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Random sequences and random numbers constitute a necessary part of cryptography. Many cryptographic protocols depend on
random values. Randomness is measured by statistical tests and hence security evaluation of a cryptographic algorithm deeply
depends on statistical randomness tests. In this work we focus on statistical distributions of runs of lengths one, two, and three.
Using these distributions we state three new statistical randomness tests. New tests use 𝜒2 distribution and, therefore, exact values
of probabilities are needed. Probabilities associated runs of lengths one, two, and three are stated. Corresponding probabilities are
divided into five subintervals of equal probabilities. Accordingly, three new statistical tests are defined and pseudocodes for these
new statistical tests are given. New statistical tests are designed to detect the deviations in the number of runs of various lengths from
a random sequence. Together with some other statistical tests, we analyse our tests’ results on outputs of well-known encryption
algorithms and on binary expansions of 𝑒, 𝜋, and√2. Experimental results show the performance and sensitivity of our tests.

1. Introduction

Random numbers and random sequences are extensively
used in many areas such as game theory, numerical analysis,
quantummechanics, and cryptography. In cryptography, need
for random sequences emerges in many different applica-
tions such as challenge and response authentication systems,
generation of digital signatures, and zero-knowledge protocols.
Among those, the most important feature is key generators
which highly depend on random values. Use of weak random
values in key generations can cause a leakage in the system
and hence an adversary can gain ability to break the whole
cryptosystem. Therefore, randomness testing is an essential
part of security evaluation of a cryptographic algorithm.

Random sequences and random numbers can be gen-
erated by true random sources, such as atmospheric noise
and radioactive decay. However, using these sources in an
algorithm is unpractical. It causes challenging problems in
transmitting and storing large random bits since reproducing
outputs of these sources is nearly impossible. Therefore,
sequences and numbers, used as a key in cryptographic
algorithms such as block ciphers and synchronous stream
ciphers, should be pseudorandom, that is, random look-
ing sequences of a specific length which are produced by

deterministic processes [1]. Since proving randomness of
these generators mathematically is nearly impossible, we use
statistical randomness test for this purpose. Using statistical
tests we try to detect the weaknesses that a generator could
have.

Moreover, outputs of encryption algorithms should be
indistinguishable from randommappings; that is, it should be
random looking. This is another place where pseudorandom
sequences play an important role. Also, deciding the round
number of a block cipher algorithm, which is an essential part
of design, is highly associated with concept of being random
looking. Therefore, security of the system highly depends
on production or testing of pseudorandom sequences. For
these reasons, statistical randomness tests are considered as
an important part of evaluating security of cryptographic
algorithms.

Statistical tests are designed to test the null hypothesis𝐻
0

which states that the sequence is randomly generated. Testing
a binary sequence means that its degree of randomness is
evaluated by a statistical test. The conclusion is that the
sequence is random or not probabilistic; in other words the
hypothesis 𝐻

0
is either accepted or rejected. A statistical test

considers a random variable whose distribution function
is known. Depending on the distribution, a real number
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between 0 and 1, called p value, is calculated. If the p value
of the sequence is evaluated as one, we say that the sequence
is completely random. On the other hand, the sequence is
completely nonrandom, if p value is determined as zero. If
the p value exceeds a predefined real number 𝛼 ∈ [0, 1], then
𝐻
0
is accepted; otherwise, it is rejected.
Usually result of one statistical test is not enough to

decide the randomness of sequence. Therefore, it is better
to use a collection of statistical tests, called statistical test
suites, to measure different behaviours of the sequence under
consideration. These suites should be well designed to give
trustable results and should not be blindly populated.

In the literature, there exist various statistical test pack-
ages. Among those, the most important ones are given
in Knuth’s book [2], test suite presented by Rukhin [3],
DIEHARD [4], CRYPT-X [5], TestU01 [6], and the test suite
published byNIST [7] so far. Also there are works focusing on
statistical tests individually such as a universal statistical test,
stated by Maurer [8], a test based on diffusion characteristic
of a block cipher [9], and topological binary test defined by
Alcover et al. [10].

In this work, we propose three new statistical randomness
tests which depend on famous postulates of Golomb. These
tests are named as runs of length one, runs of length two,
and runs of length three test. The rest of the paper is formed
as follows. In Section 2, we explain Golomb’s randomness
postulates. Also we discuss run tests given in the literature.
In Section 3, we give proofs of our fundamental theorems.
Also in order to calculate the probabilities needed, we state
corollaries and algorithms for each theorem. In Section 4, we
state new run tests and give the pseudocodes. In Section 5, we
apply new tests to binary expansion of 𝑒, 𝜋, and√2, which are
obtained fromNIST package [7] and outputs of five advanced
encryption standard competition finalists. In the last part of
implementation we generate some nonrandom data sets to
emphasize the sensitivity of our tests. Finally, in Section 6,
we summarize our results and state the topics for further
research.

2. Preliminaries

2.1. Golomb’s Randomness Postulates. Deciding the pseudo-
randomness of a sequence is a difficult task. The base for this
task is constructed by Golomb’s postulates. These postulates
are one of the most important attempts to create some
necessary properties for a finite (or periodic) pseudorandom
sequence to be random looking. Sequences satisfying follow-
ing three properties are called pseudonoise sequence [11].

Let 𝑆 = 𝑠
0
, 𝑠
1
, . . . , 𝑠

𝑛−1
, . . . be an infinite binary sequence

periodic with 𝑛 (or a finite sequence of length 𝑛). A run is
defined as an uninterrupted maximal sequence of identical
bits. Runs of 0’s are called gap; runs of 1’s are called block.
R1, R2, and R3 are Golomb’s randomness postulates which are
given as follows.

(R1) In a period of 𝑆, the number of 1’s should differ from
the number of 0’s by at most 1. In other words, the
sequence should be balanced.

(R2) In a period of 𝑆, at least half of the total number of
runs of 0’s or 1’s should have length one, at least one-
fourth should have length 2, at least one-eighth should
have length 3, and the like.Moreover, for each of these
lengths, there should be (almost) equally many gaps
and blocks.

(R3) The autocorrelation function 𝐶(𝑡) should be two-
valued. That is, for some integer 𝐾 and for all 𝑡 =
0, 1, 2, . . . , 𝑛 − 1,

𝐶 (𝑡) =

𝑛−1

∑

𝑖=0

(−1)
𝑠𝑖+𝑠𝑖+𝑡 =

{

{

{

𝑛 if 𝑡 = 0

𝐾 if 1 ≤ 𝑡 ≤ 𝑛 − 1.
(1)

The first postulate states that, in an 𝑛-bit sequence, the
difference of number of ones and zeros should be 1 or 0. In
other words, the number of ones in a sequence, that is, weight
of the sequence, should be approximately 𝑛/2. Frequency test,
which measures the difference of number of ones and zeros
in an 𝑛-bit sequence, is defined to check the first postulate
of Golomb. Balancedness is a fundamental feature for an
algorithm’s output. Therefore, frequency test is used as an
initial step for almost all test suites. If an algorithm fails the
frequency test, then other tests are not even applied.

The second postulate of Golomb is about number of runs
in sequences. Tests, which deal with number of runs, are
called run tests and these are also included inmany test suites
as the frequency test. Since calculating the expected number
of runs of specified length in a random sequence is a difficult
task (especially when specified length becomes large), most
of test suites consider only the total number of runs and do
not consider the number of runs of different lengths.

Lastly, the third postulate gives information about
amount of similarities between the sequence and shifted
version of it. If 𝑆 is a random looking sequence, the autocorre-
lation should be constant; that is, correlation between 𝑖th and
(𝑖 + 𝑡)th bits should give no information about the sequence
for 𝑡 = 1, 2, . . . , (𝑛 − 1). In this paper, we mainly focus on the
first and second postulates, and the last one is not a matter of
concern.

These postulates are theoretical, but difficult to check.
Inspired by these postulates, we define new statistical ran-
domness tests which are practical. In order to give the defini-
tions, we calculate the exact probabilities. Before explaining
these tests, first we give the mathematical background in
order to compute the probabilities thatwe use in the following
Section 3.

2.2. Run Test. Run tests depend on Golomb’s second postu-
late and investigate number of runs in a sequence and their
distribution. Run tests take place in most of the test suites.
Almost all of these suites, run tests, consider only the total
number of runs in a sequence. The most important ones of
these are the suites given in [2, 4, 6, 7].

Knuth [2] andDIEHARD [4] test suites define the run test
on random numbers. They define runs as runs up and runs
down in a sequence. To illustrate their definition, consider
a sequence of length 10, 𝑆

10
= 138742975349. Runs are
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indicated by putting a vertical line between 𝑠
𝑗
’s when 𝑠

𝑗
>

𝑠
𝑗+1

. Hence, runs of the sequence 138742975349 can be seen
as |138|7|4|29|7|5|349|. In other words, the run test examines
the length of monotone subsequences. TestU01 [6] defines
run and gap tests for testing the randomness of long binary
streamof length 𝑛.This test collects runs of 1’s and 0’s until the
total number of runs is 2𝑟.Then, for each length 𝑗 = 1, 2, . . . , 𝑘
the number of runs of 1’s and 0’s of length in this collection
is counted and recorded. Then 𝜒2 test is applied on these
counts. Longest run of 1’s test is also defined for the collection
of strings of length 𝑚 which are obtained from the original
long binary string of length 𝑛.

NIST [7] test suite consists of firstly 16 and then 15 various
statistical tests. After its first publication, some revisions are
made. In 2004, it is discovered that test setting of discrete
fourier transform test and lempel-ziv test were wrong [12]
and new test, which can be used instead of lempel-ziv test,
is defined in [13] and correction of overlapping template
matching is stated in 2007 [14].

In the suite, 2 of 15 tests are variations of run tests. They
are called run test and longest run of ones in a block test. The
first one deals with the total number of runs in a sequence.
It calculates the total number of runs in a sequence and
determines whether it is consistent with the expected number
of runs, which is supposed to be close to 𝑛/2 in a sequence
or not. The second one determines whether the longest run
of ones in the sequence is consistent with the length of the
longest runs of ones which is in a random sequence. In NIST
test suite the reference distributions for the run tests are a 𝜒2
distribution.

In test suite, NIST assumed that sequence of length 𝑛 is of
order 103 to 107. For this reason, asymptotic reference distri-
butions were derived and used for their tests. But, asymptotic
reference distribution is misleading for smaller values of 𝑛;
as stated in [7] “the asymptotic reference distributions would
be inappropriate and would need to be replaced by exact
distributions that would commonly be difficult to compute”.
In other words, asymptotic reference distributions can lead
to some errors in testing short sequences such as outputs of
block ciphers or hash functions. In 1999, to overcome this
problem, Soto and Bassham [15] propose to concatenate short
sequences.This method is used for testing the randomness of
Advanced Encryption Standard candidates. Another method
has been proposed by Sulak et al. [16], in which distribution
functions are used in NIST test suite, replaced by exact
distribution and a similar method is used for producing the p
values.

In this paper we use the method stated in [16]; thus we
need the exact probabilities and exact distribution of tests
statistics. Finding the number of sequences having a specified
number of runs of length 𝑖 is a hard problem. We find the
number using combinatorial formulas. After that we calculate
the desired probabilities by dividing the calculated number
by the total number of sequences of length 𝑛. Calculating
the exact probabilities of the number of runs of length 𝑖

in a sequence enables us to define the new run tests. We
calculate the probabilities for number of runs of lengths
one, two, three and we give the detailed information in the
following chapter. However, as the length grows, calculations

are getting complex and time required for these calculations
grows exponentially. Therefore tests involving number of
runs of length 𝑗 (𝑗 > 3) are unpractical for statistical test
suites.

3. Computation of Probabilities

In this chapter, we give the theorems to find the number
of sequences with specified properties and hence state the
exact probabilities. The probabilities depend on the number
of existing shorter runs. That is, probabilities for the number
of runs of length two depends on both total number of runs
andnumber of runs of length one; similarly number of runs of
length three depends on total number of runs and number of
runs of lengths one and two and so on. Since they have some
dependencies with other variables, these probabilities are not
directly used in tests. Therefore, after stating each theorem
we give the corollaries and the algorithms to find the exact
probabilities which are needed for describing the tests.

In the calculations of probabilities we frequently use the
following combinatorial formulas.

Fact 1 (number of nonnegative integer solutions of linear
equation [17]). The number of nonnegative integer solutions
of 𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟
= 𝑛, 𝑛 ∈ Z+, is ( 𝑛+𝑟−1

𝑟−1
).

Fact 2. The number of positive integer solutions of 𝑥
1
+ 𝑥
2
+

⋅ ⋅ ⋅ + 𝑥
𝑟
= 𝑛, 𝑛 ∈ Z+, is ( 𝑛−1

𝑟−1
).

Proof. With the substitution 𝑥
𝑖
= 𝑥


𝑖
+ 1 we get

(𝑥


1
+ 1) + (𝑥



2
+ 1) + ⋅ ⋅ ⋅ + (𝑥



𝑟
+ 1) = 𝑛,

𝑥


1
+ 𝑥


2
+ ⋅ ⋅ ⋅ + 𝑥



𝑟
= 𝑛 − 𝑟.

(2)

From Fact 1 it follows that the number of solutions is

(
(𝑛 − 𝑟) + (𝑟) − 1

𝑟 − 1
) = (

𝑛 − 1

𝑟 − 1
) . (3)

3.1. Number of Runs. In the rest of the paper we denote the
total number of runs and number of runs of lengths one,
two, and three as 𝑟

𝑡
, 𝑟
1
, 𝑟
2
, and 𝑟

3
and we use samples of

these variables, 𝑟, 𝑙
1
, 𝑙
2
, and 𝑙

3
, respectively. We denote the

probability of randomly chosen binary sequence with 𝑟 runs
by Pr(𝑟

𝑡
= 𝑟). In the same way, Pr(𝑟

𝑖
= 𝑙
𝑖
) is the probability

of randomly chosen binary sequence with 𝑙
𝑖
runs of length

𝑖. Also we use subscripts 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑚
to differentiate the

blocks of a long sequence or outputs of block ciphers and
hash functions. Lastly, 𝐿

1
, 𝐿
2
, and 𝐿

3
are used to state the

set of number of runs of lengths one, two, and three in
the sequences accordingly. That is, 𝐿

𝑖
= {𝑙
1

𝑖
, 𝑙
2

𝑖
, . . . , 𝑙

𝑚

𝑖
} and

𝑙
𝑗

𝑖
corresponds the number of runs of length 𝑖 in the 𝑗th

sequence.
Moreover, in order to illustrate the runs of a sequence we

use the equation𝑥
1
+𝑥
2
+⋅ ⋅ ⋅+𝑥

𝑟
= 𝑛 for a sequencewith length

𝑛 and having 𝑟 runs. 𝑥
𝑖
(𝑖 = 1, 2 . . . , 𝑟) represents the number
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of bits in 𝑖th run. An important property of this illustration
is that it gives no information about content of 𝑥

𝑖
’s; that is, 𝑥

𝑖

can be a run of 0’s or 1’s. Thus, each positive integer solution
of the equation 𝑥

1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟
= 𝑛 corresponds to two

sequences: one starts with 1 and the other starts with 0.Hence,
the number of sequences with length 𝑛 and having exactly 𝑟
runs is 2 ( 𝑛−1

𝑟−1
) by Fact 2.

Example 1. Let 𝑆 = 01100010011111001100011101010000 be
a binary sequence of length 32 and having 15 runs. Then,

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

15
= 32,

0⏟⏟⏟⏟⏟⏟⏟

𝑥1

11⏟⏟⏟⏟⏟⏟⏟

𝑥2

000⏟⏟⏟⏟⏟⏟⏟

𝑥3

1⏟⏟⏟⏟⏟⏟⏟

𝑥4

00⏟⏟⏟⏟⏟⏟⏟

𝑥5

11111⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥6

00⏟⏟⏟⏟⏟⏟⏟

𝑥7

11⏟⏟⏟⏟⏟⏟⏟

𝑥8

000⏟⏟⏟⏟⏟⏟⏟

𝑥9

111⏟⏟⏟⏟⏟⏟⏟

𝑥10

0⏟⏟⏟⏟⏟⏟⏟

𝑥11

1⏟⏟⏟⏟⏟⏟⏟

𝑥12

0⏟⏟⏟⏟⏟⏟⏟

𝑥13

1⏟⏟⏟⏟⏟⏟⏟

𝑥14

0000⏟⏟⏟⏟⏟⏟⏟

𝑥15

,

𝑥
1
= 1, 𝑥

2
= 2, 𝑥

3
= 3, 𝑥

4
= 1,

𝑥
5
= 2, 𝑥

6
= 5, 𝑥

7
= 2, 𝑥

8
= 2,

𝑥
9
= 3, 𝑥

10
= 3, 𝑥

11
= 1, 𝑥

12
= 1,

𝑥
13
= 1, 𝑥

14
= 1, 𝑥

15
= 4.

(4)

Probabilities are calculated in a similar way as in [16].The
main difference is that, in the previous approach, sequences
are viewed in a circular form. Probabilities depend on weight
of the sequence and parity of number of runs. We calculate
the probabilities with the above notation, which is not based
on circular form, and they depend on the number of runs and
number of shorter runs.

Theorem 2. Let S = 𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
be a binary sequence of

length 𝑛 having total of 𝑅 runs; then

Pr (𝑟
𝑡
= 𝑟) =

( 𝑛−1
𝑟−1
)

2𝑛−1
. (5)

Proof. We can illustrate the sequence of length 𝑛, having 𝑟
runs, as follows:

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟
= 𝑛. (6)

From Fact 2 the number of all binary sequences 𝑆 =

𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
of length 𝑛, having total number of 𝑟 runs,

is 2 ( 𝑛−1
𝑟−1
). Since there are 2𝑛 sequences, probability of a

randomly chosen such sequence to have exactly 𝑟 runs is

Pr (𝑟
𝑡
= 𝑟) =

2 ⋅ ( 𝑛−1
𝑟−1
)

2𝑛
. (7)

3.2. Number of Runs of Length One. In this section, probabil-
ities for a 𝑛-bit sequence having 𝑙

1
runs of length one is given

in a combinatorial approach. We use the illustration defined
in Section 3.1 to compute the number of sequences having
total of 𝑟 runs, 𝑙

1
of which are of length one, and hence we

calculate the probabilities.Thenwe state the first new run test
depending on the idea of Golomb’s second postulate in the
next chapter.

Theorem 3. The probability of randomly chosen binary
sequence 𝑆 = 𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
with length 𝑛, having total of 𝑟 runs,

𝑙
1
of which are runs of length one, is

Pr (𝑟
𝑡
= 𝑟, 𝑟
1
= 𝑙
1
) =

(
𝑛−𝑟−1

𝑟−𝑙1−1
) ⋅ (
𝑛

𝑙1
)

2𝑛−1
. (8)

Proof. As in the proof of the Theorem 2, we illustrate the
sequence as follows:

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟
= 𝑛. (9)

Let us first assume that the last 𝑙
1
runs are the runs of

length one and the rest are of at least length two. That is,

𝑥
𝑟−𝑙1+1

= ⋅ ⋅ ⋅ = 𝑥
𝑟−1

= 𝑥
𝑟
= 1,

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟−𝑙1
+

𝑙1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 + 1 + ⋅ ⋅ ⋅ + 1 = 𝑛,

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟−𝑙1
= 𝑛 − 𝑙

1
.

(10)

Notice that, here, 𝑥
𝑖
≥ 2, so we use the change of variable

𝑦
𝑖
= 𝑥
𝑖
− 2 for 𝑖 = 1, 2, . . . , 𝑟 − 𝑙

1
. Consider

(𝑥
1
− 2) + (𝑥

2
− 2) + ⋅ ⋅ ⋅ + (𝑥

𝑟−𝑙1
− 2) = 𝑛 − 𝑙

1
− 2 (𝑟 − 𝑙

1
) ,

𝑦
1
+ 𝑦
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑟−𝑙1
= 𝑛 − 2𝑟 + 𝑙

1
.

(11)

The number of sequences having conditions, which are
stated above, is equal to the number of nonnegative solutions
of (11). Consequently, by the Fact 1, number of desired
solutions is

(
𝑛 − 𝑟 − 1

𝑟 − 𝑙
1
− 1
) . (12)

Selection of 𝑙
1
runs of length 1 gives us a factor of ( 𝑟𝑙1 ).

Since each positive integer solution of (9) corresponds two
sequences (one starts with 1; the other starts with 0), 2 is stated
as factor also. Therefore, the number of all binary sequences
of length 𝑛, having total number of 𝑟 runs, 𝑙

1
of which are of

length one, is equal to 2 ( 𝑛−𝑟−1𝑟−𝑙1−1 ) (
𝑟

𝑙1
). Hence probability of a

randomly chosen such sequence to have exactly 𝑟 runs, 𝑙
1
of

which are of length one, is

Pr (𝑟
𝑡
= 𝑟, 𝑟
1
= 𝑙
1
) =

2 ⋅ (
𝑛−𝑟−1

𝑟−𝑙1−1
) ⋅ (
𝑟

𝑙1
)

2𝑛
. (13)

Number of sequences having 𝑟 runs, 𝑙
1
of which are of

length one, can be found using the formula above. Our aim
is to compute total number of sequences of length 𝑛 having 𝑙

1

runs of length one without depending on the total number
of runs. In order to compute aimed probabilities we use
Corollary 4.
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𝑙
1
← 1, 𝑟 ← 1,𝑁

1
(𝑙
1
) ← 0,

while 𝑙
1
≤ 𝑛 do

while 𝑟 ≤ 𝑛 do

𝑁
1
(𝑙
1
) ← 𝑁

1
(𝑙
1
) + (

𝑛 − 𝑟 − 1

𝑟 − 𝑙
1
− 1
)(

𝑟

𝑙
1

) /2
𝑛−1

𝑟 ← 𝑟 + 1

end while
𝑙
1
← 𝑙
1
+ 1

end while
return 𝑁

1

Algorithm 1: Calculating Pr(𝑟
1
= 𝑙
1
) for 𝑙

1
= 0, 1, . . . , 𝑛.

Corollary 4. Let𝑁
1
(𝑙
1
) denote the number of sequences with

exactly 𝑙
1
runs of length one. Then,

𝑁
1
(𝑙
1
) =

𝑛

∑

𝑟=1

2 ⋅ (
𝑛 − 𝑟 − 1

𝑟 − 𝑙
1
− 1
) ⋅ (

𝑟

𝑙
1

) . (14)

Since the number of all sequences of length 𝑛 is 2𝑛,
probabilities follow immediately:

Pr (𝑟
1
= 𝑙
1
) =

𝑁
1
(𝑙
1
)

2𝑛
. (15)

Moreover, using Algorithm 1 we calculate the probabili-
ties for a sequence of length 𝑛 and 𝑙

1
runs of length one so

that we can investigate number of length one independently.
After finding the exact probabilities we calculate the

subinterval probabilities. Following example shows the cal-
culations of subinterval probabilities for 128-bit sequences.

Example 5 (calculating the subinterval probabilties).

Step 1. Calculate 𝑁
1
(𝑙
1
) for 𝑙

1
= 0, 1, 2, . . . , 128 by using

Corollary 4 and Algorithm 1.

Step 2. Determine subintervals such that; (𝛼
0
, 𝛼
1
), (𝛼
1
, 𝛼
2
),

. . . , (𝛼
4
, 𝛼
5
) such that, Pr

𝑖
(𝛼
𝑖
< 𝑅 < 𝛼

𝑖+1
) ≈ 0, 2. In our

example subinterval probability can be calculated as follows;

Box 1 =
27

∑

𝑙1=0

Pr
1
(𝑟
1
= 𝑙
1
) , Box 2 =

31

∑

𝑙1=28

Pr
1
(𝑟
1
= 𝑙
1
) ,

Box 3 =
34

∑

𝑙1=31

Pr
1
(𝑟
1
= 𝑙
1
) , Box 4 =

38

∑

𝑙1=35

Pr
1
(𝑟
1
= 𝑙
1
) ,

Box 5 =
128

∑

𝑙1=39

Pr
1
(𝑟
1
= 𝑙
1
) .

(16)

Step 3. Finally, we get the Table 1 for subinterval probabilities.

In the same way we calculate the subinterval probabilities
for different block lengths. All subinterval probabilities for
runs of length one test can be seen in Table 2.

Example 6. Let 𝑆
𝑛
be a random sequence of length 8, having

4 runs and 2 runs of length one.

Table 1: Subinterval probabilities for 128-bit sequences.

Intervals Probability
Box 1 0–27 0.219194
Box 2 28–31 0.230457
Box 3 32–34 0.184348
Box 4 35–38 0.259274
Box 5 39–128 0.106724

Since, we have exactly 4 runs, 𝑥
𝑖
’s must be at least 1;

𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 𝑥
4
= 8, 𝑥

𝑖
≥ 1 for 𝑖 = 1, 2, 3, 4. (17)

Fix 𝑥
3
= 𝑥
4
= 1 then;

𝑥
1
+ 𝑥
2
= 6 𝑥

𝑖
≥ 2 for 𝑖 = 1, 2. (18)

We want 𝑥
𝑖
≥ 2. Define 𝑥

𝑖
= 𝑥
𝑖
+ 2 for 𝑖 = 1, 2.

𝑥
1
+ 𝑥
2
= 6, 𝑥

𝑖
≥ 2 for 𝑖 = 1, 2,

(𝑥
1
+ 1) + (𝑥

2
+ 1) = 2,

𝑥


1
+ 𝑥


2
= 2, 𝑥



𝑖
≥ 0 for 𝑖 = 1, 2,

𝑥


1
= 2, 𝑥



2
= 0

⇐⇒ 𝑥
1
= 4, 𝑥

2
= 2, 𝑥

3
= 1, 𝑥

4
= 1

{

{

{

11110010

00001101,

𝑥


1
= 1, 𝑥



2
= 1

⇐⇒ 𝑥
1
= 3, 𝑥

2
= 3, 𝑥

3
= 1, 𝑥

4
= 1

{

{

{

11100010

00011101,

𝑥


1
= 0, 𝑥



2
= 2

⇐⇒ 𝑥
1
= 2, 𝑥

2
= 4, 𝑥

3
= 1, 𝑥

4
= 1

{

{

{

11000010

00111101.

(19)

The above construction gives us 6 different sequences of
length 8 with 2 runs of length one. Also selecting 𝑥

3
and 𝑥

4

gives us a factor of ( 4
2
). Hence, the total number of sequences

of length 8 with 4 runs, 2 of which are of length one is 2 ⋅
( 8−4−1
4−2−1

) ⋅ ( 4
2
) = 36.

3.3. Number of Runs of Length Two. In this section, we
calculate the number of sequences having 𝑙

2
runs of length

two in a combinatorial approach. As in the previous section
we use the same notation and the similar ideas in Section 3.1
to compute the number of sequences having total of 𝑟 runs,
𝑙
2
of which are of length two and hence we calculate the

probabilities. After that, using these calculations, we state the
second new run test.
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Table 2: Interval and probability values for runs of length one for 64-, 128-, 256-, and 512-bit blocks.

𝑛 = 64 𝑛 = 128 𝑛 = 256 𝑛 = 512

Interval Prob. Interval Prob. Interval Prob. Interval Prob.
Box 1 0–13 0.190082 0–27 0.173171 0–56 0.187255 0–117 0.193566
Box 2 14–16 0.238877 28–31 0.21426 57–61 0.189280 118–125 0.218630
Box 3 17-18 0.174560 32–34 0.186977 62–66 0.219859 126–132 0.217076
Box 4 19–21 0.211470 35–38 0.21339 67–72 0.218775 133–140 0.199515
Box 5 22–64 0.185009 39–128 0.21219 73–256 0.184827 141–512 0.171211

Theorem 7. The probability of randomly chosen binary
sequence 𝑆 = 𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
with length 𝑛, having 𝑟 runs, 𝑙

1
of

which are length one and 𝑙
2
of which are length and two is,

Pr (𝑟
𝑡
= 𝑟, 𝑟
1
= 𝑙
1
, 𝑟
2
= 𝑙
2
) =

(
𝑛−2𝑟+𝑙1−1

𝑟−𝑙1−𝑙2−1
) ⋅ (
𝑛

𝑙1
) ⋅ (
𝑛−𝑙1

𝑙2
)

2𝑛−1
.

(20)

Proof. As in the previous Theorems 2 and 3 we illustrate the
sequence as follows;

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟
= 𝑛. (21)

Let us first assume that the last 𝑙
1
runs are of length one and 𝑙

2

runs are the runs of length two. The rest are of length at least
three. That is,

𝑥
𝑟−𝑙1+1

= ⋅ ⋅ ⋅ = 𝑥
𝑟−1

= 𝑥
𝑟
= 1,

𝑥
𝑟−𝑙1−𝑙2+1

= ⋅ ⋅ ⋅ = 𝑥
𝑟−𝑙1−1

= 𝑥
𝑟−𝑙1

= 2,

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟−(𝑙1+𝑙2)
+

𝑙2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
2 + 2 + ⋅ ⋅ ⋅ + 2 +

𝑙1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 + 1 ⋅ ⋅ ⋅ + 1= 𝑛,

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟−(𝑙1+𝑙2)
= 𝑛 − 𝑙

1
− 2𝑙
2
.

(22)

Notice that here, 𝑥
𝑖
≥ 3. We use the change of variables

𝑦
𝑖
= 𝑥
𝑖
− 3 for 𝑖 = 1, 2, . . . , 𝑟 − (𝑙

1
+ 𝑙
2
)

(𝑥
1
− 3) + (𝑥

2
− 3) + ⋅ ⋅ ⋅ + (𝑥

𝑟−(𝑙1+𝑙2)
− 3)

= 𝑛 − (𝑙
1
+ 2𝑙
2
) − 3 (𝑟 − 𝑙

1
− 𝑙
2
) ,

𝑦
1
+ 𝑦
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑟−(𝑙1+𝑙2)
= 𝑛 − 3𝑟 + 2𝑙

1
+ 𝑙
2
.

(23)

The number of sequences having conditions, which are
stated above, is equal to the number of nonnegative solutions
of (23). Consequently, by the Fact 1, number of desired
solutions is,

(
𝑛 − 2𝑟 + 𝑙

1
− 1

𝑟 − 𝑙
1
− 𝑙
2
− 1

) . (24)

Selection of 𝑙
1
and 𝑙
2
runs of length 1 and length 2 give us

a factor of ( 𝑟𝑙1 ) (
𝑟−𝑙1

𝑙2
). Since, each positive integer solution of

(21) corresponds two sequences (one starts with 1, the other
starts with 0) 2 is stated as factor also. Therefore, the number
of all binary sequences of length 𝑛, having total number of

runs, 𝑙
1
and 𝑙
2
of which length one and two respectively, is

equal to,

2 ⋅ (
𝑛 − 2𝑟 + 𝑙

1
− 1

𝑟 − 𝑙
1
− 𝑙
2
− 1

) ⋅ (
𝑟

𝑙
1

) ⋅ (
𝑟 − 𝑙
1

𝑙
2

) . (25)

Hence the probability of a randomly chosen sequence to
have the above conditions is;

Pr (𝑟
𝑡
= 𝑟, 𝑟
1
= 𝑙
1
, 𝑟
2
= 𝑙
2
)

=
2 ⋅ (
𝑛−2𝑟+𝑙1−1

𝑟−𝑙1−𝑙2−1
) ⋅ (
𝑟

𝑙1
) ⋅ (
𝑟−𝑙1

𝑙2
)

2𝑛
.

(26)

We find the number of sequences having 𝑟 runs, 𝑙
1
and 𝑙
2

of which are length one and two respectively, using formula
above. In order to define the second new run test, we need
number of sequences of length 𝑛 having 𝑙

2
runs of length two,

without depending on the other variables such as, number of
runs and number of runs of length one. Corollary 8 enables
us to compute the probabilities that are needed for defining
the new statistical test.

Corollary 8. Let 𝑁
2
(𝑙
2
) denote the number of runs of

sequences with exactly 𝑖 runs of length two. Clearly, we have
maximum ⌊𝑛/2⌋ runs of length two. Otherwise sequence length
exceeds 𝑛. Then, for 𝑙

2
= 0, 1, 2, . . . , ⌊𝑛/2⌋,

𝑁
2
(𝑙
2
) =

𝑛

∑

𝑙1=0

𝑛

∑

𝑟=1

2 ⋅ (
𝑛 − 2𝑟 + 𝑙

1
− 1

𝑟 − 𝑙
1
− 𝑙
2
− 1

) ⋅ (
𝑟

𝑙
1

) ⋅ (
𝑟 − 𝑙
1

𝑙
2

) .

(27)

Since the number of all sequences of length 𝑛 is 2𝑛, probabilities
follow immediately:

Pr (𝑟
2
= 𝑙
2
) =

𝑁
2
(𝑙
2
)

2𝑛
. (28)

AlsoAlgorithm2 enable the calculation for the number of
sequences with desired conditions. Furthermore, subinterval
probabilities can be stated in the same way as in Example 5.
The subinterval probabilities can be seen in Table 3.

3.4. Number of Runs of LengthThree. In the last section of this
chapter, we focus on the number of sequences having exactly
𝑙
3
runs of length three. We use the same constructions with



Mathematical Problems in Engineering 7

𝑖 ← 1, 𝑙
1
← 0, 𝑟 ← 1,𝑁

2
(𝑙
2
) ← 0.

while 𝑙
2
≤ ⌊𝑛/2⌋ do

while 𝑙
1
≤ 𝑛 do

while 𝑟 ≤ 𝑛 do

𝑁
2
(𝑙
2
) ← 𝑁

2
(𝑙
2
) + (

𝑛 − 2𝑟 + 𝑙
1
− 1

𝑟 − 𝑙
1
− 𝑙
2
− 1

)(
𝑟

𝑙
1

)(
𝑟 − 𝑙
1

𝑙
2

)/2
𝑛−1

𝑟 ← 𝑟 + 1

end while
𝑙
1
← 𝑙
1
+ 1

end while
𝑙
2
← 𝑙
2
+ 1

end while
return 𝑁

2

Algorithm 2: Calculating Pr(𝑟
2
= 𝑙
2
) for 𝑙

2
= 1, 2, . . . , ⌊𝑛/2⌋.

Table 3: Interval and probability values for runs of length two test for 64-, 128-, 256-, and 512-bit blocks.

𝑛 = 64 𝑛 = 128 𝑛 = 256 𝑛 = 512

Interval Prob. Interval Prob. Interval Prob. Interval Prob.
Box 1 0–5 0.161344 0–12 0.167075 0–27 0.192579 0–57 0.188938
Box 2 6-7 0.260964 13-14 0.174075 28–30 0.194051 58–61 0.178794
Box 3 8 0.149093 15-16 0.209794 31–33 0.222923 62–65 0.210496
Box 4 9-10 0.245287 17–19 0.266590 34–36 0.187853 66–70 0.225615
Box 5 11–32 0.183309 20–64 0.182464 37–128 0.202591 71–256 0.196154

the previous sections to compute the number of sequences
having total of 𝑟 runs, 𝑙

3
of which are of length three,

and hence we calculate the probabilities. Then using these
calculations, we state the last new statistical test in the next
chapter.

Theorem 9. The probability of chosen binary sequence 𝑆 =

𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
with length 𝑛, having 𝑟 runs, 𝑙

1
runs of length one,

𝑙
2
runs of length two, and 𝑙

3
runs of length three, is

Pr (𝑟
𝑡
= 𝑟, 𝑟
1
= 𝑙
1
, 𝑟
2
= 𝑙
2
, 𝑟
3
= 𝑙
3
)

=

(
𝑛−3𝑟+2𝑙1+𝑙2−1

𝑟−𝑙1−𝑙2−𝑙3−1
) ⋅ (
𝑟

𝑙1
) ⋅ (
𝑟−𝑙1

𝑙2
) ⋅ (
𝑟−𝑙1−𝑙2

𝑙3
)

2𝑛−1
.

(29)

Proof. As in Theorems 2, 3, and 7 we illustrate the sequence
as follows:

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟
= 𝑛. (30)

Let us first assume that the last 𝑙
1
are of length 1, 𝑙

2
are of length

2, and 𝑙
3
are of length 3. The rest are of at least length four.

Consider

𝑥
𝑟−𝑙1+1

= ⋅ ⋅ ⋅ = 𝑥
𝑟−1

= 𝑥
𝑟
= 1,

𝑥
𝑟−𝑙1−𝑙2+1

= ⋅ ⋅ ⋅ = 𝑥
𝑟−𝑙1−1

= 𝑥
𝑟−𝑙1

= 2,

𝑥
𝑟−𝑙1−𝑙2−𝑙3+1

= ⋅ ⋅ ⋅ = 𝑥
𝑟−𝑙1−𝑙2−1

= 𝑥
𝑟−𝑙1−𝑙2

= 3,

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟−𝑙1−𝑙2−𝑙3
+

𝑙3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
3 + 3 + ⋅ ⋅ ⋅ + 3

+

𝑙2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
2 + 2 + ⋅ ⋅ ⋅ + 2 +

𝑙1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 + 1 ⋅ ⋅ ⋅ + 1 = 𝑛,

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟−𝑙1−𝑙2−𝑙3
= 𝑛 − 𝑟 − 𝑙

1
− 2𝑙
2
− 3𝑙
3
.

(31)

Notice that 𝑥
𝑖
≥ 4 and we use the change of variables 𝑦

𝑖
=

𝑥
𝑖
− 4 for 𝑖 = 1, 2, . . . , 𝑟 − (𝑙

1
+ 𝑙
2
+ 𝑙
3
).

The number of cases is equal to the number of nonnega-
tive solutions of the following equation:

(𝑥
1
− 4) + (𝑥

2
− 4) + ⋅ ⋅ ⋅ + (𝑥

𝑟−(𝑙1+𝑙2+𝑙3)
− 4)

= 𝑛 − (𝑙
1
+ 2𝑙
2
+ 3𝑙
3
) − 4 (𝑟 − 𝑙

1
− 𝑙
2
− 𝑙
3
) ,

𝑦
1
+ 𝑦
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑟−(𝑙1+𝑙2+𝑙3)
= 𝑛 − 4𝑟 + 3𝑙

1
+ 2𝑙
3
+ 𝑙
3
.

(32)

The number of sequences having conditions, which are stated
above, is equal to the number of nonnegative solutions of (32).
Consequently, by Fact 1, number of desired solutions is

(
𝑛 − 3𝑟 + 2𝑙

1
+ 𝑙
2
− 1

𝑟 − 𝑙
1
− 𝑙
2
− 𝑙
3
− 1

) . (33)
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𝑙
3
← 1, 𝑙

2
← 1, 𝑙

1
← 1, 𝑟 ← 1,𝑁

3
(𝑙
3
) ← 1.

while 𝑙
3
≤ ⌊𝑛/3⌋ do

while 𝑙
2
≤ 𝑛 do

while 𝑙
1
≤ 𝑛 do

while 𝑟 ≤ 𝑛 do

𝑁
3
(𝑙
3
) ← 𝑁

3
(𝑙
3
) + 2(

𝑛 − 3𝑟 + 2𝑙
1
+ 𝑙
2
− 1

𝑟 − 𝑙
1
− 𝑙
2
− 𝑙
3
− 1

) ⋅ (
𝑟

𝑙
1

) ⋅ (
𝑟 − 𝑙
1

𝑙
2

) ⋅ (
𝑟 − 𝑙
1
− 𝑙
2

𝑙
3

)

𝑟 ← 𝑟 + 1

end while
𝑙
1
← 𝑙
1
+ 1

end while
𝑙
2
← 𝑙
2
+ 1

end while
𝑙
3
← 𝑙
3
+ 1

end while
return 𝑁

3

Algorithm 3: Calculating Pr(𝑟
3
= 𝑙
3
) for 𝑙

3
= 1, 2, . . . , ⌊𝑛/3⌋.

Table 4: Interval and probability values for runs of length three test for 64-, 128-, 256-bit blocks.

𝑛 = 64 𝑛 = 128 𝑛 = 256

Interval Prob. Interval Prob. Interval Prob.
Box 1 0–2 0.207825 0–5 0.163209 0–13 0.248734
Box 2 3 0.204319 5–7 0.274500 14-15 0.207164
Box 3 4 0.216732 8 0.154854 16-17 0.213743
Box 4 5-6 0.283245 9-10 0.245059 18–20 0.222144
Box 5 7–21 0.087877 11–42 0.162376 20–85 0.108212

Selection of 𝑙
1
, 𝑙
2
, and 𝑙

3
runs gives us a factor of

(
𝑟

𝑙1
) (
𝑟−𝑙1

𝑙2
) (
𝑟−𝑙1−𝑙2

𝑙3
). Therefore, the number of all binary

sequences of length 𝑛 with conditions stated above is

2 ⋅ (
𝑛 − 3𝑟 + 2𝑙

1
+ 𝑙
2
− 1

𝑟 − 𝑙
1
− 𝑙
2
− 𝑙
3
− 1

) ⋅ (
𝑟

𝑙
1

) ⋅ (
𝑟 − 𝑙
1

𝑙
2

) ⋅ (
𝑟 − 𝑙
1
− 𝑙
2

𝑙
3

) .

(34)

Hence, the probability of a randomly chosen sequence to
have these conditions is

Pr (𝑅 = 𝑟, 𝑅
1
= 𝑙
1
, 𝑅
2
= 𝑙
2
, 𝑅
3
= 𝑙
3
)

=

2 ⋅ (
𝑛−3𝑟+2𝑙1+𝑙2−1

𝑟−𝑙1−𝑙2−𝑙3−1
) ⋅ (
𝑟

𝑙1
) ⋅ (
𝑟−𝑙1

𝑙2
) ⋅ (
𝑟−𝑙1−𝑙2

𝑙3
)

2𝑛
.

(35)

We find the number of sequences having 𝑟 runs, 𝑙
1
, 𝑙
2
,

and 𝑙
3
of which are of lengths one, two, and three, using the

formula above. In order to use probabilities in tests we need
numbers of sequences with length 𝑛 and 𝑙

3
runs of length

two, without depending on the other variables. Corollary 10
enables us to compute the probabilities that are needed for
defining the new statistical test.

Corollary 10. Let 𝑁
3
(𝑙
3
) denote the number of runs of

sequences with exactly 𝑙
3
runs of length three. Clearly, we have

maximum ⌊𝑛/3⌋ runs of length three. If 𝑙
3
> ⌊𝑛/3⌋ sequence

length exceeds 𝑛, then, for 𝑙
3
= 0, 1, 2, . . . , ⌊𝑛/3⌋,

𝑁
3
(𝑙
3
) =

𝑛

∑

𝑙2=0

𝑛

∑

𝑙1=0

𝑛

∑

𝑟=1

2(
𝑛 − 3𝑟 + 2𝑙

1
+ 𝑙
2
− 1

𝑟 − 𝑙
1
− 𝑙
2
− 𝑙
3
− 1

)

⋅ (
𝑟

𝑙
1

) ⋅ (
𝑟 − 𝑙
1

𝑙
2

) ⋅ (
𝑟 − 𝑙
1
− 𝑙
2

𝑙
3

) .

(36)

Since the number of all sequences of length 𝑛 is 2𝑛, probabilities
follow immediately:

Pr (𝑟
3
= 𝑙
3
) =

𝑁
3
(𝑙
3
)

2𝑛
. (37)

Since the number of all sequences of length 𝑛 is 2𝑛,
probabilities follow immediately: Pr(𝑟

3
= 𝑙
3
) = 𝑁

3
(𝑙
3
)/2
𝑛.

And Algorithm 3 enables the calculations of the number of
sequences of length 𝑛 and 𝑙

3
runs of length three and hence

subinterval probabilities can be stated in the same way as
in Example 5. The subinterval probabilities can be seen in
Table 4.

In this chapter we formulate the exact numbers of
sequences with given conditions and hence corresponding
probabilities are given. As we mentioned before calculating
the probabilities for number of runs of lengthmore than three
is unpractical. The probabilities can be stated theoretically in
the same way. However the time consumption of algorithms
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to find the exact values grows exponentially. Therefore, it is
inconvenient to use them in test suites.

4. Tests Descriptions

Golomb’s first postulate is about the weight of a sequence and
inmany test suites the postulate is implementedwith a proper
generalization. On the other hand, the second postulate,
which is about runs of a sequence, is mostly implemented
according to the total number of runs regardless of their
lengths. In this chapter, we define three new statistical tests as
a proper generalization of Golomb’s second postulate which
are runs of length one test, runs of length two test, and runs
of length three test. The subjects of new run tests are 𝑟

1
, 𝑟
2
,

and 𝑟
3
as their names state.

We test the null hypothesis (𝐻
0
) which states that the

sequence is randomly produced. There are two type of errors
which are called type I and type II errors. Type I error occurs
when the data is random and 𝐻

0
is rejected and the second

one occurs when the data is nonrandom and𝐻
0
is accepted.

Probability of type I error is called level of significance
and denoted by 𝛼. A statistical test evaluates the sequence
against this predefined number 𝛼. If p value, produced by
statistical test, is greater than 𝛼, then 𝐻

0
is accepted. Level

of significance is decided based on the applications. We set 𝛼
as 0.01, as in many test suites.

We use 𝜒2 as reference distribution. The measurements
are compared with the expected values. In order to make
a comparison we divide number of runs of lengths one,
two, and three into subintervals, as explained in Section 3.
New tests use the subintervals with the following property:
Pr
𝑖
(𝛼
𝑖
< 𝑅 < 𝛼

𝑖+1
) ≈ 0.2. For example, probabilities of 128-

bit sequences for runs of length two test can be divided into 5
subintervals as follows:

Pr
1
(1 ≤ 𝑟

2
≤ 12) = 0.167075,

Pr
2
(13 ≤ 𝑟

2
≤ 14) = 0.174075,

Pr
3
(15 ≤ 𝑟

2
≤ 16) = 0.209794,

Pr
4
(17 ≤ 𝑟

2
≤ 19) = 0.266590,

Pr
5
(20 ≤ 𝑟

2
≤ 32) = 0.182464.

(38)

After calculating the subinterval probabilities, we count
the number of runs of length 𝑖 in the 𝑚 different sequences
and increment the corresponding subinterval counter by one
according to the counted number of runs. To denote the
number of sequences in the given subinterval we use 𝐹

𝑖
.

Before the last step we calculate the 𝜒2 using the following
formula [16]. Also 𝑁 denotes the number of sequences.
Consider

𝜒
2
=

5

∑

𝑖=1

(𝐹
𝑖
− 𝑁 ⋅ Pr

𝑖
)
2

𝑁 ⋅ Pr
𝑖

. (39)

Lastly p value is calculated according to the given values:

𝑝 value = igamc(
5 − 1

2
,
𝜒
2

2
) . (40)

We test the 𝐻
0
by comparing the produced p value with

the level of significance 𝛼 and accept or reject the𝐻
0
. That is,

if 𝑝 value > 𝛼, 𝐻
0
is accepted; otherwise it is rejected.

New tests can be implemented on sequences of length
𝑛 = 𝑚 ⋅ 25 (where 𝑚 is the block size). This number is a
direct consequence of creating subintervals. In order to get
reliable results, in each subinterval we need at least 5 blocks of
sequences. InNIST test suite it is suggested that the sequences
should be about 20.000 bits long.Therefore, new run tests can
be implemented on short sequences also.

Remark 11 (derivative of a sequence). Let 𝑆 = 𝑠
0
, 𝑠
1
, . . . , 𝑠

𝑛−1

be a binary sequence of length𝑛; then, derivative of 𝑆, denoted
by Δ𝑆 = Δ𝑠

0
, Δ𝑠
1
, . . . , Δ𝑠

𝑛−1
, is defined as follows.

For 𝑖 = 0, 1, . . . , 𝑛 − 1,

Δ𝑠
𝑖
=
{

{

{

𝑠
𝑖
⊕ 𝑠
𝑖+1

if 𝑖 = 0, 1, . . . , 𝑛 − 2

1 if 𝑖 = 𝑛 − 1.
(41)

Counting runs of a sequence by using the definition is
unpractical. So we use the derivative of a sequence to count
the runs. By the definition, all 1’s in the derivative of a
sequence indicate the end of a run. So the number of runs
of a sequence can be defined as the weight of its derivative.

Also we use a variation of derivativeΔ𝑆 of length 𝑛+1 by
adding 1’s at the beginning the sequence Δ𝑆. The variation of
derivative is an important part of new defined run tests, since
the number of runs of different length is determined by this
sequence.

Remark 12. Let 𝑆 = 𝑠
0
, 𝑠
1
, . . . , 𝑠

𝑛−1
be a binary sequence and

derivative of 𝑆 is denoted by Δ𝑆 = Δ𝑠
0
, Δ𝑠
1
, . . . , Δ𝑠

𝑛−1
. Then

Δ𝑆

= Δ𝑠


0
, Δ𝑠


1
, . . . , Δ𝑠



𝑛
is defined as follows:

Δ𝑠


𝑖
=
{

{

{

Δ𝑠
𝑖−1

if 𝑖 = 1, . . . , 𝑛

1 if 𝑖 = 0.
(42)

In order to count the runs at the beginning, we use
a variation of derivative instead of the original derivative
definition. Number of runs of length one in a sequence is
indicated by the number of overlapping occurrences of 11 in
its variation of derivative. In the same way number of runs
of lengths 2 and 3 in a sequence is indicated by the number
of overlapping occurrences of 101 and 1001, respectively.
More generally we can say that number of runs of length
𝑛 is indicated by the overlapping number of occurrences of
100 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

1.

Example 13. Let 𝑆 = 01100010011111001100011101010000

be a binary sequence of length 32, having 15 runs, 6 runs of
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length one, 4 runs of length two, and 3 runs of length three.
Then

Δ𝑠
0
= 𝑠
0
⊕ 𝑠
1
, Δ𝑠
1
= 𝑠
0
⊕ 𝑠
2
, . . . , Δ𝑠

31
= 𝑠
31
⊕ 𝑠
32
, Δ𝑠
32
= 1,

Δ𝑆 = 101001101000010101001001111100001,

Δ𝑆

= 1101001101000010101001001111100001.

(43)

(i) Weight of Δ𝑆 is 15 which corresponds to number of
runs.

(ii) Number of overlapping occurrences of 11 is 6 which
corresponds to number of runs of length one: Δ𝑆 =
11⏟⏟⏟⏟⏟⏟⏟

1

0100 11⏟⏟⏟⏟⏟⏟⏟

1

010000101010010011111⏟⏟⏟⏟⏟⏟⏟⏟⏟

4

00001.

(iii) Number of overlapping occurrences of 101 is 4 which
corresponds to number of runs of length two:

Δ𝑆

= 1101⏟⏟⏟⏟⏟⏟⏟

1

001101⏟⏟⏟⏟⏟⏟⏟

1

000010101⏟⏟⏟⏟⏟⏟⏟⏟⏟

2

001001111100001. (44)

(iv) Number of overlapping occurrences of 1001 is 3 which
corresponds to number of runs length three:

Δ𝑆

= 1101001⏟⏟⏟⏟⏟⏟⏟

1

101000010101001001⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2

111100001. (45)

Before defining new statistical tests, we give the general
idea of the test by following example.

Example 14. Let 𝑆 be a binary sequence of length 221. Let 𝐹
𝑖

and Pr
𝑖
be the number of sequences in given subinterval and

probability of it, respectively.

Step 1. Choose a block size𝑚. In our example we choose𝑚 as
128.

Step 2. Then divide the sequence into 𝑚-bit sequence. Then
we get the set of sequences as follows: S = {𝑆

1
, 𝑆
2
, . . . , 𝑆

2
14}.

Step 3. For each 𝑆
𝑖
count the number of runs of lengths one,

two, and three. And increment the corresponding boxes by 1.
Consider

𝑆
1
= [0, 1, 0, 0, . . . , 1] → 𝑙

1

1
= 33, 𝑙

1

2
= 15, 𝑙

1

3
= 8,

𝑆
2
= [0, 1, 1, 0, . . . , 0] → 𝑙

2

1
= 32, 𝑙

2

2
= 17, 𝑙

2

3
= 9,

.

.

.

𝑆
2
14 = [0, 1, 0, 0, . . . , 1] → 𝑙

2
14

1
= 30, 𝑙

2
14

2
= 16, 𝑙

2
14

3
= 8.

(46)

Table 5: Number of sequences in given intervals for runs of length
one test, runs of length two test, and runs of length three test.

(a) Runs of length one test

Interval Count
𝐹
1

0–27 3.699
𝐹
2

28–31 3.744
𝐹
3

32–34 3.016
𝐹
4

35–38 3.155
𝐹
5

39–128 2.770

(b) Runs of length two test

Interval Count
𝐹
1

0–12 2.806
𝐹
2

13-14 2.838
𝐹
3

15-16 3.476
𝐹
4

17–19 4.331
𝐹
5

20–64 2.933

(c) Runs of length three test

Interval Count
𝐹
1

0–5 2.634
𝐹
2

5–7 4.447
𝐹
3

8 2.532
𝐹
4

9-10 4.082
𝐹
5

11–42 2.689

Step 4. Then, we get Table 5. Count rows of each test
corresponding to the number of sequences whose number of
runs of length one, two, or three is in given interval.

Step 5. 𝜒2 is calculated by the given formula and p value is
computed accordingly:

𝜒
2
=

5

∑

𝑖=1

(𝐹
𝑖
− 2
14
⋅ Pr
𝑖
)
2

214 ⋅ Pr
𝑖

,

𝑝 value = igamc(
5 − 1

2
,
𝜒
2

2
) .

(47)

Step 6. Finally, we get the p value for each test.

(i) Number of runs of length one test: 𝑝 value =

0.357056.
(ii) Number of runs of length two test: 𝑝 value =

0.462207.
(iii) Number of runs of length three test: 𝑝 value =

0.627001.

4.1. Runs of Length One Test. The subject of the first new
run test is runs of length one in the sequences. Test uses
the probabilities calculated in the previous chapter. First, we
collect the algorithms output and generate the data set S. If
the given sequence of length 𝑛 is a long binary sequence,
the sequence is divided into 𝑚-bit blocks and gets a set of
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Δ𝑆


𝑘
= Δ𝑠


𝑘,0
, Δ𝑠


𝑘,1
, . . . , Δ𝑠



𝑘,𝑚

𝑖 ← 0, 𝑙𝑘
1
← 0

while 𝑖 ≤ 𝑚 − 1 do
temp = Δ𝑠

𝑘,𝑖
⋅ 2
1
+ Δ𝑠


𝑘,𝑖+1
⋅ 2
0

if temp = 3 then
𝑙
𝑘

1
← 𝑙
𝑘

1
+ 1

end if
𝑖 ← 𝑖 + 1

end while
Apply 𝜒2 of Goodness of Fit test to the values in 𝐿

1
.

return 𝑝-value.

Algorithm 4: Runs of length one test (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑁
), 𝐿
1

=

{𝑙
1

1
, 𝑙
2

1
, . . . , 𝑙

𝑁

1
}.

Δ𝑆


𝑘
= Δ𝑠


𝑘,0
, Δ𝑠


𝑘,1
, . . . , Δ𝑠



𝑘,𝑚

𝑖 ← 0, 𝑙𝑘
2
← 0

while 𝑖 ≤ 𝑚 − 2 do
temp = Δ𝑠

𝑘,𝑖
⋅ 2
2
+ Δ𝑠


𝑘,𝑖+1
⋅ 2
1
+ Δ𝑠


𝑘,𝑖+2
⋅ 2
0

if temp = 5 then
𝑙
𝑘

2
← 𝑙
𝑘

2
+ 1

end if
𝑖 ← 𝑖 + 1

end while
Apply 𝜒2 of Goodness of Fit test to the values in 𝐿

2
.

return 𝑝-value.

Algorithm 5: Runs of length two test (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑁
), 𝐿
2

=

{𝑙
1

2
, 𝑙
2

2
, . . . , 𝑙

𝑁

2
}.

sequences and generates S = {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑁
} where 𝑁 =

⌊𝑛/𝑚⌋. In our test 𝑚 can be 64, 128, 256, or 512. After
generating the data set, the set 𝐿

1
is formed by counting the

number of runs of length one in each sequence. In order
to find the number of runs of length one, first we find the
derivative of the binary sequence Δ𝑆

𝑘
and then we count

the overlapping occurrences 11 in Δ𝑆
𝑘
for 𝑘 = 1, 2, . . . , 𝑁.

After that we apply 𝜒2 of goodness of fit test to the values
in 𝐿
1
. We propose new run test to implement the idea of

Golomb’s second postulate in statistical randomness test.The
pseudocode of the test is given in Algorithm 4.

4.2. Runs of Length Two Test. After giving the first new
run test, we define runs of length two test. Test uses the
probabilities calculated in the previous chapter. As in the
runs of length one test first, we generate the data set S.
Also in the second test the block size 𝑚 can be 64, 128,
256, or 512. From the data set S, the set 𝐿

2
is formed by

counting the number of runs of length two in each sequence.
Like in the previous test we get the derivative of the binary
sequence Δ𝑆

𝑘
. In order to find the number of runs of length

two, we count the overlapping occurrences 101 in Δ𝑆
𝑘
. Then

we apply 𝜒2 of goodness of fit test to the values in 𝐿
2
.

The second new run test constitutes another approach to
Golomb’s second postulate. The pseudocode of the test is
given as in Algorithm 5.

Δ𝑆


𝑘
= Δ𝑠


𝑘,0
, Δ𝑠


𝑘,1
, . . . , Δ𝑠



𝑘,𝑚

𝑖 ← 0, 𝑙𝑘
3
← 0

while 𝑖 ≤ 𝑚 − 3 do
temp = Δ𝑠

𝑘,𝑖
⋅ 2
3
+ Δ𝑠


𝑘,𝑖+1
⋅ 2
2
+ Δ𝑠


𝑘,𝑖+2
⋅ 2
1
+ Δ𝑠


𝑘,𝑖+3
⋅ 2
0

if temp = 9 then
𝑙
𝑘

3
← 𝑙
𝑘

3
+ 1

end if
𝑖 ← 𝑖 + 1

end while
Apply 𝜒2 of Goodness of Fit test to the values in 𝐿

3
.

return 𝑝-value.

Algorithm 6: Runs of length three test (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑁
), 𝐿
3
=

{𝑙
1

3
, 𝑙
2

3
, . . . , 𝑙

𝑁

3
}.

4.3. Runs of Length Three Test. The last new run test is
runs of length three test. This test also uses the probabilities
calculated in the previous chapter. Data sets are created as in
the previous run tests. Also in the last new run test block size
𝑚 can be 64, 128, or 256.The set 𝐿

3
is formed by using S. The

counting phase of this test is done by finding the total number
of the overlapping occurrences 1001 in Δ𝑆

𝑘
. Then we apply 𝜒2

of goodness of fit test to the values in 𝐿
3
. The pseudocode of

the last new run test is given in Algorithm 6.
Together with three new run tests we implement the idea

of Golomb’s second postulate in statistical randomness tests.
The new run tests, concerning runs of lengths one, two, and
three, constitute a better proper generalization of Golomb’s
idea.

5. Implementations

In order to check the reliability of tests stated in the previous
section, we implement new test together with well-known
statistical tests included in NIST test suite.

In the first part of the experiments we select 5 encryption
algorithms, which are Advanced Encryption Algorithms
finalists, MARS [18], RC6 [19], Rijndael [20], Serpent [21],
and Twofish [22]. 216 pseudorandom sequences of length 128
are generated with encryption of noncorrelated data by using
these algorithms. In other words, in the first experiment we
test the outputs of AES finalists using our tests and NIST test
suite. New run tests are implemented on 214 pseudorandom
sequences of length 128 as described in the previous section
and NIST’s tests are implemented on a binary sequence of
length 221 by concatenating the outputs of algorithms. The
results can be seen in Table 6.

In the second part of the experiments, we use the binary
expansions of 𝑒, 𝜋, and √2. The binary expansions can be
found within the NIST test suite. As in the first part we also
use well-known tests that are included in NIST test suite. We
collect first 219 bits of the binary expansions. In order to apply
new run tests, collected long sequence is divided into 128-bit
blocks; hence we get 212 sequences of length 128. Using the
second implementation we show the performance of new run
tests. The test results can be seen in Table 7.
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Table 6: Test results for the 128-bit outputs of AES finalists.

Statistical tests Rijndael Serpent Mars RC6 Twofish
Frequency test 0.877073 0.385771 0.100285 0.813306 0.667550
Block frequency test 0.722551 0.159257 0.801489 0.475342 0.199609
Run test 0.703085 0.000651 0.003002 0.006542 0.006737
Longest run of ones in a block 0.031990 0.661453 0.229015 0.338937 0.308989
Universal statistical test 0.006504 0.048462 0.007328 0.108877 0.023687
Linear complexity test 0.308490 0.231002 0.159494 0.662083 0.452449
Serial test1 0.016532 0.249989 0.748831 0.307892 0.629330
Serial test2 0.444775 0.504040 0.226215 0.602572 0.923866
Approximate entropy test 0.001276 0.070437 0.322856 0.053931 0.220444
Cumulative sums test—backward 0.271617 0.627426 0.152360 0.822441 0.838133
Cumulative sums test—forward 0.362406 0.501622 0.057094 0.971814 0.877082
Random excursion test 0.949243 0.143578 0.455967 0.307333 0.409744
Random excursions variant test 0.816055 0.042998 0.515433 0.160018 0.041629
Runs of length one test 0.535513 0.076538 0.021622 0.055930 0.008255
Runs of length two test 0.095602 0.339466 0.051861 0.057043 0.309454
Runs of length three test 0.359483 0.213636 0.388663 0.318248 0.081348
1,2Two different versions of serial test in NIST test suite.

Table 7: Test results for the binary expansion of 𝑒, 𝜋, and√2.

Statistical test 𝑒 𝜋 √2

Frequency test 0.818668 0.393382 0.820816
Block frequency test 0.069195 0.191721 0.578760
Run test 0.489904 0.409869 0.894467
Longest run of ones in a
block 0.328344 0.048248 0.537307

Universal statistical test 0.930374 0.915310 0.462562
Linear complexity test 0.927809 0.208269 0.396546
Serial test1 0.924970 0.232328 0.247445
Serial test2 0.719054 0.221747 0.037551
Approximate entropy test 0.707174 0.085060 0.837672
Cumulative sums
test—backward 0.373319 0.333600 0.629320

Cumulative sums
test—forward 0.242488 0.313745 0.838133

Random excursion test 0.892831 0.844143 0.270246
Random excursions variant
test 0.388323 0.760966 0.461287

Runs of length one test 0.241279 0.097072 0.138194
Runs of length two test 0.092391 0.129520 0.158537
Runs of length three test 0.215721 0.114384 0.076582
1,2Two different versions of serial test in NIST test suite.

In the last part of the experiments, we analyse the sensi-
tivity of new run tests. In order to do the implementation, first
we need to generate a nonrandom sequence.

A nonrandom sequence can be generated in two steps.
First, we create a sequence of random numbers 𝑅 = {𝑟

0
, 𝑟
1
,

. . . , 𝑟
𝑛−1
} such that 0 ≤ 𝑟

𝑖
≤ 1 for 𝑖 = 0, 1, . . . , 𝑛 − 1

using RNGCryptoServiceProvider classes of C#. After the
generation we create nonrandom data by using the following
important concept in cryptography defined in [23].

Let 𝑅 = 𝑟
0
, 𝑟
1
, . . . , 𝑟

𝑛−1
be the outputs of a random number

generator and 0 ≤ 𝑟
𝑖
≤ 1 for 𝑖 = 0, 1, . . . , 𝑛 − 1

𝑖 ← 0

while 𝑖 < 𝑛 do
if 𝑟
𝑖
≤ 0.5 + 𝑞 then

𝑠
𝑖
← 0

else
𝑠
𝑖
← 1

end if
𝑖 ← 𝑖 + 1

end while
return 𝑆𝑞

Algorithm 7: Generation of biased sequence 𝑆𝑞 = 𝑠𝑞
0
, 𝑠
𝑞

1
, . . . , 𝑠

𝑞

𝑛−1
.

Definition 15. Let 𝑆 be a binary sequence of length 𝑛 and 𝑖th
element of it is represented as 𝑠

𝑖
; then bias 𝑞 is defined as

follows:

Pr (𝑠
𝑖
= 1) =

1

2
+ 𝑞 Pr (𝑠

𝑖
= 0) =

1

2
− 𝑞. (48)

Clearly, we can say that in a true random sequence we
expect bias as 0. That is, Pr(𝑠

𝑖
= 1) = Pr(𝑠

𝑖
= 0) = 1/2.

Moreover, this is the main idea of Golomb’s first postulate.
To generate nonrandom sequence we need to increase the
bias. Finally using Algorithm 7we can generate a nonrandom
sequence.

Example 16. Let 𝑅 = 𝑟
0
, 𝑟
1
, . . . , 𝑟

𝑛−1
be a random sequence

with 0 ≤ 𝑟
𝑖
≤ 1 for 𝑖 = 0, 1, . . . , 𝑛 − 1; from this sequence we

construct a binary sequence with bias 0.05.The generation of
nonrandom sequence can be summarized as follows:

𝑠
𝑞

𝑗
=
{

{

{

0 if 𝑟
𝑖
≤ 0.5 + 0.05

1 if 𝑟
𝑖
> 0.5 + 0.05,
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Table 8: Test results for nonrandom data sets.

Statistical test 𝑞 = 0.0 𝑞 = 0.01 𝑞 = 0.03

Frequency test 0.375269 0.040143 0.000475
Block frequency test 0.760739 0.802281 0.777309
Run test 0.794303 0.903035 0.859454
Longest run of ones in a block 0.562918 0.257811 0.093295
Nonoverlapping template test (𝑀 = 9, 𝐵 = 000000001) 0.436359 0.377016 0.328182
Overlapping template test (𝑀 = 9) 0.746164 0.642254 0.714769
Linear complexity test 0.693577 0.703492 0.670893
Serial test1 0.680524 0.681398 0.549883
Serial test2 0.538842 0.746869 0.615192
Approximate entropy test 0.372373 0.239482 0.308904
Cumulative sums test—backward 0.372373 0.032272 0.000333
Cumulative sums test—forward 0.429406 0.073315 0.000857
Runs of length one test 0.818485 0.832025 0.809327
Runs of length two test 0.944299 0.790180 0.852354
Runs of length three test 0.574298 0.782597 0.891987
1,2Two different versions of serial test in NIST test suite.

Pr (𝑠𝑞
𝑗
= 1) = 0.55, Pr (𝑠𝑞

𝑗
= 0) = 0.45.

(49)

In the last part of the experiments we generate non-
random datum with different biases using the above con-
struction. We observe the behaviour of new run tests with
respect to the randomness of a sequence.The last results show
the efficiency of the new tests. Moreover new run tests can
detect the deviations in distributions of runs while other tests
cannot. The test results can be seen in Table 8.

6. Conclusion

In cryptography almost all applications use random look-
ing sequences. Therefore randomness is one of the most
important issues for cryptographic algorithms. In fact, using
weak random values enables an adversary to break the whole
system.

In all applications, used values should be of sufficient
size and be random, in such a manner that probability of
any chosen quantity should be small enough to eliminate
an adversary to gain any specific information. Therefore,
sequences and numbers, used as a key in cryptographic
algorithms, should be pseudorandom. Also these sequences
should have good statistical properties. For these reasons
statistical randomness is an important topic. While giving a
mathematical proof that a generator is a randombit generator
is nearly impossible, statistical tests are defined to detect
weaknesses that a generator could have. Hence, they are
considered as an important part of evaluating security of
cryptographic algorithms.

In this work, we propose three new statistical tests based
on Golomb’s second postulate. Finding the real probabilities
related to number of runs of lengths one, two, and three
enables us to compare the observed values accordingly.
New run tests can be used in test suites to test security of
algorithms so that Golomb’s second postulate is implemented

in a proper way. Moreover, these tests can be used as an
evaluation tool for short sequences such as outputs of block
ciphers and hash functions. These tests can detect deviations
in distribution runs which cannot be detected by other tests.

Also, we experiment with some standard encryption
algorithms that behave like pseudorandomnumber generator
and random sequences such as binary expansion of 𝑒, 𝜋, and
√2. Implementations show the consistency of new statistical
test with other well-known statistical tests. It is shown that, in
order to detect the deviation from randomness (in the sense
of distribution of runs), new statistical tests are more efficient
than other statistical tests.

As a future work, we extend statistical tests to approach
Golomb’s randomness postulates more than now. And cor-
relations between new statistical tests and also with other
statistical tests can be examined.
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