation (11) can be again differentiate with respect to
xj , and the result is

αl ·
(
∂xi∂xjαl

)
= −(∂xiαl

) ·
(
∂xjαl

)
. (15)

With this equality we can rewrite (14) for the exchange
energy into the following form:

Hl = −2Z|S|2J + 2|S|2Ja2
∑

i

(
∂xiαl

)2
. (16)

To define energy density, Eex as a continuous function of
the position vector, we have to sum over all spins in the unit
cell and divide it by the volume of this unit cell. In that way
we obtain density of the following exchange energy:

Eex = λM2 + A
∑

i

(
∂xiα(r)

)2, (17)

where

A = 2nJS2

a
(18)

and n = 1, 2, or 4 for sc, bcc, or fcc lattice, respectively; [2],
α(r) is defined in (8) and

λ = −2ZJ
Nμ2

Bg2
. (19)

To calculate the total exchange energy, Eex, stored in a
magnetic material, we have to integrate density of the energy
(17) over the volume of the material [3] as follows:

Eex =
∫

V
Eexd

3r =
∫

V
λM2d3r +

∫

V
A
∑

i

(
∂xiα(r)

)2
d3r

=
∫

V
λM2d3r

+
∫

V
A

[(
∂x

M
M

)2

+
(
∂y

M
M

)2

+
(
∂z

M
M

)2
]
d3r.

(20)
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The SW can be regarded as coherent precession of the
magnetization vector around its equilibrium direction. Based
on this observation most SW calculation are performed in
linear approximation. This approximation was already used
once in our paper, it is in (10). Now we will use it again to
simplify the expression (20) for the total exchange energy.

2.1.1. Exchange Energy in Form I. In linear approximation
the magnetization vector

M(r) =Mx(r)x̂ + My(r) ŷ + Mz(r)ẑ (21)

can be separated into two parts: a static and dynamic com-
ponents. We assume that the magnetization component
along the direction of the applied magnetic field, in our case
it is the z-axis, is constant in time (but can be still position
dependent), and its value is close to the length of the total
magnetization vector as follows:

M0 =M0(r) ≡Mz ≈ |M| ≈ const(t). (22)

The time-depending components of the magnetization vec-
tor; Mx and My will be denoted by mx and my , respectively.
We will define the dynamic magnetization vector as m =
(mx,my) being a two-dimensional vector in the plane per-
pendicular to the direction of the saturation magnetization.

The exchange energy, (20), with the help of approxima-
tion (22) can be rewritten in the following form:

Eex =
∫

V
λM2

0d
3r +

∫

V
A
(
∇ m
M0

)2

d3r. (23)

This consists of the formula for the exchange energy, which
we will call as Form I.

2.1.2. Exchange Energy in Form II. In the following we will
make further assumptions to obtain another expression for
the exchange field. We can write that

(
∂x

m
M0

)2

=
(

(∂xm)M0 − (∂xM0)m
M2

0

)2

= (∂xm)2M2
0 + (∂xM0)2m2 −M0(∂xM0)

(
∂xm2

)

M4
0

(24)

were in the last component of the nominator we have used
2m · ∂xm = ∂x(m2). The same calculations can be applied to
other components of the ∇ operator in the exchange energy
functional (23). The following expression for the exchange
energy can be obtained:

Eex =
∫

V
λM2

0d
3r +

∫

V

A

M2
0

(∇m)2d3r

+
∫

V

A

M4
0

(∇M0)2m2d3r −
∫

V

A

M3
0

(∇M0) · (∇m2)d3r.

(25)

In MCs the saturation magnetization is a function of
the position vector with a step increase at interfaces. For

bicomponent MCs (i.e., consisting of two ferromagnetic
materials: A and B), M0(r) can be defined with the help of
the characteristic function S(r):

M0(r) = (M0,A −M0,B
)
S(r) + M0,B, (26)

were

S(r) =
{

1 for r in material A,

0 for r in material B,
(27)

and M0,A and M0,B are saturation magnetizations in mate-
rials A and B, respectively. We can see that in last two
terms in (25) there are derivatives of M0 with respect to the
position which according to (26) are derivatives from the step
function, that is,∇M0 = (M0,A −M0,B)δ(r− rinterface), where
δ is the Dirac delta function, and rinterface is a position vector
which define the interface. It means that these two terms
are connected with the exchange energy contributed only at
interfaces and which are related to the jump of the saturation
magnetization value (in PWM calculations we will assume
parallel magnetizations in both materials). It can be shown
that these two terms result in internal magnetic field com-
ponents localized on interfaces and that these components
introduce singularities in the equation of motion. To avoid
these singularities we neglect these two terms. (It can be
shown by direct calculation of functional derivatives accord-
ing to (29), that these terms introduce non-Hermitian (or
non-anti-Hermitian) elements into equation of motion, that
is, (m/M0)∇((2A/μ0M

2
0 )∇M0), and again its physical inter-

pretation is questionable.)
To summarize, we have derived two different formulas

for the exchange energy in linear approximation, which are
equivalent in the case of homogeneous material. These are

Form I: Eex =
∫

V
λM2

0d
3r +

∫

V
A
(
∇ m
M0

)2

d3r,

Form II: Eex =
∫

V
λM2

0d
3r +

∫

V

A

M2
0

(∇m)2d3r.

(28)

In this derivation we have neglected the interface anisotropy
terms [9, 11]. These effects, which can be present in real
materials, have a microscopic origin and are limited to the
very thin area around interfaces (one or two atomic planes).
In continuous effective models such effects can be included
by proper effective boundary conditions imposed on dynam-
ical component of the magnetization vector.

2.2. Exchange Field. Exchange field can be derived from the
exchange energy functionals (28) as a first variational deri-
vative with respect to the magnetization vector [4, 59] as
follows:

Hex(r) = − 1
μ0

δEex

δM
= − 1

μ0

[
δEex

δmx
,
δEex

δmy
,
δEex

δM0

]
. (29)
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This equation is written in SI units. Those variational deriva-
tives can be calculated from Euler formula [4] as follows:

δEex

δmx
= ∂η

∂mx
−∇

(
∂η

∂(∇mx)

)
= ∂η

∂mx
−
∑

i

∂

∂xi

(
∂η

∂
(
∂ximx

)
)

,

(30)

where Eex =
∫
V ηd3r and η = λM2

0 (r) + A(r)(∇m(r)/M0(r))2

or η = λM2
0 (r) +

(
A(r)
M2

0 (r)

)
(∇m(r))2 for Form I and Form

II of the exchange energy, respectively (see (28)). We will
perform those calculations independently for each form of
the exchange energy defined in (28). During calculations we
will take into account the inhomogeneity in the material,
that is, spacial dependence of material parameters: A(r) and
M0(r).

2.2.1. Form I of the Exchange Field. For Form I of
the exchange energy functional η = λM2

0 (r) + A(r)
(∇(m(r)/M0(r)))2 and we will calculate functional derivative
directly from (30). First we calculate the derivative with
respect of m as follows:

∂η

∂mx
= (∂A(r)∇(m(r)/M0(r)))2

∂mx

= A(r)

M0(r)2∇
(

m(r)
M0(r)

)
· ∇(M0(r)).

(31)

This term includes the derivative of saturation magnetiza-
tion, which is a step function on the interface between two
magnetic materials—(26). This part of the magnetic field is
localized purely at interfaces similarly as was found already
in (25). This term will introduce singularity into equation of
motions, and it will be neglected.

After this assumption the exchange magnetic field in the
Form I will be obtained solely from the second term in (30),
that is,

μ0Hex = ∇ ∂η

∂∇m(r)
= ∇∂A(r)(∇(m(r)/M0(r)))2

∂∇m(r)

= ∇
[
A(r)2

(
∇ m(r)
M0(r)

)
·
(
∂∇(m(r)/M0(r))

∂∇m(r)

)]

= ∇
[

2A(r)
M0(r)

]
∇ m(r)
M0(r)

.

(32)

2.2.2. Form II of the Exchange Field. For exchange energy
written in the Form II as defined in (28), η = λM2

0 (r) +
(A(r)/M2

0(r))(∇m(r))2. We can calculate functional deriva-
tives according to (30) and write Hex in a compact form
without any further approximations. In this case ∂η/∂mx =
0 because the first term in η is independent on ∂ximx. So

the functional derivative of Eex with respect to mx take the
following form:

δEex

δmx
=−

∑

i

∂

∂xi

(
∂
(
A/M2

0

)
(∇m)2

∂
(
∂ximx

)
)

=−
∑

i

∂

∂xi

[
A

M2
0

∂A

∂
(
∂ximx

)
]

=− ∂

∂x

[
2A
M2

0
(∂xmx)

]
− ∂

∂y

[
2A
M2

0

(
∂ymx

)]

− ∂

∂z

[
2A
M2

0
(∂zmx)

]
,

(33)

where A denotes [(∂xmx)2 + (∂xmy)2 + (∂ymx)2 + (∂ymy)2 +
(∂zmx)2 + (∂zmy)2]. The same procedure can be repeated for
the y component of the magnetization. Finally the exchange
field can be written in the following form, that is, Form II:

μ0Hex(r) = ∇
[

2A(r)
M2

0 (r)

]
∇m(r). (34)

2.2.3. Summary of the Exchange Field Forms. We have shown
the derivation of two different expressions for the exchange
field in nonuniform ferromagnetic materials in linear
approximation. These are

Form I: Hex(r) = ∇lex,I(r)∇m̃(r),

where m̃(r) ≡ m(r)
M0(r)

, lex,I = 2A(r)
μ0M0(r)

;

Form II: Hex(r) = ∇lex,II(r)∇m(r),

where lex,II = 2A(r)
μ0M

2
0 (r)

.

(35)

We can also add to this list the exchange field in Form III,
which is derived directly from the exchange energy func-
tional (28) (independent of the form which will be used)
under assumption of the homogeneous material, that is,
when the space dependence of A and M0 is not taken into
account during calculations of a functional derivative (30)

Form III: Hex(r) = lex,I(r)
M0(r)

∇2m(r). (36)

From the parameters introduced just above: lex,I and lex,II,
only the second one (i.e., from Form II) has an additional
physical meaning; that is, its square root defines the exchange
length [3]. (In Form III the coefficient in the exchange field is
the same as in Form II, but M0 was excluded from new para-
meter due to simplification in the latter calculus, see (42).)

It is worth to note at this moment that differential
operators in the definition of the exchange field, (35)-(36),
work on dynamical components of the magnetization vector,
m(r) in Forms II and III, while on its normalized function in
Form I, m̃(r). This will make different equations and should
be kept in mind during the interpretation of the eigenvectors
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Figure 2: Structure of a 1D MC (a) and 2D MC (b) considered in this manuscript. 2D MC is formed by cylindrical dots A arranged in a
square lattice immersed into a ferromagnetic matrix B. The external magnetic field H0 is applied in the direction of the z-axis. Spin waves
are assumed to form standing waves in the infinite (y, z) plane or along y axis in (b) and (a), respectively. The thickness of MCs, d, is much
smaller than the lattice constant a and the diameter of dots, 2R or width of stripes aA.

found in PWM and boundary conditions implemented in
the exchange field definitions.

Those three different formulas for the exchange field will
be investigated for the calculation of the magnonic band
structure in thin plates of 1D and 2D Mcs with PWM.

3. Plane Wave Method

The PWM is a useful tool used for study systems with dis-
crete translational symmetry, including electronic, photonic,
phononic and magnonic crystals [24, 27, 28, 60–66]. This
method can be applied to any type of lattice and various
shapes of scattering centers. The method is being constantly
improved, with its field of application extending to new
problems also in magnonic field [67]. Recently, the PWM
has been used for the calculation of the SW spectra of 1D
and 2D MCs of finite thickness [68, 69], and the magnonic
spectra of thin films of 2D antidot lattices (ADLs) based on
a square lattice [70, 71]. The PWM gives also a possibility
for calculations of the surface effects and defect states but
this requires so-called supercell formulation. The PWM in
the supercell formulations was recently used to study the
surface and defect influence on magnonic spectra in 2D MCs
[69, 72]. For completeness we will briefly outline the PWM
and explain the approximations used in this method.

We will consider slabs of 1D or 2D MCs (Figure 2) where
the dynamics of the magnetization vector M(r, t) can be
described by the LL equation as follows:

∂M(r, t)
∂t

= −γμ0[M(r, t)×Heff(r, t)] +
ξ

MS

[
M× ∂M

∂t

]
,

(37)

where γ is the gyromagnetic ratio, μ0 is permeability of
vacuum; as in the case of free electrons, we will assume
γμ0 = 2.21 × 105 m(A s)−1. t is a time, the last term on the
right describes relaxation with dimensionless damping factor
ξ. The damping will be neglected in this study, while an
application of the PWM for calculation of the time life of
SWs in 2D MCs can be found in [67]. Heff is an effective

magnetic field, which in our study will consist of three com-
ponents:

Heff(r, t) = H0 + Hms(r, t) + Hex(r, t). (38)

H0 is a homogeneous in space and directed along the z-axis
bias magnetic field, Hex(r, t) is an exchange field; its proper
definitions were derived in preceding section in (35).
Hms(r, t) is the demagnetizing field. In the magnetostatic
approximation (with retardation effects neglected), the de-
magnetizing field must fulfill the magnetostatic Maxwell’s
equations [59] as follows:

∇×Hms(r, t) = 0;

∇ · (Hms(r, t) + M(r, t)) = 0.
(39)

We will calculate the demagnetizing field by decomposing
this field into the static and dynamic components, Hms(r)
and hms(r, t), respectively. We will assume that the static part
will have values different from zero only in the direction of
the external magnetic field: Hms(r) = Hms(r)ẑ. The time
dependence of the dynamic component of the demagnetizing
field has the same form as that of the dynamic component of
the magnetization vector: hms(r, t) = hms(r)eiωt, ω being an
angular frequency of the SW.

In PWM calculations we shall consider a saturated mag-
netization in the whole magnonic crystal. This allows us to
use linear approximation and a global coordinate system in
which the y- and z-axes define the plane of periodicity, and
the x-axis is normal to the surface of a thin plate of the MC.
In the case of linear spin waves the component of the mag-
netization vector parallel to the static magnetic field (in
this study the static magnetic field is always assumed to be
oriented along the z-axis) is constant in time, and its mag-
nitude is much greater than that of the perpendicular com-
ponents: |m(r, t)| � Mz(r) (M(r, t) = Mz(r)ẑ + m(r, t)).
Thus, the linear approximation, introduced in the derivation
of the exchange field in the previous section, can be used
again, by neglecting all terms with squared m(r, t) and
hms(r, t) and assuming Mz ≈ M0. We will only search for
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solutions of the LL equation corresponding to monochro-
matic spin waves: m(r, t) = m(r) exp(iωt).

Using the linear approximation, we derive the following
system of equations for mx and my (and m̃x and m̃y) from
(37) for exchange field in various formulations defined in
(35). For Form I of the exchange field we get

i
ω

γμ0
m̃x(y)(r) = −(+)

[∇ · lex,I∇
]
m̃y(x)(r)

+(−)m̃y(x)(r)
(
H0 + Hms,z

)−(+)M0h̃ms,y(x)(r),
(40)

for Form II:

i
ω

γμ0
mx(y)(r) = −(+)M0

[∇ · lex,II∇
]
my(x)(r)

+(−)my(x)(r)
(
H0 + Hms,z

)−(+)M0hms,y(x)(r)
(41)

and for Form III:

i
ω

γμ0
mx(y)(r) = −(+)lex,I∇2my(x)(r)

+(−)my(x)(r)
(
H0 + Hms,z

)−(+)M0hms,y(x)(r).
(42)

In (40) we introduce h̃ms,y(x)(r), which is a value of the
demagnetizing field normalized to the saturation magneti-
zation, M0. The formula for normalized demagnetizing field
is obtained under the same approximations as used in the
derivation of the exchange field and will have the same
expression as hms,y(r).

In MCs the material parameters, namely, A and M0, are
periodic functions of the in-plane position vector r = (y, z)
for 2D MC (r = (y, 0) for 1D MC), with a period equal to
the lattice vector a (a) as follows:

M0(r + a) =M0(r), A(r + a) = A(r). (43)

Also parameters used in formulas for the exchange field,
lex,I(r) and lex,II(r), fulfill the same relation. In MCs com-
posed of two materials each of these material parameters can
be expressed by two terms: M0,A, M0,B and AA, AB, repre-
senting its respective values in each constituent material. The
lattice vector a in a square lattice is any superposition of two
primitive vectors: a1 = aẑ, a2 = aŷ with integer coefficients,
where a is the lattice constant (see Figure 2(b)).

To solve the LL equation we will use Bloch’s theorem,
which asserts that a solution of a differential equation with
periodic coefficients can be represented as a product of a
plane-wave envelope function and a periodic function. For
dynamical components of the magnetization vector and its
normalized values, those are

m(r) =
∑

G

mq(G)ei(q+G)·r,

m̃(r) =
∑

G

m̃q(G)ei(q+G)·r,
(44)

respectively. For 2D MCs G = (Gy ,Gz) denotes a reciprocal
lattice vector of the structure considered; in the case of square
lattice G = (2π/a)(ny ,nz), ny and nz are integers. The
Bloch wave vector q = (qy , qz) refers to those spin waves
which according to Bloch’s theorem can be limited to the
first Brillouin zone (1BZ). For 1D MCs, G = (Gy , 0) =
((2π/a)ny , 0) and q = (qy , 0).

In the next step we perform the Fourier transformation
to map the periodic functions MS, lex,I, and lex,II in (40)-(41)
onto the reciprocal space. The transformation formulas are
as follow:

M0(r) =
∑

G

M0(G)eiG·r,

lex,I(r) =
∑

G

lex,I(G)eiG·r,

lex,II(r) =
∑

G

lex,II(G)eiG·r.

(45)

In the case of cylindrical dots in 2D MC and stripes in 1D
MC, the Fourier components of the saturation magnetiza-
tion MS(G) and the exchange parameters, lex,I(G), lex,II(G),
can be calculated analytically. The formula for the saturation
magnetization in 2D MC reads as follows:

M0(G) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
M0,A −M0,B

)πR2

a2
+ M0,B, for G = 0,

(
M0,A −M0,B

)
2
πR2

a2

J1(GR)
GR

, for G /= 0,

(46)

where J1 is a Bessel function of the first kind, R is a radius of a
dot. G is the length of a reciprocal wave vector G. For stripes
in 1D MC with lattice constant a, M0(G) has the following
form:

M0(G) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
M0,A −M0,B

)aA
a

+ MS,B, for G = 0,

(
M0,A −M0,B

)
2
aA
a

sinGaA/2
GaA/2

, for G /= 0,

(47)

where aA is the width of the stripe of material A. The for-
mulas for other periodic functions of the position vector, that
is, lex,I(G) and lex,II(G) have the same form.

We need formulas for the static and dynamic demagne-
tizing fields, Hms,z(r, x), hms,x(r, x), and hms,y(r, x), to finalize
the procedure, in which an eigenvalue problem in the recip-
rocal space is derived from LL equation. According to the
ideas presented in [73], for a slab of a 2D magnonic crystal
with a uniform magnetization Maxwell’s equations can be
solved in the magnetostatic approximation with appropriate
electromagnetic BCs at both surfaces of the slab, that is,
at x = −d/2 and x = d/2. Those BCs are a continuity of
the tangential components of the magnetic field vector and a
normal component of the magnetic induction vector. For the
considered structure, infinite in the (y, z) plane, analytical
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solutions in the form of Fourier series can be obtained for
both the static and dynamic demagnetizing fields [68, 70] as
follows:

Hms,z(r, x) = −
∑

G

Ms(G)
G2

G2
z

(
1− cosh(|G|x)e−|G|d/2

)
eiG·r;

(48)

hms,y(r, x) =−
∑

G

my(G)
∣∣q + G

∣∣2

(
qy + Gy

)2

×
(

1− cosh
(∣∣q + G

∣∣x
)
e−|q+G|d/2

)
ei(q+G)·r;

(49)

hms,x(r, x) = −
∑

G

mx(G) cosh
(∣∣q + G

∣∣x
)
e−|q+G|d/2ei(q+G)·r.

(50)

Similarly to the static component of the demagnetizing
field, we take into account dynamical magnetostatic field
components which depend on the same component of the
magnetization vector, only. Represented in the reciprocal
space for the in-plane components, these formulas for the
demagnetizing fields are x dependent, that is, vary with posi-
tion across the thickness of the slab. However, when the slab
is thin enough (which is the case of the discussed MC, with
d = 30 nm), the nonuniformity of the demagnetizing fields
across its thickness can be neglected, and the respective field
values calculated from (48)–(50) for x = 0 can be used in the
PWM calculations.

The substitution of the (44)–(50) into (41)-(42) leads to
an algebraic eigenvalue problem with eigenvalues iω/γμ0H0

as follows:

M̂Λmq,Λ = i
ω

γμ0H0
mq,Λ, (51)

where Λ takes the values I, II, or III in dependence on which
form of the exchange field is derived for. The eigenvector
mT

q,Λ = [mx,q(G1), . . . ,mx,q(GN ),my,q(G1), . . . ,my,q(GN )]

for Λ equal II or III, and mT
q,I = [m̃x,q(G1), . . . , m̃x,q(GN ),

m̃y,q(G1), . . . , m̃y,q(GN )] when a finite number N of recip-
rocal lattice vectors is used in the Fourier series (44) and
(45). For each form of the exchange field, the elements of the
matrix M̂Λ of the eigenvalue problem (51) can be written in
a block-matrix form as follows:

M̂Λ =
⎛
⎝
M̂xx

Λ M̂
xy
Λ

M̂
yx
Λ M̂

yy
Λ

⎞
⎠. (52)

The submatrices in (52) for the exchange field in different
forms are defined as follows:

M̂xx
i j = M̂

yy
i j = 0,

M̂
xy
i j = δi j + Mex,Λ

i, j +

(
qy + Gy, j

)2

H0

∣∣∣q + G j

∣∣∣
2

×
(

1− C
(

q + G j , x
))

MS

(
Gi −G j

)

−
(
Gz,i −Gz, j

)2

H0

∣∣∣Gi −G j

∣∣∣
2 MS

(
Gi −G j

)(
1− C

(
Gi −G j , x

))
,

M̂
xy
i j =− δi j −Mex,Λ

i, j − 1
H0

C
(

q + G j , x
)
MS

(
Gi −G j

)

+

(
Gz,i −Gz, j

)2

H0

∣∣∣Gi −G j

∣∣∣
2 MS

(
Gi −G j

)(
1− C

(
Gi −G j , x

))
,

(53)

where indexes of reciprocal lattice vectors i, j, l are integers
which number reciprocal lattice vectors. The additional
function used in above equations is defined as follows:

C
(

q, x
) = cosh

(∣∣q
∣∣x
)
e−|q|d/2. (54)

Matrix elements connected with the exchange field, Mex,Λ
i, j ,

depend on definition used. These elements are as follow:

Mex,I
i, j =

(
q + G j

)
· (q + Gi

)

H0
l2ex,I

(
Gi −G j

)
,

Mex,II
i, j =

∑

l

(
q + G j

)
· (q + Gl

)

H0
l2ex,II

(
Gl −G j

)
MS(Gi −Gl),

Mex,III
i, j =

(
q + G j

)2

H0
l2ex,I

(
Gi −G j

)
,

(55)

for Forms I, II, and III, respectively.
We solve the system of (51) by standard numerical

procedures designed for solving complex matrix eigenvalue
problems. All the eigenvalues found by these procedures
must be tested for convergence though. A satisfactory con-
vergence of numerical solutions of (51) for all the structures
considered proves to be assured by the use of 625 and 161
reciprocal lattice vectors for 2D and 1D MC, respectively.

All three forms of the exchange field were used in
literature in calculations of the magnonic band structure in
MCs, but to our best knowledge there is missed their detailed
derivations, and in this paper we would like to fill this gap.
In the first paper devoted to MCs by Vasseur et al. [27], the
exchange field in the form similar to Form I was postulated.
The only difference is that the eigenvector is related to the
dynamical component of the magnetization vector m instead
its normalized value m̃. The same form of the Hex was used



Advances in Condensed Matter Physics 9

also in other papers, for example, [67, 72, 74–76] without the
derivation of its form and with the dynamical components of
the magnetization vector used instead its normalized value.
Of course this different definition of the eigenvectors does
not influence the dispersion of spin waves found in calcu-
lations (i.e., eigenvalues) but change only the interpretation
of eigenvectors. In papers [62, 63] another definition of the
exchange field, that is, Form II with additional surface term,
was used, and a detailed analysis of the results obtained
with both formulations was presented for infinite 2D and
3D MCs. The additional component introduced in the LL
equation is related to the interface anisotropy as was pointed
out in the appendix of [28]. In fact this interface term can
be obtained from last two terms in the exchange field defined
in (25) and neglected in this study. The strict Form II of the
exchange field, for the first time probably, was used by Mills
in [9] where he derived the corrected Hoffman boundary
conditions. In our recent papers [28, 68, 69], we used Form
II for the calculations of the SW spectra in thin films of
1D and 2D MCs. The Form III of the exchange field, that
is, characteristic for uniform materials, was also used for
calculations of the magnonic band structure in magnetic
stripes coupled by dynamic dipole interactions, [77]. Below
the influence of different definitions of the exchange field
on the magnonic band structure in planar MCs will be
investigated.

4. Magnonic Spectra versus Formulation of Hex

In this section we will present results of our calculations
performed with PWM for three different forms of the
exchange field as defined in (35)-(36). We will present the
results for a 1D MC and a 2D MC separately.

4.1. 1D Magnonic Crystals. We chose for our study a 1D MC
consisting of Co and permalloy (Py) stripes of equal width
250 nm. The thickness of the film is 20 nm and the length
is assumed infinite. Our choice is motivated by recently
published papers presenting experimental and theoretical
results [68, 75, 76, 78, 79]. The dispersion relation of SWs
in such crystal was measured by Brillouin Light Scattering
spectroscopy and was calculated from the LL equation
using the finite-element method and the PWM. Very weak
magnetic field, μH0 = 0.001 T, is applied along the stripes.

We assume values of material parameters (spontaneous
magnetization and exchange constant for cobalt and permal-
loy) equal to those presented in the experimental paper [75].
It is for cobalt: M0,Co = 1.15·106 A/m, ACo = 2.88·10−11 J/m
and for permalloy: M0,Py = 0.658 · 106 A/m, APy = 1.1 ·
10−11 J/m. For the gyromagnetic ratio, we assume average
value proposed in [75], γ = 194.6 GHz/T, that is, the same
for cobalt and permalloy. Three types of lines in Figure 3
represent the results of our calculations with the PWM for
three different formulations of the exchange field taken from
(35)-(36).

The dispersion relations calculated with the three dif-
ferent forms of the exchange field are overlapping almost
perfectly (see Figure 3). It means that the effect of exchange
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Figure 3: Magnonic band structures calculated for three different
definitions of the exchange field (as defined in (35)-(36)) for a thin
slab of the considered 1D MC. The structure of the MC is schem-
atically shown in the inset; stripes of Co and Py with the same width
are arranged periodically with the lattice constant 500 nm. Very
weak external magnetic field, μ0H0 = 0.001 T, is directed along
stripes. The magnetostatic interaction determine, the magnonic
band structure—the definition of the Hex is unimportant.

interactions between Co and Py is minor or even negligible
for this structure. It is because the magnetostatic interactions
dominate over the exchange interactions for large lattice
constant.

To observe effects connected with various definitions of
the exchange field in nonuniform materials, the decrease of
the role of magnetostatic interaction is necessary. This can be
done by decreasing a lattice constant. In Figure 4 we show the
magnonic band structure for the 1D MC with 30 nm lattice
constant and 15 nm width of Co and Py stripes. We change
also the film thickness to 4 nm. The rest of parameters are the
same as in previous calculation.

The differences connected with various definition of the
exchange field start to be visible already near the BZ border
and for higher modes also at the BZ center. The most
essential difference can be observed between SW dispersions
calculated according to Form I and Forms II and III. For the
Form I (dashed line), the magnonic gap is absent between 1st
and 2nd band, while for the other two formulations of Hex

the gap exists.
In Figures 4(b) and 4(c) the profiles of dynamical magne-

tization and its first derivatives with respect to y are shown
for three lowest modes. The profiles are very similar for all
three forms of the exchange field. The shift of the 3rd profile
along y-axis for Form I of the exchange field with respect to
other two can be observed. In the inset in Figure 4(c), we can
see also a discontinuity of the ∂m/∂y for the form I and II.
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Figure 4: Magnonic band structure and profiles of SWs calculated for three different definitions of the exchange field for the 1D MC with
the lattice constant of 30 nm and thickness 4 nm (schematically shown in the inset)—for the case of dominating exchange interaction. (a)
Magnonic band structure with the Brillouin zone border marked by dashed gray line. In (b) an amplitude of the dynamical component of
the magnetization vector, mx at the border of the 1st Brillouin zone is shown. Its first derivative with respect to the y is shown in (c).

The biggest one is observed for SWs calculated with Form I
of the exchange field.

4.2. 2D Magnonic Crystals. Let us consider a thin film of
a 2D MC composed of ferromagnetic circular dots in the
square lattice and immersed in other ferromagnetic material.
First, we will calculate the SW spectrum for Co dots in Py
matrix in the exchange interaction dominating regime. This
is obtained by assuming small lattice constant a = 30 nm and
thickness d = 4 nm. We chose the dot diameter of 14 nm. The
magnonic band structure along y-axis (i.e., perpendicular to
the direction of bias magnetic field), and profiles of spin-
waves are shown in Figures 5(a) and 5(b), respectively. The
bias magnetic field is directed along the z-axis, and it is strong
enough to saturate the sample μ0H0 = 0.2 T.

We observed similar dependences as for the case of 1D
MC in Figure 4. For the Forms II and III of the exchange field
magnonic gaps (at least partial) exist, while for the Form I the
bands overlap. We found also differences in the SW profiles,
especially for modes with higher frequencies.

4.3. Boundary Conditions. We discussed so far PWM results
for various definitions of the exchange field performed for
MC consisting of two materials: Co and Py only. We showed
also that the different expressions for the exchange field are
important only for small lattice constant. In Figures 6(a) and
6(b) we show the magnonic band structure for a 1D and

2D MC, respectively, formed by Fe and yttrium iron garnet
(YIG). We chose Fe and YIG because those materials have
very different magnetization and exchange constants, which
are MS,Fe = 1.752 · 106 A/m, AFe = 2.1 · 10−11 J/m, MS,YIG =
0.194 · 106 A/m, and AYIG = 0.4 · 10−11 J/m. The struc-
ture of the MCs is the same as in previous studies: the lattice
constant 30 nm and the film thickness 4 nm for 1D MC and
a = 30 nm, R = 7 nm, thickness 4 nm for 2D MC. We found
that the magnonic gap (between 1st and 2nd band) exist in
all band structures, also this calculated with Form I. For the
1D MC there is a big difference between the magnonic bands
and the gap width calculated with Form II of the exchange
field and other two forms. It is interesting to note that at Γ
point there is good agreement between various formulations
of Hex. In 2D MC the magnonic band structure is more
complicated, gaps are smaller than for 1D but exist for all
expressions of the exchange field.

Now we can try to answer the question for the physical
reasons of different solutions found with From I, II and III of
the exchange field. We have seen significantly different results
obtained from Form II, and Form I for Co/Py MC, while the
solutions obtained from Forms II and III are close to each
other. It is different to Fe/YIG MC where the solution for
Form III is much closer to the solution of Form I. Those
effects shall be related to BCs for dynamic components of the
magnetization vector implemented in various formulations.
We can obtain the BC implemented in the differential
equation, in our case LL equation, by integrating them over
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Figure 5: (a) Magnonic band structure calculated for three different definitions of the exchange field for 2D MC. The MC is composed of
Co dots in square lattice and immersed in Py matrix. The film has a thickness of 4 nm, the lattice constant is 30 nm, and diameter of dots is
14 nm. (b) Modulus of the dynamical component of the magnetization vector calculated for the wave vector from the center of the BZ. The
profiles shown are calculated for Form II and Form I of the exchange field.

the interface [9, 14, 27]. Because we are focusing on the
exchange BCs, it is enough for the purpose of this study to
take only terms connected with the exchange field in (41)-
(42). By performing those integrations and taking a limit of
a zero thickness, one can obtain the conditions of continuity
of m for Forms II and III, and continuity of the m̃ for Form I.
At this point the difference between calculations performed
in [27] and with Form I appears. In [27] the continuity of m
was cast on while here is continuity of its normalized value m̃.
Also the second BC is obtained, that is, continuity of terms
proportional to the first derivative of the dynamical compo-
nent of the magnetization vector with respect to the normal
to the interface. One can find that this BC requires the conti-
nuity of l2ex,2∂nm̃, l2ex,II∂nm, and ∂nm for the exchange field in
Forms I, II, and III, respectively. ∂n means the derivative
along the direction normal to the interface. Those boundary
conditions agree with the profiles and its first derivatives
found for 1D MC and shown in Figures 4(b) and 4(c),

respectively (see also the inset in Figure 4(c) for the 2nd
mode). The continuity of the first derivative at the interface is
observed only for Form III, as expected. However, to validate
which form of the exchange field is proper one and which
describe properly the real physical system is out of scope
of this paper. In the literature various boundary conditions
were used, for example, [6–14], but the discussion under
possibility for implementing them in effective continuous
models is only at the beginning stage, and further investiga-
tion is required.

5. Conclusions

We presented derivations of the two different expressions
for the exchange field used in literature for SW calculations
in magnonic crystals with pointing at the surface terms
neglected in each case. We compared these formulas with the
definition of the exchange field used for SW calculations in
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Figure 6: Magnonic band structure calculated for various forms of the exchange field. MCs composed of Fe and YIG were studied with
a periodicity in (a) 1D and (b) 2D. The lattice constant is 30 nm and the film thickness 4 nm in both cases. The external magnetic field is
applied along z-axis and has the value almost 0 for 1D MC and 0.1 T for 2D MC.

a uniform ferromagnetic material. Numerical calculations
with PWM were performed to study the influence of these
different expressions on the magnonic band structure and
profiles of SWs in 1D and 2D planar magnonic crystals. We
found that for a large lattice constant the magnonic band
structure is independent of the formulation used. It is
because the magnetostatic interaction dominates over the
exchange one. The situation changed for small lattice con-
stants where in dependence on the form of the exchange field
used in calculations the magnonic gap can be present or
absent in magnonic band structure. By numerical calcula-
tions we showed that various formulations of the exchange
field have strong relation to the boundary conditions at the
interfaces between two ferromagnetic materials. Further
investigation is necessary to elucidate the proper form of the
exchange field which fulfill the physical boundary conditions
on interfaces imposed on dynamic components of the mag-
netization vector in magnonic crystals.
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