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The main purpose of this paper is to investigate the structure of the weighted multifrequency multiple signal classification
(MUSIC) type imaging function in order to improve the traditional MUSIC-type imaging. For this purpose, we devise a
weighted multifrequency MUSIC-type imaging function and examine a relationship between weighted multifrequency MUSIC-
type function and Bessel functions of integer order of the first kind. Some numerical results are demonstrated to support the survey.

1. Introduction

Inverse problem, which deals with the reconstruction of
cracks or thin inclusions in homogeneous material (or space)
with physical features different from space, is of interest
in a wide range of fields such as physics, engineering, and
image medical science which are closely related to human
life; refer to [1–9]. That is why inverse problem has been
established as one interesting research field. Compared to
the early studies on inverse problem in which much research
had been done theoretically, in recent studies, more practical
and applicable approaches have been undertaken and the
reconstructive way appropriate to each specific study field
started to be investigated thanks to the development of
computational science using not only computers but also
mathematical theory. As we can see through a series of papers
[10, 11], the reconstruction algorithm, based on the iterative
scheme such as Newton’s method, has been mainly studied.
Generally, in regard to algorithms using Newton’s method, in
the case of the initial shape quite different from the unknown
target, the reconstruction of material leads to failure with the
nonconvergence or yields faulty shapes even after the iterative
methods are conducted. Hence, in such an iterative method,
several noniterative algorithms have been proposed as a way
to find the shape of initial value close to that of the unknown
target as quickly as possible.

The noniterative algorithms such as multiple signal
classification (MUSIC), subspace migrations, topological

derivative, and linear sampling method can contribute to
yielding the appropriate image as an initial guess. Previous
attempts to investigateMUSIC-type algorithmpresented var-
ious experiments with the use of MUSIC-type algorithm. For
instance, the use of MUSIC-type algorithm for eddy-current
nondestructive evaluation of three-dimensional defects [12],
andMUSIC-type algorithm designed for extended target, the
boundary curves which have a five-leaf shape or big circle
was presented [13]. In addition, MUSIC-type algorithm was
introduced for locating small inclusions buried in a half space
[2] and for detecting internal corrosion located in pipes [3].
Although the past phenomena about experimental results
could not be theoretically explained because the mathemati-
cal structure about these algorithms was not verified, recent
studies [14–19] managed to partially analyze the structure
of some algorithms. On the basis of these studies, the
present study examined the structure of algorithms to make
improvements in imaging the defects. Therefore, this paper
aims to improve traditional MUSIC-type imaging algorithm
by weighting applied to each frequencies.

This paper is organized as follows. In Section 2, we discuss
two-dimensional direct scattering problem in the presence
of perfectly conducting crack andMUSIC-type algorithm. In
Section 3, we introduce a weighted multifrequency MUSIC-
type imaging algorithm and analyze its structure to confirm
that it is an improved version of traditional MUSIC algo-
rithm. In Section 4,we present several numerical experiments
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Figure 1: Shape reconstruction of Ω1 via MUSIC algorithm.
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Figure 2: Same as Figure 1 except the crack is Ω2.

with noisy data. In Section 5, our conclusions are briefly
presented.

2. Direct Scattering Problem and Single- and
Multifrequency MUSIC-Type Algorithm

In this section, we simplify surveying the two-dimensional
direct scattering problem for the existence of perfectly con-
ducting cracks and the single- and multifrequency MUSIC
algorithm. For more information, see [10, 20].

2.1. Direct Scattering Problem andMUSIC-Type Imaging Func-
tion. First, we consider the two-dimensional electromagnetic

scattering by a perfectly conducting crack located in the
homogeneous space R2. Throughout this paper, we assume
that the crack Ω is a smooth, nonintersecting curve, and we
representΩ such that

Ω = {𝜉 (𝑡) : 𝑡 ∈ [−1, 1]} , (1)

where 𝜉 : [−1, 1] → R2 is an injective piecewise smooth
function. We consider only the transverse magnetic (TM)
polarization case. Let us denote 𝑢total to be the time-harmonic
total field, which can be decomposed as

𝑢total (x) = 𝑢incident (x) + 𝑢scatter (x) , (2)

where 𝑢incident(x) = exp(𝑗𝜔𝜃 ⋅ x) is the given incident field
with incident direction 𝜃 ∈ S1 (unit circle) and 𝑢scatter(x)
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is the unknown scattered field that satisfies the Sommerfeld
radiation condition

lim
|x|→∞

√|x| (
𝜕𝑢scatter (x)
𝜕 |x|

− 𝑗𝜔𝑢scatter (x)) = 0 (3)

uniformly in all directions x̂ = x/|x|. Now, the total field 𝑢total
satisfies the two-dimensional Helmholtz equation

Δ𝑢total (x) + 𝜔
2
𝑢total (x) = 0 in R

2
\ Ω,

𝑢total (x) = 0 on Ω
(4)

with a given positive frequency𝜔. In the case thatΩ is absent,
incident field 𝑢incident can also be a solution of (4).

The far-field pattern is defined as function 𝑢far(x̂, 𝜃) that
satisfies

𝑢scatter (x, 𝜔) =
exp (𝑗𝑘0 |x|)
√|x|

𝑢far (x̂, 𝜃) + 𝑜(
1

√|x|
)

=
exp (𝑗𝜔 |x|)
√|x|

𝑢far (x̂, 𝜃) + 𝑜(
1

√|x|
)

(5)

as |x| → ∞ uniformly on x̂. Then, based on [21], the far-
field pattern 𝑢far(x̂; 𝜃) of the scattered field 𝑢scatter(x) can be
expressed by the following equation:

𝑢far (x̂; 𝜃) = −
exp (𝑗𝜋/4)
√8𝜋𝜔

∫
Ω

exp (−𝑗𝜔x̂ ⋅ y) 𝜑 (y; 𝜃) 𝑑y,

(6)

where 𝜑(y; 𝜃) is an unknown density function (see [10]).
Second, we present the traditional MUSIC-type algo-

rithm for imaging of perfectly conducting cracks. For the
sake of simplicity, we exclude the constant − exp(𝜋/4)/√8𝜋𝑘
from formula (6). Based on [20, 22], we assume that the
crack is divided into𝑀 different segments of size of the order
of half the wavelength 𝜆/2. Having in mind the Rayleigh
resolution limit for far-field data, only one point at each
segment is expected to contribute to the image space of
the response matrix K (i.e., see [20, 22, 23]). Each of these
points, say y𝑚, 𝑚 = 1, 2, . . . ,𝑀, will be imaged via the
MUSIC-type algorithm. With this assumption, we perform
the following singular value decomposition (SVD) of the
multistatic response (MSR) matrix K = [𝑢far(x̂𝑖; 𝜃𝑙)]

𝑁
𝑖,𝑙=1 ∈

C𝑁×𝑁:

K = USV
∗

𝑚 =

𝑀

∑

𝑚=1

𝜏𝑚U𝑚V
∗

𝑚, (7)

where superscript ∗ is the mark of Hermitian, U𝑚 and V𝑚 ∈
C𝑁×1 are, respectively, the left- and right-singular vectors of
K, and 𝜏𝑚 denotes singular values that satisfy

𝜏1 ≥ 𝜏2 ≥ ⋅ ⋅ ⋅ ≥ 𝜏𝑚 > 0, 𝜏𝑚 = 0, for 𝑚 ≥ 𝑀 + 1. (8)

If so, {U1,U2, . . . ,U𝑀} are the basis for the signal and
{U𝑀+1,U𝑀+2, . . . ,U𝑁} span the null space of K, respectively.
Therefore, one can define the projection operator onto the

null subspace, Pnoise : C
𝑁×1
→ C𝑁×1. This projection is giv-

en explicitly by

Pnoise := I𝑁 −
𝑀

∑

𝑚=1

U𝑚U
∗

𝑚, (9)

where I𝑁 denotes the 𝑁 × 𝑁 identity matrix. For any point
z ∈ R2, we define a test vector f(z, 𝜔) ∈ C𝑁×1 as

f (z, 𝜔)

= [exp (𝑗𝜔𝜃1 ⋅ z) , exp (𝑗𝜔𝜃2 ⋅ z) , . . . , exp (𝑗𝜔𝜃𝑁 ⋅ z)]
𝑇
.

(10)

Based on this, we can design aMUSIC-type imaging function
𝑊: C𝑁×1 → R such that

E (z) = Pnoise(f(z, 𝜔))


−1
=

1

Pnoise (f (z, 𝜔))


. (11)

Then, the map of E(z) will have peaks of large and small
magnitudes at z ∈ Ω and z ∈ R2 \ Ω, respectively.

2.2. Multifrequency MUSIC-Type Imaging Function. We de-
sign multifrequency MUSIC-type imaging function and try
to describe its structure. First, we introduce a multifrequency
MUSIC-type algorithm EMF : C

𝑁×1
→ R defined by

EMF (z; 𝑆) = (
1

𝑆

𝑆

∑

𝑠=1

Pnoise (f (z, 𝜔𝑠))


2
)

−1/2

. (12)

Then, we can introduce the following lemma. Amore detailed
derivation can be found in [16].

Lemma 1 (see [16]). Assume that 𝑘𝑆 and 𝑆 are sufficiently
large; then,

E𝑀𝐹 (z; 𝑆) ≈ √
1

𝑁
(1 −

𝑀

∑

𝑚=1

Φ(
z − y𝑚

 ; 𝜔1, 𝜔𝑆))

−1/2

, (13)

where function Φ(𝑥; 𝜔1, 𝜔𝑆) is defined as

Φ(𝑥; 𝜔1, 𝜔𝑆) :=
1

𝜔𝑆 − 𝜔1

[𝜔𝑆 (𝐽0 (𝜔𝑆𝑥)
2
+ 𝐽1(𝜔𝑆𝑥)

2
)

−𝜔1 (𝐽0(𝜔1𝑥)
2
+ 𝐽1(𝜔1𝑥)

2
)]

+ ∫

𝜔𝑆

𝜔1

𝐽1(𝜔𝑥)
2
𝑑𝜔.

(14)

So we can recognize the mathematical structure of mul-
tifrequency MUSIC-type algorithm. However, the finite rep-
resentation of ∫ 𝐽21 (𝑥)𝑑𝑥 does not exist. Because of this term,
although this can be negligible (see [15]), themap ofEMF(z; 𝑆)
should generate unexpected points of small magnitudes. In
order to solve this problem, the last term of [14] should be
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Figure 3: Blue- and red-colored lines are EWMF(z; 10) and EMF(z; 10), respectively, at z = [−0.8, 𝑦]
𝑇 ((a) and (b)) and z = [𝑥, 0]𝑇 ((c) and (d)).

eliminated. For this, we suggest a weighted multifrequency
MUSIC-type imaging algorithm in the upcoming section.

3. Weighted Multifrequency MUSIC-Type
Algorithm and Its Structure

In order to propose the weighted multifrequency MUSIC-
type imaging algorithm, we introduce the following lemma
derived from [16].

Lemma 2 ([16, page 218]). For sufficiently large𝑁 and 𝜔, the
following relationship holds:

Pnoise (f (z, 𝜔))
 ≈
√𝑁(1 −

𝑀

∑

𝑚=1

𝐽0(𝜔|z − y𝑚|)
2
)

1/2

. (15)

With this, let us define an alternative projection operator
weighted by applied frequency PWN : C

𝑁×1
→ R as

PWN (f (z, 𝜔)) = Pnoise (√𝜔f (z, 𝜔)) . (16)

Then, the following result can be obtained.

Theorem 3. Assume that𝑁 and 𝜔 are sufficiently large; then,

PWN (f (z, 𝜔))
 ≈
√𝑁(𝜔 −

𝑀

∑

𝑚=1

𝜔𝐽0(𝜔
z − y𝑚

)
2
)

1/2

. (17)

Proof. The following equations are satisfied by the definition
of PWN(f(z, 𝜔)) and by Lemma 2:
PWN (f (z, 𝜔))

 =
Pnoise (√𝜔 (f (z, 𝜔)))



= √𝜔
Pnoise ((f (z, 𝜔)))
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Figure 4: Same as Figure 1 except the crack is Ω3.

≈ √𝜔√𝑁(1 −

𝑀

∑

𝑚=1

𝐽0(𝜔
z − y𝑚

)
2
)

1/2

= √𝑁(𝜔 −

𝑀

∑

𝑚=1

𝜔𝐽0(𝜔
z − y𝑚

)
2
)

1/2

.

(18)

Next, we introduce a weighted multifrequency MUSIC-
type imaging function based on MUSIC-type imaging func-
tion EWMF : C

𝑁×1
→ R defined by

E𝑊𝑀𝐹 (z; 𝑆) = (
1

𝑆

𝑆

∑

𝑠=1

PWN (f(z, 𝜔𝑠))


2
)

−1/2

. (19)

Then, we can obtain the structure of EWMF(z; 𝑆).

Theorem 4. Assume that 𝑆 and 𝜔𝑆 are sufficiently large; then,

E𝑊𝑀𝐹 (z; 𝑆)

≈ √
1

𝑁
(
𝜔𝑆 + 𝜔1

2
−

𝑀

∑

𝑚=1

Ψ (
z − y𝑚

 ; 𝜔1, 𝜔𝑆))

−1/2

,

(20)

where function Ψ(𝑥; 𝜔1, 𝜔𝑆) is defined as

Ψ (𝑥; 𝜔1, 𝜔𝑆) :=
1

𝜔𝑆 − 𝜔1

[
𝜔
2
𝑆

2
(𝐽0(𝜔𝑆𝑥)

2
+ 𝐽1(𝜔𝑆𝑥)

2
)

−
𝜔
2
1

2
(𝐽0(𝜔1𝑥)

2
+ 𝐽1(𝜔1𝑥)

2
)] .

(21)

Proof. ByTheorem 3, we can calculate the following:

EWMF (z; 𝑆)

= (
1

𝑆

𝑆

∑

𝑠=1

PWN (f(z, 𝜔𝑠))


2
)

−1/2

≈ (
1

𝑆

𝑆

∑

𝑠=1

(√𝑁(𝜔 −

𝑀

∑

𝑚=1

𝜔𝐽0(𝜔
z − y𝑚

)
2
)

1/2

)

2

)

−1/2

= (
1

𝑆

𝑆

∑

𝑠=1

𝑁(𝜔 −

𝑀

∑

𝑚=1

𝜔𝐽0(𝜔
z − y𝑚

)
2
))

−1/2

= √
1

𝑁
(

𝑆

∑

𝑠=1

(𝜔 −

𝑀

∑

𝑚=1

𝜔𝐽0(𝜔
z − y𝑚

)
2
)
1

𝑆
)

−1/2

.

(22)

Then, since 𝑆 is sufficiently large, we can observe that

𝑆

∑

𝑠=1

(𝜔 −

𝑀

∑

𝑚=1

𝜔𝐽0(𝜔
z − y𝑚

)
2
)
1

𝑆

≈
1

𝜔𝑆 − 𝜔1

∫

𝜔𝑆

𝜔1

(𝜔 −

𝑀

∑

𝑚=1

𝜔𝐽0(𝜔
z − y𝑚

)
2
)𝑑𝜔,

(23)

and applying an indefinite integral of the Bessel function (see
[24, page 106])

∫𝑥𝐽0(𝑥)
2
𝑑𝑥 =

𝑥
2

2
(𝐽0(𝑥)

2
+ 𝐽1(𝑥)

2
) (24)
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Figure 5: Influence of noise. 30 dB ((a) and (b)) and 10 dB ((c) and (d)) white Gaussian random is added.

yields

1

𝜔𝑆 − 𝜔1

∫

𝜔𝑆

𝜔1

𝜔𝐽0(𝜔
z − y𝑚

)
2
𝑑𝜔

=
1

𝜔𝑆 − 𝜔1

[
𝜔
2
𝑆

2
(𝐽0(𝜔𝑆

z − y𝑚
)
2
+ 𝐽1(𝜔𝑆

z − y𝑚
)
2
)

−
𝜔
2
1

2
(𝐽0(𝜔1

z − y𝑚
)
2

+ 𝐽1(𝜔1
z − y𝑚

)
2
)]

= Ψ (𝜔
z − y𝑚

 ; 𝜔1, 𝜔𝑆) .

(25)

Hence, we can obtain

1

𝜔𝑆 − 𝜔1

∫

𝜔𝑆

𝜔1

(𝜔 −

𝑀

∑

𝑚=1

𝜔𝐽0(𝜔
z − y𝑚

)
2
)𝑑𝜔

=
𝜔𝑆 + 𝜔1

2
−

𝑀

∑

𝑚=1

Ψ (𝜔
z − y𝑚

 ; 𝜔1, 𝜔𝑆) .

(26)

Therefore,

EWMF (z; 𝑆) ≈ √
1

𝑁
(
𝜔𝑆 + 𝜔1

2
−

𝑀

∑

𝑚=1

Ψ(
z − y𝑚

 ; 𝜔1, 𝜔𝑆))

−1/2

.

(27)

This completes the proof.

Looking at the results of Theorem 4, in contrast to
the EMF(z; 𝑆), the EWMF(z; 𝑆) does not have the ∫ 𝐽21 (𝑥)𝑑𝑥
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Figure 6: Shape of oscillating cracks Ω4 and Ω5.
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Figure 7: Shape reconstruction of Ω4 via E(z) (a) and EWMF(z; 10) (b).

term. Therefore, we expect that the imaging results of the
EWMF(z; 𝑆) will be better than EMF(z; 𝑆). In the next section,
numerical experiments will be presented to support this.

4. Numerical Experiments

In this section, some numerical examples are displayed in
order to support our analysis in the previous section. Applied
frequencies are of the form 𝜔𝑠 = 2𝜋/𝜆𝑠, where 𝜆𝑠, 𝑠 =
1, 2, . . . , 𝑆(=10) is the given wavelength. The observation
directions 𝜃𝑛 ∈ S

1 are taken as

𝜃𝑛 = [cos
2𝜋𝑛

𝑁
, sin 2𝜋𝑛

𝑁
]

𝑇

. (28)

For illustrating arc-like cracks, threeΩ𝑙 are chosen:

Ω1 ={[𝑠,
1

2
cos 𝑠𝜋
2
+
1

5
sin 𝑠𝜋
2
−
1

10
cos 3𝑠𝜋

2
]

𝑇

:

𝑠 ∈ [−1, 1] } ,

Ω2 ={[2 sin
𝑠

2
, sin 𝑠]

𝑇

: 𝑠 ∈ [
𝜋

4
,
7𝜋

4
]} ,

Ω3 =Ω
(1)

3 ∪ Ω
(2)

3 ,

(29)
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Figure 8: Same as Figure 7 except the crack is Ω5.

where

Ω
(1)

3 ={[𝑠 −
1

5
, −
𝑠
2

2
+
3

5
]

𝑇

: 𝑠 ∈ [−
1

2
,
1

2
]} ,

Ω
(2)

3 ={[𝑠 +
1

5
, 𝑠
3
+ 𝑠
2
−
3

5
]

𝑇

: 𝑠 ∈ [−
1

2
,
1

2
]} .

(30)

It is worth emphasizing that all the far-field data 𝑢far of
(6) are generated by themethod introduced in [25, Chapter 3,
4]. After generating the data, a 20 dB white Gaussian random
noise is added to the unperturbed data. In order to obtain
the number of nonzero singular values𝑀 for each frequency,
a 0.1-threshold scheme (choosing first 𝑚 singular values 𝜏𝑚
such that 𝜏𝑚/𝜏1 ≥ 0.1) is adopted. Amore detailed discussion
of thresholding can be found in [20, 22].

Figures 1 and 2 show the imaging results via multifre-
quency MUSIC and weighted multifrequency MUSIC algo-
rithms for single crackΩ1 andΩ2, respectively. As we already
mentioned, since the term ∫ 𝐽21 (𝑥)𝑑𝑥 can be disregarded, it is
very hard to compare the improvements via visual inspection
of the reconstructions. However, based on Figure 3, we can
examine that the proposed weighted multifrequency MUSIC
algorithm successfully reduces these artifacts, so we can
conclude that this is an improved version.

Figure 4 shows the imaging results via multifrequency
MUSIC and weighted multifrequencyMUSIC algorithms for
multiple cracksΩ3. Similar to the imaging of single crack, we
can observe that weighted multifrequencyMUSIC algorithm
improves the traditional one, although it is hard to compare
the improvements via visual inspection.

Figure 5 shows the noise contribution in terms of SNR.
In order to observe the effect of noise, 30 dB and 10 dB
white Gaussian random noises are added to the unperturbed
data. Based on these results, we can easily observe that both
traditional and proposed MUSIC algorithms offer very good
result when 30 dB noise is added. However, when 10 dB noise

is added, the traditionalMUSIC algorithmyields a poor result
while the proposed algorithm yields an acceptable result.

Now, we consider the imaging of oscillating crack. For
this, we consider the following cracks (see Figure 6):

Ω4 ={[𝑠,
1

2
𝑠
2
+
1

10
sin(4𝜋(𝑠 + 1))]

𝑇

: 𝑠 ∈ [−1, 1]}

Ω5 ={[𝑠,
1

2
𝑠
2
+
1

20
sin(20𝜋(𝑠 + 1)) − 1

100
cos(15𝜋𝑠)]

𝑇

:

𝑠 ∈ [−1, 1] } .

(31)

Figure 7 shows the maps of E(z) and EWMF(z; 10) for the
crack Ω4. In this result, we can observe that both traditional
and proposed MUSIC algorithms produce acceptable result,
but the proposed algorithm successfully eliminates replicas.

Figure 8 shows the maps of E(z) and EWMF(z; 10) for
highly oscillating crack Ω5. Opposite to Figure 7, both tra-
ditional and proposed MUSIC algorithms yield poor result.
This example shows the limitation of proposed algorithm.

5. Conclusion

Based on the structure of multifrequency MUSIC-type
imaging function, we introduced a weighted multifrequency
MUSIC-type imaging function. Through a careful analysis, a
relationship between imaging function and Bessel function
of the first kind of integer order is established, and we
have confirmed that the proposed imaging algorithm is an
improved version of the traditional one.

Although, the proposed algorithm produces very good
results and improves the traditional MUSIC algorithm, it still
needs some upgrade, for example, imaging of highly oscil-
lating cracks. Development of this should be an interesting
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and remarkable research project. In this paper, we considered
theMUSIC algorithm in full-view inverse scattering problem.
Based on the result in [26], the MUSIC algorithm cannot
be applied to limited-view problems but the reason is still
unknown. Identifying the structure of the MUSIC algorithm
in the limited-view inverse scattering problems will be the
forthcoming work.
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