
© 2017 Arodola and Soliman. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php  
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Drug Design, Development and Therapy 2017:11 2551–2564

Drug Design, Development and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
2551

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/DDDT.S126344

Quantum mechanics implementation in drug-
design workflows: does it really help?

Olayide A Arodola1

Mahmoud eS Soliman1,2

1Department of Pharmaceutical 
Chemistry, University of KwaZulu-
Natal, Durban, South Africa; 
2Department of Pharmaceutical 
Organic Chemistry, Faculty of 
Pharmacy, Zagazig University, egypt

Abstract: The pharmaceutical industry is progressively operating in an era where development 

costs are constantly under pressure, higher percentages of drugs are demanded, and the drug-

discovery process is a trial-and-error run. The profit that flows in with the discovery of new 

drugs has always been the motivation for the industry to keep up the pace and keep abreast 

with the endless demand for medicines. The process of finding a molecule that binds to the 

target protein using in silico tools has made computational chemistry a valuable tool in drug 

discovery in both academic research and pharmaceutical industry. However, the complexity of 

many protein–ligand interactions challenges the accuracy and efficiency of the commonly used 

empirical methods. The usefulness of quantum mechanics (QM) in drug–protein interaction 

cannot be overemphasized; however, this approach has little significance in some empirical 

methods. In this review, we discuss recent developments in, and application of, QM to medically 

relevant biomolecules. We critically discuss the different types of QM-based methods and 

their proposed application to incorporating them into drug-design and -discovery workflows 

while trying to answer a critical question: are QM-based methods of real help in drug-design 

and -discovery research and industry?

Keywords: quantum mechanics, drug discovery, drug design, molecular mechanics, molecular 

dynamics, in silico tools

Introduction
Drug discovery plays an important role in the growth of any pharmaceutical company 

and society, as newer and safer drugs are launched in the market with the sole objective 

of improving the therapeutic value and safety of drugs. The pharmaceutical industry 

has consistently shown that it can discover and develop innovative medicines for a 

wide range of diseases.1

Drug research, as it is called today, began when chemistry had reached the peak of 

its career, allowing chemical principles and theories to be applied to problems outside 

the scope of chemistry, and when pharmacology became an independent scientific 

discipline on its own. By 1870, some of the important foundations of chemistry theory 

had been laid.2,3 In the twentieth century, biochemistry had remarkable influence on 

drug research in numerous ways (Table 1). It was during this period that the concept 

of targeting enzymes and designing drugs as inhibitors came into existence.4 However, 

the current drug-discovery process is very time consuming and expensive and can take 

up to 12–16 years of exhaustive research, huge financial investment, and clinical trials 

before a molecule can be recognized as a drug (Figure 1).5

Despite the diverse research and development (R&D) approaches adopted by 

pharmaceutical companies, the attrition rate is inadmissibly high. One of the factors 

contributing to the high attrition rates is an active compound with unacceptable 
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absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) adverse effects that thus needs to be withdrawn 

from development. This factor represents approximately 50% 

of all costly failures in drug development,6 and it has become 

widely appreciated that these areas should be considered as 

early as possible in the drug-discovery process.7,8 It is evident 

that the pitfall in the current drug-discovery process urges an 

unconventional approach, which would not only truncate the 

R&D time but also reduce the cost involved.9

The process of finding a molecule that binds to the 

target protein has now moved from the laboratory to the 

computer.10 Years ago, drug design (DD) substantially 

extended its range of applications from target identification 

to clinical trials.11 Computer-generated models, which serve 

as good predictive models for the evaluation of biological 

activities, have had numerous successes predicting the pos-

sible structures of biological targets, thus reducing fruitless 

effort using nuclear magnetic resonance and spectroscopy-

structure elucidations.12 With in silico tools, it is possible 

to accelerate the drug-discovery process by modeling the 

most relevant ADMET properties.12 A molecule could 

be too toxic, too quickly eliminated from the body, pos-

sess fast metabolic reaction, unstable, too challenging to 

synthesize in large volume, or too expensive to produce. 

Therefore, many promising compounds will regrettably 

have to be rejected once they are found to show unacceptable 

adverse effects in humans. Furthermore, compared to the 

status a decade ago, protein structure-based DD is swiftly 

gathering energy, and results have shown a remarkable 

increase in the structural knowledge of medically relevant 

proteins through various methods,13–18 as well as computer-

aided programs. The large number of structural studies on 

medically relevant proteins suggests that the structure of 

a potential drug target is treasurable knowledge for any 

pharmaceutical company, not only for lead discovery and 

lead optimization but also in the later stages of drug devel-

opment, where such concerns as toxicity, bioavailability, 

and binding modes of potential drug candidates to the target 

protein are extremely important.

A drug reveals its action when it binds to its 

biological target (enzyme, nucleic acid, or antibody), 

typically receptors. Receptors possess the active sites for 

the binding of a drug. Therefore, it is important to know 

the structure of the target, in order to design a good drug 

and identify an accurate binding site. In DD, predicting 

drug–receptor interactions involves the development of 

pharmacophore-based and molecular docking/scoring tech-

niques. However, some biologically relevant biomolecules 

lack X-ray crystal structures. To resolve this, homology 

modeling has been implemented,19 and modeled proteins 

behave somewhat like the real proteins in their native 

biological environment when simulated.20 Recently, many 

computer-assisted models have been developed, and several 

thousand candidates are being screened for various activi-

ties using these models. The methods of choice for activity 

Table 1 Some of the important discoveries in medicine in the 
last two centuries

Year of 
discovery

Drug name Category

1 1806 Morphine Hypnotic agent
2 1899 Aspirin Analgesic and antipyretic agent
3 1922 insulin Antidiabetic agent
4 1928 Penicillin Antibiotic
5 1960 Chlordiazepoxide Tranquilizer
6 1971 l-Dopa Anti-Parkinson agent
7 1987 Artemisinin Antimalaria agent
8 1998 Sildenafil erectile dysfunctional treatment
9 1999 Celecoxib, rofecoxib Selective COX-2 inhibitors
10 1999 Zanamivir, oseltamivir Anti-influenza drugs
11 2001 imatinib Leukemia treatment

Figure 1 Flowchart of drug-discovery and -development process.
Abbreviations: DOS, diversity-oriented synthesis; combichem, combinatorial 
chemistry; FDA, Food and Drug Administration (US).
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screening using these models are computer programs that 

superimpose molecules with flexible alignment to develop 

pharmacophoric patterns and/or quantitative structure–

activity relationships (QSARs), dock molecules to the 

receptor or a pseudoreceptor, or construct new drugs within 

a predefined active site.21,22 Different molecular properties 

(eg, electrostatic, steric, and hydrophobic) and hydrogen 

bond-acceptor and donor fields have been used to achieve 

this purpose.23 Computational studies of biological targets 

allow the study of their structure, function, and dynamics at 

molecular and atomic levels. The entire process is about the 

simulation of the biological targets using quantum mechan-

ics (QM) calculation, which is based on the principles of 

chemistry and physics.

In this review, we discuss how the implementation of 

QM methods in academic and pharmaceutical companies’ 

research can be a useful tool in the elucidation of drug–target 

interactions, which will help DD and drug development with 

respect to accuracy, time, and cost.

Computer-aided drug-design 
(CADD) approaches
CADD is aimed at improving the development and efficacy 

of drugs using modern computational tools that are fast and 

cost-effective compared to conventional methods.24–26 The 

development of drugs that bind to specific targets has been 

recognized by the pharmaceutical industry as an important 

foundation that provides it with the necessary return on 

investment to invest in further R&D, leading to a discovery-

and-development cycle.27 Broadly speaking, DD is divided 

into two areas: structure-based DD (SBDD) and ligand-based 

DD (Figure 2).

The CADD approach has been applied to various suc-

cessful drugs, some of which are in use in the market. 

Examples include imatinib28 and nilotinib.29 Several other 

targets include ER,30,31 EGFR,32,33 PKCβ
2
,34 and BCR-Abl.35 

A biomolecular system can be simulated using molecular 

mechanics (MM), QM, or a hybrid method (QM/MM), 

depending on the research problem to be answered.

Molecular mechanics
MM is commonly applied in large systems to calculate 

molecular structures and relative potential energies of a 

molecular conformation or atom arrangement.36–38 The 

electrons in the studied system are not explicitly considered, 

but instead each atom – specifically, the atomic nucleus 

and the associated electrons – is treated as a single particle. 

The exclusion of electrons in MM is justified on the basis 

Figure 2 Different in silico tools used in drug design.
Abbreviations: QSAR, quantitative structure–activity relationship; SBvS, structure-based virtual screening; LBvS, ligand-based virtual screening; CoMFA, comparative 
molecular field analysis; CoMSIA, comparative molecular similarity index analysis; HQSAR, hologram quantitative structure–activity relationship.
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of Born–Oppenheimer approximation,39 which states that 

electronic and nuclear motions can be uncoupled from each 

other and considered separately. Energy differences between 

conformations are significant in such calculations, rather than 

absolute values of potential energies.

MM can simply be viewed as a ball-and-spring model of 

atoms and molecules with classical forces between them.40 

Such forces are accounted by potential energy functions 

with respect to such structural features as bond length, bond 

angles, and torsional angles. Potential energy functions are 

equipped with parameters designed to reproduce experimental 

properties.37 The MM or rather the total potential energy of a 

molecule is described as the sum of bond-stretching energy 

(E
str

), bond angle-bending energy (E
bend

), torsion energy 

(E
tor

), and energy of interactions among unbound atoms (E
nb

). 

Energy contributions of the latter constitute van der Waals 

and electrostatic interactions:
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where E
tot

 is total potential energy, stretch terms refer to E
str

, 

bend terms refer to bond angle-bending energy E
bend

, torsional 

terms refer to E
tor

 or twisting energy, and unbound interactions 

are van der Waals forces and electrostatic forces between 

atoms that are not chemically bonded. Energy contributions 

from special treatment of hydrogen bonding and stretch–bend 

coupling interactions may also be seen in MM.

Quantum mechanics 
The QM method treats molecules as collections of nuclei 

and electrons without any reference to “chemical bonds”. 

QM is important in understanding the behavior of systems 

at the atomic level. QM methods apply the laws of QM to 

approximate the wave function and to solve the Schrödinger 

equation.36,41 The solution to the Schrödinger equation is in 

terms of the motions of electrons, which in turn lead directly 

to molecular structure and energy among other observables, 

as well as to information about bonding. However, the 

Schrödinger equation cannot actually be solved for any but 

a one-electron system (the hydrogen atom), and approxi-

mations need to be made. According to QM, an electron 

bound to an atom cannot possess any arbitrary energy or 

occupy any position in space. These characteristics can be 

determined by solving the time-independent Schrödinger 

equation:42,43

 H = T + V 

where H is the Hamiltonian operator (sum of kinetic energy), 

T the potential energy, and V the operator. H can also be 

defined as:
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QM methods include ab initio44 density functional theory 

(DFT)45–47 and semiempirical calculations.48–50 For more accu-

rate QM calculations, electron correlation methods, namely, 

CCSDT and MP2, etc, are necessary.46 DFT methods conduct 

calculations by electron correlation approximation.46,47,51 

These methods can be employed to calculate crucial proper-

ties of a system such as vibrational frequencies, equilibrium 

molecular structure, dipole moments and free energy of reac-

tion, which cannot be achieved by experimental methods.36 

They also help to identify the activated complex when applied 

to reacting chemical species and therefore in the identification 

of a reaction pathway. Since the Schrödinger equation cannot 

be solved for complex molecular systems, semiempirical 

ab initio DFT methods were developed to approximate the 

precise QM solution to the problem.36,46,52 QM models are the 

most accurate, but also the most expensive methods in terms 

of time and computational resources, and are thus applied 

on small systems.

Classical mechanics or QM – which  
to choose?
Classical mechanics, also called MM, is the alternative to 

QM when chemical reactions do not need to be considered 

in a simulation. MM does not start from an “exact theory” 

(the Schrödinger equation), but rather describes molecules 

in terms of “bonded atoms”, which have been distorted from 

some idealized geometry due to unbound van der Waals 

and Columbic interactions. Though MM does not solve the 

Schrödinger equation for electron motions, it requires an 

explicit description of chemical bonding and lots of infor-

mation about the structures of molecules. It is the use and 

extent of this information that distinguishes different MM 

models.53–56 While many of the details of mechanical and 

biochemical interactions in enzymes are currently unclear, 

MM can rely on force fields with fixed parameters to provide 

better understanding of conformational analysis between 
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conformers,57 mechanical deformation of DNA, RNA, 

and proteins, and changes in cellular structure, response, 

and function.58 This understanding can offer new prognoses 

of diseases, as MM calculations are used to provide qualita-

tive descriptions of molecular interactions.

QM has been said to succeed outstandingly in the area 

where MM failed. In contrast to QM, MM ignores electrons, 

fails to illustrate reality, and also computes the energy 

of a system as only a function of the nuclear positions. 

Generally, QM incorporates four phenomena for which 

MM cannot justify. These include quantization of some 

physical properties, quantum entanglement, the principle 

of uncertainty, and wave–particle duality. QM is applied 

in the determination of interactions between possible drugs 

and enzyme active sites.59–65 It is slow but accurate with 

respect to DD. In spite of the advantages of MM, it has 

some setbacks, such as inappropriate parameterization, 

inability to predict chemical reactions, or explain bond 

breaking/formation.66–70

QM in CADD arena
In answering research questions, computational chemists 

have a vast selection of methodologies at their disposal. The 

key tools available belong to six all-encompassing classes: 

molecular dynamic (MD) simulation, MM, QM, ab initio calcu-

lations, DFT, and semiempirical calculations. MM can be used 

to study very large molecules, because other QM methods, such 

as semiempirical calculations, ab initio, and DFT are relatively 

slow and would exhaust computational resources. However, 

MM methods are unable to address interactions between the 

ligand and the receptor in metal-containing systems.

Such algorithms as hybrid QM/MM, which combine 

QM and MM, have been developed to limit issues brought 

about by the individual application of these methods.71–74 

QM methods are the most accurate, but also computationally 

expensive and time-consuming calculations.75 QM calcula-

tions are employed in semiempirical methods (eg, AM1, 

PM3) only for valence electrons in the system, whereas for 

other electrons and atomic nuclei behavior of other atoms, 

approximations are made.75 Combined QM-MM methods 

provide the accuracy of a QM description with low compu-

tational cost of MM.71,76 Even though QM-MM may not be 

applicable in every SBDD project, the majority of important 

systems cannot be well addressed by any other computational 

methods. QM-MM is thus the crucial component in compu-

tational drug discovery.

Five key facets are imperative in planning a QM-MM cal-

culation on an enzyme: choice of the QM method, choice of 

MM force field, segregation of the system into QM and MM 

regions, simulation type (eg, MD simulation or calculation 

of potential energy profiles), and whether advanced confor-

mational sampling will be performed. The choice of QM 

method is crucial. A plethora of different QM methods exists, 

ranging from fast, semiempirical methods (eg, AM1, PM3, 

SCC-DFTB; low accuracy and maximum of 2,000 atoms) 

to more accurate but more computationally expensive 

Hartree–Fock and density-functional (eg, B3LYP; medium 

accuracy and maximum of 500 atoms), and molecular orbital 

ab initio (eg, MP2, coupled cluster; very high accuracy and 

maximum of 20 atoms) methods. Not all methods are appli-

cable to all systems, for reasons of accuracy, practicality, or 

lack of parameters (eg, for semiempirical methods) (Table 2). 

Generally, but not always, improved accuracy comes at the 

price of increased calculation expenses.

Typical applications of QM in DD include calculation 

of energies and structure optimization of ligand and/or 

protein–ligand complexes,77 especially for docking studies 

to obtain the correct binding mode of a ligand.78 QM-MM 

methods have shown promise for their accurate predictions 

when employed in the calculation of binding energies; 

however, this approach still requires further sampling of 

ligand–target conformations through MD simulations.79 

QM methods have proved useful in the study of some target 

proteins, including HIV1 integrase,77 trypsin,78 West Nile 

virus NS3 serine protease, HIV1PR, and CDK2.79

The use of supercomputing to calculate QM has been 

attributed to expensive calculations for small systems. How-

ever, the use of Hadoop80 could make QM faster and more 

scalable and efficient. Hadoop could allow for better cluster 

utilization as well to accommodate larger jobs, which will 

help QM, as it needs more computational resources to run 

calculations for larger systems.

Recent QM developments in drug 
discovery
Tangible advances in the use of QM to solve relevant pharma-

ceutical problems have been seen in the last decade, eg, the use 

of the hybrid QM-MM approach to determine the free-energy 

Table 2 Accuracy of different quantum mechanics methods

Accuracy Maximum 
atoms

Semiempirical Low 2,000
Hartree–Fock and density functional Medium 500
Perturbation and variation methods High 50
Coupled cluster very high 20

 
D

ru
g 

D
es

ig
n,

 D
ev

el
op

m
en

t a
nd

 T
he

ra
py

 d
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/ b

y 
13

7.
10

8.
70

.1
3 

on
 1

5-
Ja

n-
20

20
F

or
 p

er
so

na
l u

se
 o

nl
y.

Powered by TCPDF (www.tcpdf.org)

                               1 / 1

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2017:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2556

Arodola and Soliman

landscape of the enzymatic reaction mechanism.81,82 The next 

step in the evolution of drug discovery is the routine use of 

QM in all levels of in silico DD.

SBDD is an important factor in the drug-discovery 

process, and designs more potent molecules with few altera-

tions made, ie, derivatives of “lead” molecules.83–86 In silico 

tools can be used to design molecules to investigate existing 

protein–ligand interactions, as well as explore the active site 

for any supplementary hydrophilic or hydrophobic interac-

tions that can increase binding affinity.87–89 The use of in silico 

tools allows the testing of a theory in a short time frame, using 

high-throughput empirical methods. However, there are con-

cerns regarding the accuracy of these methods, particularly 

in the area of docking and scoring90–93 and QSAR.94,95

The in silico approach is fast and environmentally 

friendly, but it does not replace experimentation. Regardless, 

failures encountered in the pharmaceutical industry at the 

drug-discovery stage can be attributed to a number of factors 

that are not limited to wrong force-field parameters, espe-

cially for metals,96 disregard for protein flexibility97,98 or 

domain of applicability,99 or nonrigorous validation of the 

QSAR model.100,101

QM, a method used to replicate an experimental work 

accurately, proffers a potential solution to the failures 

mentioned.88,102 Increasingly, QM-MM methods are being 

applied to enzymes that are drug targets, often with the aim 

of providing information for DD.103–115 Examples include the 

HIV1-replication enzymes: reverse transcriptase, protease, 

and integrase. The reaction mechanisms of these enzymes 

have been studied using the QM-MM approach.116–126 Other 

examples are G-protein-coupled receptors,127–129 5-HT
4
 

receptors,130,131 design and evaluation of a novel class 

of FKBP12 ligands,132,133 and novel inhibitors of human 

DHFR.134–136 The number of accidental discoveries in 

drug history is also legion.83,137–141 Another development 

in DD research is the hybrid QM-MM method, developed 

to improve the accuracy of biomolecular simulations,71–75 

QM docking, QM virtual screening, and QM-QSAR.142,143 

The QM approach has been successfully applied in 

drug discovery in pharmaceutical companies, eg, in the 

combination of artificial intelligence and cloud comput-

ing to search molecular entities and aid in the design of 

novel drugs.144

QM in DD research: time vs accuracy
In spite of growing computational resources, simulations of 

complex biosystems at the atomic/molecular level remain 

a challenge. The application of QM is limited to relatively 

small systems (Table 2). On the other hand, MM methods 

can treat millions of atoms or more. The hybrid QM-MM 

method, which combines the accuracy of QM descriptions 

with the low computational cost of MM modeling, and other 

QM-based methods (QM docking, QM virtual screening, 

QM-QSAR) can thus offer a promising solution to the 

computational challenge in DD. In addition, a recent article 

implicitly explained that the need for suitable computational 

approaches or tools could enhance success rates in the drug-

discovery process.145

QM/MM docking method
The process of docking involves the correct prediction of 

ligand conformation and orientation within a targeted bind-

ing site, while scoring predicts the binding free energy of a 

complex formation.146 There are numerous molecular docking 

programs,147 such as Dock,148 AutoDock,149 Gold,150 Flexx,151 

Glide,152,153 ICM,147 PhDock,154 and Surflex.154 However, some 

problems have been reported in docking,155,156 which could 

be due to either posing or scoring. Each docking program is 

ideal for precise docking problems;157 however, combining 

different computational methods can improve the reliability 

and accuracy of results.158 QM is specifically useful in DD 

when the interaction of the drug involves a chemical reaction. 

As such, implementation of QM docking would systemati-

cally improve the accuracy of description of enzyme–ligand 

interactions, as well as binding affinity. Limitations in scoring 

functions are being increasingly exposed, particularly as 

more challenging and electronically complex pockets are 

being probed, eg, systems with metals.159 Cho et al160 obtained 

ligand atomic charges using a QM-MM calculation. Calcu-

lations indicated generally improved poses after docking. 

The ability of QM-MM docking has been further evaluated 

in other studies to predict the poses of metalloproteins.161,162 

Another study163 employed full QM calculation rather than 

QM-MM calculations to obtain partial charges for the 

ligand and receptor. Therefore, there appears to be evidence 

that QM-based models provide scoring functions that can 

improve the quality of predicted docking poses for chal-

lenging receptors.

QM virtual screening method
Virtual screening has become a powerful tool in the drug-

discovery process to search for novel compounds with desired 

properties.164,165 This method has found its application in 

screening of combinatorial chemistry, genomics, protein, and 

peptide libraries.166 Virtual screening involves the docking of 

selected lead molecules against a specific biological target. 
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This is followed by a scoring function.167 Virtual screening, 

which can be ligand-based168,169 or structure-based,168,170,171 

screens the library by applying Lipinski’s rule of five before 

further evaluation.172 Pharmaceutical companies rely on this 

method when searching for new novel compounds. Con-

sidering today’s computational resources, several million 

compounds can be screened in a few days on supercomputers, 

and QM could be used to evaluate binding for further drug 

development.

QM-QSAR method
QSAR is a mathematical representation that attempts to cor-

relate a set of compounds with dependent variables (activity 

values, eg, K
i
, EC

50
, ED

50
, IC

50
) and a set of independent 

variables called descriptors.173 There are various statistical 

models that are used to derive a QSAR equation,174–176 and a 

QSAR model can be 2-D, 3-D, or 4-D.177–179 Using the QSAR 

method, predicted chemical structures that possess good 

activity values need only be synthesized.180–182 QM-QSAR 

uses QM methods to develop quantum-based QSAR models.183 

Studies have provided details of QM-based descriptors used 

in QSAR programs, such as Codessa-, AM1-, and DFT-based 

descriptors, to understand the relationship between physico-

chemical properties and their descriptors.184–186

QM implementation in the 
pharmaceutical industry: 
time vs accuracy
As the ADMET properties of a drug determine its activity, the 

development of a new drug with reasonable ADMET makes 

drug discovery a more difficult and challenging process in 

the pharmaceutical industry. The pharmaceutical industry is 

progressively operating in an era where development costs 

are constantly under pressure, higher percentages of drugs 

are demanded, and the drug-discovery process is a trial-and-

error run. The profits that flow in with the discovery of new 

drugs have always been the motivation for the industry to 

keep up the pace and keep abreast with the endless demand 

for medicines.187,188

In recent years, the use of CADD to simulate drug–

receptor interactions has made rational DD feasible and 

cost-effective. in silico tools, such as docking, virtual 

screening, QSAR, molecular simulation, MM, and QM, use 

their respective mathematical equation to predict rapidly the 

binding affinities of a large library of compounds, as well 

as analyze homolytic or heterolytic fission/fusion before 

undergoing chemical (synthesis) and biological (activity) 

evaluation as a novel compound.

However, more attention should be paid to the way phar-

maceutical companies use in silico tools. While docking, 

virtual screening, QSAR, and MM manage computational 

resources and allow rapid scans of large libraries, the accuracy 

of the results is in question when it comes to experimental 

data correlation. Compared to those used in pharmaceutical 

companies, there are more efficient methods, but the cost 

with respect to computer time/resources is high when one 

has to scan a really large library of compounds. Therefore, 

using a combination of QM to parameterize the molecules 

and MM to describe and solvate the protein, a more accu-

rate understanding of binding affinity and protein–molecule 

interaction could be gained (Figure 3). If this method was 

implemented in pharmaceutical companies’ R&D, it would 

give correct binding affinities and free binding energy using 

different ligand geometries in QM-MM energy calculations. 

Figure 3 Implementation of QM in pharmaceutical companies’ drug design workflow.
Abbreviations: ADMeT, absorption, distribution, metabolism, excretion, toxicity; QM, quantum mechanics.
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Furthermore, using QSAR to predict the activity of an exis-

tent molecule may lead to remarkable savings with respect 

to development time and cost (Table 3).

Probably, most pharmaceutical companies today follow 

common technology processes for discovering drugs. These 

include cloning and expression of human receptors and 

enzymes using high-throughput, automated screening and 

the application of combinatorial chemistry.189 The field of 

combinatorial chemistry is in constant evolution. We believe 

that pharmaceutical companies rarely use accurate DD tools, 

eg, QM, in their DD, owing to the fast pace of their work. 

The use of QM is not limited to creating a computational 

model of a drug, but can also be applied to proteins, DNA, 

carbohydrates, and lipids, as well as solvent molecules that 

are involved in drug transportation, binding, and signaling.

Future perspectives
The application of QM-based approaches in guiding SBDD 

is not new. QM has featured in some medicinally relevant 

chemistry calculations in providing informative descriptors 

for QSAR and 3-D conformation for ligands. QM methods 

offer the ability to provide an accurate representation of 

ligands and proteins where MM parameterization struggles. 

QM approaches hold promise in addressing pharmacological 

problems on the time scale demanded by drug-discovery 

research. After ups and downs in the perception of CADD 

and perhaps some overhyping of its promises in drug devel-

opment, it could be said that CADD is becoming a routinely 

used component of drug discovery.

Currently, sophisticated CADD tools are typically applied 

by modeling experts, but are increasingly spreading to the 

desktops of medicinal chemists as well. Ligand poses pre-

dicted from docking to receptors, such as metalloproteins, 

have been shown to resemble experiments more closely 

when partial charges are derived from QM or QM-MM 

calculations. The use of QM and QM-MM approaches in 

computation of protein–ligand binding affinities has met with 

mixed success. However, the QM-MM approach appears 

to be of most benefit for low-resolution X-ray structures, 

where an incorrectly assigned ligand structure due to its MM 

force field is more likely. Studies demonstrate that the use 

of accurate charges, in many cases, leads to improvement 

in docking accuracy in a wide range of Protein Data Bank 

complexes. The principal uncertainty at this point is whether 

this improved performance in docking can be noticed in other 

in silico methods.

In this review, we have discussed how the implementa-

tion of QM-based methods could help the drug-discovery 

and DD process in the pharmaceutical industry. This review 

outlines the major roles played by QM in the DD workflow 

and its importance in the drug-discovery process to avoid 

“dead-end” lead compounds. This method could have strong 

impact in future drug development, because of the endless 

demand for new drugs and the short time frame pharmaceu-

tical companies have in developing them. Pharmaceutical 

companies have to reach a compromise between accuracy and 

productivity by applying QM in their research. The selection 

of the most appropriate method (MM, QM, or QM-MM) 

Table 3 Description of various QM-based methods

Approaches Description References

QM-MM MD The hybrid QM-MM method is a molecular simulation approach that combines the accuracy of QM 
to treat the region of the system where the chemical process takes place and the speed of MM 
to the rest of the system, thus allowing for the study of chemical processes in large systems. This 
approach has been applied to target proteins, such as human acethylcolinesterase,168 heme peroxidases, 
metallo-β-lactamases, α-synuclein, ligase ribozymes,169 and trypsin.170

171–181, 
199–204

QM-MM docking The accuracy of electric charges plays an important role in protein–ligand docking, which is why 
QM-MM calculations are incorporated into docking procedures. Fixed charges of ligands obtained from 
force-field parameterization are replaced by QM-MM calculations in the protein–ligand complex, treating 
only the ligand as the quantum region. This approach has been applied to target proteins, including 
F-actin,93 protein kinases,126 and metalloproteins.182

171, 
183–189, 
205–210

QM-QSAR QSAR models combined with QM-MM allow the prediction of drug ADMeT and give reliable 
information on how the modification of a compound affects or improves pharmacokinetic/
pharmacological profiles. QM-QSAR has been applied to such targets as ACE190 and cytochrome P450.191

86, 192, 193, 
211–213

QM-vS The QM-vS approach provides unprecedented accuracy in structure-based binding-energy calculations 
that enable application of QM methodologies to noncovalent interactions in systems as large as 
protein–ligand complexes and conformational ensembles. This method bridges the gap between the 
high accuracy of QM and high-volume computations (vS) in drug research and has been applied to such 
targets as Hiv1 integrase194 and butyrylcholinesterase.195

195–198, 
214–219

Abbreviations: QM, quantum mechanics; MM, molecular mechanics; MD, molecular dynamics; QSAR, quantitative structure–activity relationship; ADMeT, absorption, 
distribution, metabolism, excretion, toxicity; vS, virtual screening.
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during drug development is of extreme importance. QM 

should be applied to “lead” compounds to provide insight 

into the free-energy landscape. Most importantly, before 

embarking on CADD, it is appropriate to evaluate the diver-

sity and demand of accuracy of molecules to be designed 

in the project, which in turn dictates the most appropriate 

approach to select. It is also possible to reparameterize 

approximate methods in order to improve the accuracy of 

results in specific reactions that require numerous energy 

evaluations. A number of studies have sought to incorpo-

rate QM and QM-MM into their approaches for calculat-

ing ligand–receptor binding affinities. These approaches 

show promising results, but require further development to 

be broadly applicable. Finally, QM methods have proved 

valuable in quantitative analysis of the energetics of ligand 

deformation on binding. Although computation of binding 

energies remain a challenging and evolving area, current QM 

approaches could offer detailed information on the nature 

and relative strengths of complex active-site interaction, 

which is valuable in molecular design. It is likely that QM 

will become a more prominent tool in the repertoire of the 

computational medicinal chemist. Therefore, modern QM 

approaches will play a more direct role in informing and 

streamlining the drug-discovery process. The insight gained 

from this review could serve as a cornerstone for medicinal 

chemists, industry R&D and clinicians. This could provide 

better understanding of the in silico tools in drug design and 

development with improved ADMET, pharmacokinetics and 

the timely assessment of property profiles.
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