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Traditional GARCH models describe volatility levels that evolve smoothly over time, generated by
a single GARCH regime. However, nonstationary time series data may exhibit abrupt changes in
volatility, suggesting changes in the underlying GARCH regimes. Further, the number and times of
regime changes are not always obvious. This article outlines a nonparametric mixture of GARCH
models that is able to estimate the number and time of volatility regime changes by mixing over the
Poisson-Kingman process. The process is a generalisation of the Dirichlet process typically used
in nonparametric models for time-dependent data provides a richer clustering structure, and its
application to time series data is novel. Inference is Bayesian, and a Markov chain Monte Carlo
algorithm to explore the posterior distribution is described. The methodology is illustrated on the
Standard and Poor’s 500 financial index.

1. Introduction

Generalised autoregressive conditional heteroscedastic (GARCH) models estimate time-
varying fluctuations around mean levels of a time series known as the volatility of a time
series [1, 2]. The standard GARCH model specifies the volatility persistence at time t as
a linear combination of previous volatilities and squared residual terms. The persistence is
assumed constant for all t resulting in smooth transitions of volatility levels. However, many
nonstationary time series exhibit abrupt changes in volatility suggesting fluctuating levels
of volatility persistence. In this case the GARCH parameters undergo regime changes over
time. If the maximum number of potential regimes is known Markov-switching GARCH,
models are an appealing option [3–8]. However, often the number of volatility regimes is not
known and can be difficult to preselect. In this case, Bayesian nonparametric mixture models
are attractive because they allow the data to determine the number of volatility regimes or
mixture components. For example, recently nonparametric mixing over the Dirichlet process
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has been described by Lau and So [9] for GARCH(1,1) models, Jensen and Maheu [10] for
stochastic volatility models and Griffin [11] for Ornstein-Uhlenbeck Processes.

The Dirichlet process [12] is most widely applied in nonparametric mixture models
and within a hierarchical framework is introduced in Lo [13] for independent data. Lau and
So [9] extend the work of Lo [13] to time-dependent data where time-varying GARCH
parameters are mixed over the Dirichlet process. The additional flexibility of this approach
allows a range of GARCH regimes, from all observations generated by a single GARCH
model to each observation in the series generated by a unique set of GARCH parameters. Lau
and So [9] conclude with a discussion on the possibility of extending their method to
alternative random probability measures that provide greater clustering flexibility than the
Dirichlet process. We continue this discussion by outlining a novel method for a class of
GARCH mixture models mixed over the Poisson-Kingman process [14, 15] derived from the
stable subordinator (known henceforth as PKSS). To illustrate the richer clustering mecha-
nisms of the PKSS process, we describe three of its special cases—the Dirichlet process [12],
the Poisson-Dirichlet (PD) process [14, 16], and the Normalized Generalized Gamma (NGG)
process [17, 18].

Theoretical developments and recent applications of the PKSS process are discussed
in Lijoi et al. [19]. However, we note that the PD and the NGG processes have yet to be
developed for volatitility estimation, or indeed time series applications in general, and in
this sense the work in this paper is novel. Although the Dirichlet process has now been used
extensively in applications, the implementation of more general nonparametric mixture mod-
els for applied work is not always obvious. We therefore describe three Markov chain Monte
Carlo (MCMC) algorithms. First, we develop a weighted Chinese restaurant Gibbs type
process for partition sampling to explore the posterior distribution. The basis of this algo-
rithm is developed for time-dependent data in Lau and So [9], and we extend it to allow
for the PKSS process. We also note recent developments for the sampling of Bayesian non-
parametric models in Walker [20] and Papaspiliopoulos and Roberts [21] and describe how
these algorithms can be constructed to estimate our model.

The methodology is illustrated through volatility and predictive density estimation of
a GARCH(1,1) model applied to the Standard and Poor’s 500 financial index from 2003 to
2009. Results are compared between a no-mixture model and nonparametric mixtures over
the Dirichlet, PD, and NGG processes. Under the criterion of marginal likelihood the NGG
process performs the best. Also, the PD and NGG process outperforms the previously studied
Dirichlet process which in turn outperforms the no-mixture model. The results suggest that
alternatives to the Dirichlet process should be considered for applications of nonparametric
mixture models to time-dependent data.

The paper proceeds as follows. Section 2 presents a Bayesian mixture of GARCH mod-
els over an unknown mixing distribution, outlines a convenient Bayesian estimator based
on quadratic loss, and describes some of the time series properties of our model. Section 3
discusses the class of random probability measures we consider as the mixing distributions
and details the clustering mechanisms associated with the three special cases mentioned
above via the Pólya Urn representation and the consequences for the posterior distribution
of the partitions resulting from the PKSS process. Our MCMC algorithm for sampling the
posterior distribution is presented in Section 4, and the alternative MCMC algorithms of
Walker [20] and Papaspiliopoulos and Roberts [21] are presented in Section 5. Section 6 des-
cribes the application, and Section 7 concludes the paper.
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2. The Mixture Model

Let Yt be the observed variable at time t, Yt−1 = {Y1, . . . , Yt−1} be the observations from time 1
to time t − 1 and Yt = 0 for t ≤ 0. The GARCH(1,1) model specifies

Yt | Yt−1,
(
ν, χ, ψ

) ∼N
(

0, σ2
t

)
,

σ2
t = ν + χY 2

t−1 + ψσ
2
t−1 ,

(2.1)

where ν > 0, χ ≥ 0, ψ ≥ 0 and σ2
t = 0 for t ≤ 0. In (2.1) the GARCH parameters (ν, χ, ψ)

are not time varying implying that volatility persistence is constant over time with smooth
transitions of volatility levels. To allow abrupt changes to volatilities, we extend (2.1) by writ-
ing Zt = {νt, χt, ψt}, νt > 0, χt ≥ 0, ψt ≥ 0 for t = 1, . . . , n and Zt = {Z1, . . . , Zt} as joint latent
variables from time 1 to time t; that is, the model is now a dynamic GARCH model with each
observation potentially generated by its own set of GARCH parameters as follows:

Yt | Yt−1,Zt ∼N
(

0, σ2
t

)
,

σ2
t = νt + χtY 2

t−1 + ψtσ
2
t−1.

(2.2)

Note that in model (2.2) the data controls the maximum potential number of GARCH regi-
mes, the sample size n. In contrast, finite switching models preallocate a maximum number
of regimes typically much smaller than the number of observations. As the potential number
of regimes gets larger, estimation of the associated transition probabilities and GARCH
parameters in finite switching models become prohibitive. However, assuming that the latent
variables Zn = {Z1, . . . , Zn} are independent of each other and completing the hierarchy by
modelling the GARCH parameters contained in Zn with an unknown mixing distribution, G,
with law P the model becomes manageable, that is,

Zt | G iid∼ G
(
dν, dχ, dψ

)
,

G ∼ P
(2.3)

with Zn and the mixing distribution, G, parameters that we may estimate. Depending on the
posterior distribution of the clustering structure associated with the mixing distribution, the
results may suggest that Zt = Z for t = 1, 2, . . . , n (a single regime GARCH model) up to a
unique Zt for each t indicating a separate GARCH regime for each time point. This illustrates
the flexibility of the model.

We write s(Zn, G) as a positive integrable function of the latent variables, Zn, and the
mixing distribution, G, to represent various quantities that may be of interest for inference.
Under quadratic loss the Bayesian estimator is the posterior expectation E[s(Zn, G) | Yn]. For
our model this is an appealing estimator because it does not require the posterior of G but
only the posterior distribution of the sequence {Z1, . . . , Zn}, that is,

E[s(Zn, G) | Yn] =
∫

Zn

h(Yn,Zn)π(dZn| Yn), (2.4)
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because

h(Yn,Zn) =
∫

G
s(Zn, G)π(dG | Yn,Zn), (2.5)

where π(dG | Yn,Zn) represents the posterior law of the random probability measure G, and
π(dZn | Yn) is the posterior distribution of the sequence Zn = {Z1, . . . , Zn}.

In Lau and So [9] the unknown mixing distribution for the GARCH parameters, G, is
taken to be the Dirichlet process. This paper combines the theoretical ground work of Lijoi
et al. [19, 22] with Lau and So [9] by allowing G to be the PKSS process. The result is a non-
parametric GARCH model which contains (among others) the Dirichlet process typically
used in time series as well as the PD and NGG processes as special cases.

Understanding conditions for stationarity of a time series model is fundamental for
statistical inference. Since our model is specified with zero mean over time, we provide a
necessary and sufficient condition for the existence of a secondary order stationary solution
for the infinite mixture of GARCH(1,1) models. The derivation closely follows Embrechts
et al. [23] and Zhang et al. [24], and we state the conditions without giving proof. By letting
εt be a standard normal random variable and replacing Y 2

t−1 by σ2
t−1ε

2
t−1 then, conditioned on

Yi for i = 1, . . . , t − 1 and {νi, χi, ψi} for i = 1, . . . , t, σ2
t in (2.2) becomes

σ2
t = νt + χtY 2

t−1 + ψtσ
2
t−1 = νt +

(
χtε

2
t−1 + ψt

)
σ2
t−1. (2.6)

Here (2.6) is well known to be an univariate stochastic difference equation expressed as

Xt = Bt +AtXt−1, (2.7)

where Xt = σ2
t , At = χtε

2
t−1 + ψt, and Bt = νt. The stationarity of (2.7) implies the secondary

order stationarity of (2.2), that is, Xt
d→ X as t → ∞ for some random variable X, and X

satisfies X = B + AX, where the random variable pair (At, Bt)
d→ (A,B) as t → ∞ for some

random variable pairs (A,B). The stationary solution of (2.7) holds if E[ln+|At|] < 0 and
E[ln+|Bt|] < ∞, where ln+|x| = ln[max{x, 1}] as given in Embrechts et al. [23, Section 8.4,
pages 454–481] and Zhang et al. [24, Theorems 2 and 3], Vervaat [25], and Brandt [26]. So
the conditions for the stationarity in our model are

∫

(0,∞)
ln+|ν|H1(dν) <∞,

∫

(0,∞)2
E
[
ln+
∣∣∣χε2 + ψ

∣∣∣
]
H2
(
dχ, dψ

)
< 0, (2.8)

where the expectation for the second condition is applicable only to ε, which is a standard
normal random variable, and both H1 =

∫
(0,∞)2 H(dν, dχ, dψ) and H2 =

∫
(0,∞)H(dν, dχ, dψ)

are marginal measures of H = E[G], the mean measure of G.
Now consider the first two conditional moments from model (2.2). Obviously, the first

conditional moment is zero, and the second conditional moment is identical to σ2
t in (2.6).

The distinguishing feature of model (2.2) is that parameters change over time and have the
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distribution G. Considering σ2
t as a scale of the model results in a scale mixture model over

time. From the representation in (2.6), σ2
t could be rewritten as

σ2
t = νt +

t−1∑

j=1

νt−j
t∏

i=t−j+1

(
χiε

2
i−1 + ψi

)
. (2.9)

The unconditional second moment could be derived according to this representation
by marginalising over all the random variates. Also, σ2

t in (2.9) can be viewed as a weighted
sum of the random sequence {νt, . . . , ν1}, and the random weights decay to zero at a polyno-
mial rate, as long as the model is stationary. In fact, the rate could be irregular over time, and
this is a substantial difference between the mixture of GARCH models and the traditional
GARCH models.

Finally, one might be also interested in the connection between models such as (2.2)
with parameters having the distribution (2.3) and those having the Markov-switching charac-
teristic that result in Markov-switching GARCH models [6, 7]. Markov-switching GARCH
models have a similar structure to (2.3), and we can replace (2.3) by

Zt | (St = i) =
{
νi, χi, ψi

}
,

St | St−1 ∼ ηij = P
(
St = i | St−1 = j

)
, for i, j = 1, . . . , K,

(2.10)

where St denotes the state variables, usually latent and unobserved. Marginalising the
current state variable St in (2.10) yields the conditional distribution for Zt given the previous
state St−1,

Zt | St−1 ∼
K∑

i=1

ηijδ(νi,χi,ψi). (2.11)

So (2.11) could be a random probability measure but with a finite number of components and
dependent on previous state St−1.

3. The Random Probability Measures

We now describe PKSS process and detail the Dirichlet, the PD, and NGG processes to illus-
trate how the more general PKSS process allows for richer clustering mechanisms. Let Z be a
complete and separable metric space and B(Z) be the corresponding Borel σ-field. Let G ∈ G
be a probability measure on the space (Z,B(Z)) where G is the set of probability measures
equipped with the suitable σ-field B(G) and the corresponding probability measure P (see
chapter 2 of Ghosh and Ramamoorthi [27] for more details). The random probability measure
G is sampled from the law P and operates as the unknown mixing distribution of the GARCH
parameters in (2.2).

All random probability measures within the class of PKSS processes feature an almost
surely discrete probability measure represented as

G(A) =
∞∑

i=1

WiδZi(A) for A ∈ B(Z), (3.1)
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where δZi denotes the dirac delta measure concentrated at Zi, in which the sequence of the
random variables {Z1, Z2, . . .} has a nonatomic probability measure H and the sequence of
the random variables {W1,W2, . . .} sums to 1 [28]. Also, the mean measure of the process G
with respect to P is H as follows:

E[G(A)] = H(A) for A ∈ B(Z). (3.2)

A common characterization of (3.1) is the well-known Pólya Urn prediction distri-
bution described in Pitman [28]. For the purposes of this paper the Pólya Urn warrants fur-
ther discussion for two reasons. First, it is important for developing our MCMC algorithm
to explore the posterior distribution discussed in Section 4. Second, it explicitly details how
the PKSS process is a generalisation of the Dirichlet, PD, and NGG processes and how the
different cluster tuning mechanisms operates.

Let {Z1, . . . , Zr} be a sequence with size r drawn from G where r is a positive integer,
and let pr denote a partition of integers {1, . . . , r}. A partition pr = {Cr,1, . . . , Cr,Nr} of size Nr

contains disjoint clusters Cr,j of size er,j indicated by the distinct values {Z∗
1, . . . , Z

∗
Nr
}. The

Pólya Urn prediction distribution for the PKSS process can now be written as

π(dZi+1 | Zi) =
Vi+1,Ni+1

Vi,Ni

H(dZi+1) +
Vi+1,Ni

Vi,Ni

Ni∑

j=1

(
ei,j − α

)
δZ∗

j
(dZi+1), (3.3)

for i = 1, . . . , r − 1, π(dZ1) = H(dZ1), V1,1 = 1 and

Vi,Ni = (i −Niα)Vi+1,Ni + Vi+1,Ni+1. (3.4)

The Pólya Urn prediction distribution is that Zi+1 will take a new value from H with
mass Vi+1,Ni+1/Vi,Ni and one of the existing values, {Z∗

1, . . . , Z
∗
Ni
}, with mass (i − Niα)

Vi+1,Ni /Vi,Ni . This yields a joint prior distribution

π(dZ1, dZ2, . . . , dZn) = π(dZ1)
n−1∏

i=1

π (dZi+1 | Z1, . . . , Zi), (3.5)

as the product of easily managed conditional densities useful for our MCMC scheme below.
The PKSS process can be represented as either the Dirichlet, PD, or NGG processes in

(3.3) as the following.

(1) Taking 0 ≤ α < 1 and

Vi,Ni =
Γ(i)

Γ(i + θ)

Ni∏

j=1

(
θ +

(
j − 1

)
α
)
, (3.6)

for θ > −α results in the PD process.
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(2) Setting that α = 0

Vi,Ni =
Γ(i)

Γ(i + θ)
θNi , (3.7)

and the PD process becomes the Dirichlet process.

(3) The NGG process takes 0 ≤ α < 1, such that

Vi,Ni =
αNi−1eβ

Γ(i)

i−1∑

k=0

(
i − 1
k

)
(−1)kβk/αΓ

(
Ni − k

α
, β

)
, (3.8)

for β > 0.

In the above Γ(·) is the complete Gamma function, and Γ(·, ·) is the incomplete Gamma
function. Examining of the predictive distribution (3.3), the ratios Vi+1,Ni+1/Vi,Ni and
Vi+1,Ni /Vi,Ni indicate the difference between the Dirichlet process and the other processes.
Substituting the values of Vi,Ni into the allocation mass for each process reveals that the
ratios do not depend on the number of existing clusters, Ni. Rather, the Dirichlet process
assigns probability to a new value independent of the number of existing clusters, and the
rate of increment of partition size is a constant. In contrast, the PD and NGG processes assign
probability to a new value dependent on the number of existing clusters. The comparison of
these three special cases illustrates the richer clustering mechanisms of the PKSS process over
the Dirichlet process. Furthermore, the PKSS process contains many other random measures,
and these measures would be of interest for their clustering behaviors in further investigation.

Turning to the distribution of partitions, Pitman [28] shows that the joint prior distri-
bution of the sequence {Z1, . . . , Zn} is

π(dZ1, . . . , dZr) = Vr,Nr

Nr∏

j=1

Γ
(
er,j − α

)

Γ(1 − α) H
(
dZ∗

j

)
. (3.9)

Notice that the joint distribution is dependent on the partition pr of r integers
{1, . . . , r}, and we can decompose (3.9) into π(Z∗

1, . . . , Z
∗
Nr
,pr) = π(dZ∗

1, . . . , dZ
∗
Nr

| pr)π(pr).
The distribution of the partition, π(pr), is

π(pr) = Vr,Nr

Nr∏

j=1

Γ
(
er,j − α

)

Γ(1 − α) (3.10)

and is known as the Exchangeable Partition Probability Function. For many nonparametric
models, this representation also helps MCMC construction by partitioning the posterior dis-
tribution in the form of Exchangeable Partition Probability Function. To do so it is necessary to
obtain the posterior distribution of the partition π(pn | Yn) analytically. Then we could gene-
rate pn and approximate the posterior expectation. However, this is not possible in general.
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So we consider the joint distribution of {Z∗
Nn
,pn} instead. We write the posterior expectation

of s(Zn, G) as a marginalization over the joint posterior distribution of {Z∗
Nn
,pn} by

E[s(Zn, G) | Yn] =
∑

pn

∫

Z
· · ·
∫

Z︸ ︷︷ ︸
Nn

h
(
Yn,

{
Z∗
Nn
,pn
})
π
(
dZ∗

Nn
,pn | Yn

)
.

(3.11)

Here the joint posterior distribution of (Z∗
Nn
,pn) is given by

π
(
dZ∗

Nn
,pn | Yn

)
=

∏n
t=1φ

(
Yt | 0, σ2

t

({
Z∗
Nt
,pt
}))

π
(
dZ∗

Nn
,pn
)

∑
pn

∫
Z · · · ∫Z

∏n
t=1φ

(
Yt | 0, σ2

t

({
Z∗
Nt
,pt
}))

π
(
dZ∗

Nn
,pn
) , (3.12)

where φ(x | a, b) represents a normal density with mean a and variance b evaluated at x. The
variance σ2

t ({Z∗
Nt
,pt}) is identical to σ2

t and emphasizes that σ2
t is a function of {Z1, Z2, . . . , Zt}

represented by ({Z∗
Nt
,pt}). This representation leads to the development of the MCMC algo-

rithm in the next section. For the sake of simplicity, we prefer the following expression for the
variance:

σ2
t

({
Z∗
Nn
,pn
})

= σ2
t (Zn) = σ

2
t

({
Z∗
Nt
,pt
})

= σ2
t (Zt) = σ

2
t . (3.13)

We emphasise that we can always express Zn by two elements, namely, a partition and
distinct values. In this case pn is a partition of the integers {1, . . . , n} that are the indices of
Zn, and Z∗

Nn
= {Z∗

1, . . . , Z
∗
Nn

} represents the distinct values of Zn. The partition pn locates the
distinct values from Zn to Z∗

Nn
or vice versa. As a result, we have the following equivalent

representations:

Zn = {Z1, . . . , Zn} =
{
Z∗

1, . . . , Z
∗
Nn

}
=
{
Z∗
Nn
,pn
}
. (3.14)

In time series analysis, we usually consider the first t items, Zt = {Z1, . . . , Zt}, the cor-
responding partition, pt, and distinct values, Z∗

Nt
, such that

Zt =
{
Z∗
Nt
,pt
}
. (3.15)

Here Zt contains the first t elements of Zn = {Z1, . . . , Zn}, and adding {t+1, . . . , n} to pt would
yield pn according to Z∗

Nt
and the distinct values of {Zt+1, . . . , Zn}. Combining Z∗

Nt
and the

distinct values of {Zt+1, . . . , Zn} gives Z∗
Nn

providing the connection between {Z∗
Nt
,pt} and

{Z∗
Nn
,pn}. To simplify the likelihood expression and the sampling algorithm, we replace

σ2
t (Zt) = σ

2
t ({Z∗

Nt
,pt}) by σ2

t ({Z∗
Nn
,pn}) since the subscript t in σ2

t already tells us that the first
t items of Zn are considered. We then have a more accessible representation of the likelihood
function as

L
(
Yn |

{
Z∗
Nn
,pn
})

=
n∏

t=1

φ
(
Yt | 0, σ2

t

({
Z∗
Nn
,pn
}))

, (3.16)
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and (3.12) becomes

π
(
dZ∗

Nn
,pn | Yn

)
=

L
(
Yn |

{
Z∗
Nn
,pn
})
π
(
dZ∗

Nn
,pn
)

∑
pn

∫
Z · · · ∫Z L

(
Yn |

{
Z∗
Nn
,pn
})
π
(
dZ∗

Nn
,pn
) . (3.17)

We are now equipped to describe the MCMC algorithm.

4. The Algorithm for the Partitions and Distinct Values Sampling

Our Markov chain Monte Carlo (MCMC) sampling procedure generates distinct values and
partitions alternatively from the posterior distribution, π(dZ∗

Nn
,pn | Yn). For S iterations our

MCMC algorithm is

(1) Initialise Z∗
Nn

= (Z∗
Nn

)[0].

For s = 1, 2, . . . , S.

(2) Generate p[s]
n from π(p[s]

n | (Z∗
Nn

)[s−1],Yn).

(3) Generate (Z∗
Nn

)[s] from π(dZ∗
Nn

| p[s]
n ,Yn).

End.

To obtain our estimates we use the weighted Chinese restaurant Gibbs type process
introduced in Lau and So [9] for the time series models mixed over Dirichlet process. We
have extended this scheme to allow for the more general PKSS process. In what follows,
the extension from the Dirichlet to the PKSS lies in the weights of the Pólya Urn predictive
distribution in (3.3).

The main idea of this algorithm is the “leave one out” principle that removes item t
from the partition and then replaces it. This will give an update on both Z∗

Nn
and pn. This

idea has been applied in sampling of partitions in many Bayesian nonparametric models of
Dirichlet process (see [17] for an review). The strategy is a simple evaluation on the product
of the likelihood function (3.16) and the Pólya Urn distribution (3.3) ofZt, conditioned on the
remaining parameters, yielding a joint updating distribution of Z∗

Nn
and pn. We now describe

the distributions π(pn | Z∗
Nn
,Yn) and π(dZ∗

Nn
| pn,Yn) used in the sampling scheme.

Define pn,−t to be the partition pn less item t. Then pn,−t = {C1,−t, C2,−t, . . . , CNn,−t ,−t} with
corresponding distinct values given by Z∗

Nn,−t
= {Z∗

1,−t, Z
∗
2,−t, . . . , Z

∗
Nn,−t,−t}. To generate from

π(pn | Z∗
Nn
,Yn) for each t = 1, . . . , n, the item t is assigned either to a new cluster CNn,−t+1,−t;

that is, empty before t is assigned with probability

π
(
p̃Nn,−t+1

) × ∫Z L
(
Yn |

{
Z̃∗
Nn,−t+1, p̃Nn,−t+1

})
H
(
dZNn,−t+1,−t

)

π
(
p̃Nn,−t+1

) × ∫Z L
(
Yn |

{
Z̃∗
Nn,−t+1, p̃Nn,−t+1

})
H
(
dZNn,−t+1,−t

)
+
∑Nn,−t

j=1 π
(
p̃j
) × L

(
Yn |

{
Z̃∗
j , p̃j

})

(4.1)
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or to an existing cluster, Cj,−t for j = 1, . . . ,Nn,−t with probability

π
(
p̃j
) × L

(
Yn |

{
Z̃∗
j , p̃j

})

π
(
p̃Nn,−t+1

) × ∫Z L
(
Yn |

{
Z̃∗
Nn,−t+1, p̃Nn,−t+1

})
H
(
dZNn,−t+1,−t

)
+
∑Nn,−t

j=1 π
(
p̃j
) × L

(
Yn |

{
Z̃∗
j , p̃j

}) ,

(4.2)

where

p̃j = pn,−t ∪
{
t ∈ Cj,−t

}
,

Z̃∗
j =

{
Z∗
Nn,−t,−t, Zt = Z∗

j,−t
}
,

(4.3)

for j = 1, . . . ,Nn,−t + 1. In addition, if j = Nn,−t + 1 and a new cluster is selected, a sample of
Z∗
Nn,−t+1,−t is drawn from

L
(
Yn |

{
Z̃∗
Nn,−t+1, p̃Nn,−t+1

})
H
(
dZ∗

Nn,−t+1,−t
)

∫
Z L
(
Yn |

{
Z̃∗
Nn,−t+1, p̃Nn,−t+1

})
H
(
dZ∗

Nn,−t+1,−t
) (4.4)

for the next iteration.
To generate from π(Z∗

Nn
| pn,Yn) for j = 1, . . . ,Nn generate Z∗

j given {Z∗
1, . . . , Z

∗
Nn

} \
{Z∗

j }, pn, and Yn from the conditional distribution

π
(
Z∗
j | Z∗

Nn
\
{
Z∗
j

}
,pn,Yn

)
=

L
(
Yn |

{
Z∗
Nn
,pn
})
H
(
dZ∗

j

)

∫
Z L
(
Yn |

{
Z∗
Nn
,pn
})
H
(
dZ∗

j

) . (4.5)

This step uses the standard Metropolis-Hastings algorithm to draw the posterior samples Z∗
j .

Precisely, (4.5) is given by

π
(
dZ∗

j | Z∗
Nn

\
{
Z∗
j

}
,pn,Yn

)
=

∏n
t=1φ

(
Yt | 0, σ2

t

({
Z∗
Nn
,pn
}))

H
(
dZ∗

j

)

∫
Z
∏n

t=1φ
(
Yt | 0, σ2

t

({
Z∗
Nn
,pn
}))

H
(
dZ∗

j

) . (4.6)

In (4.6) all elements in the sequence {Z∗
1, . . . , Z

∗
Nn

}, conditional on pn and Yn, are
no longer independent, and they require to be sampled individually, and conditional the
remaining elements.

We note that the special case of the above algorithm can be found for independent data
of the normal mixture models from West et al. [29] (see also [17]). Taking χ = 0 and ψ = 0 in
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(2.2) yields Zt = νt = σ2
t for i = 1, . . . , n with distribution G. Let G be a Dirichlet process with

parameter θH. Then (4.1) and (4.2) become

θ × ∫Z φ(Yt | 0, Z)H(dZ)

θ × ∫Z φ(Yt | 0, Z)H(dZ) +
∑Nn,−t

j=1 ej,−t × φ
(
Yt | 0, Z∗

j,−t
) ,

ej,−t × φ
(
Yt | 0, Z∗

j,−t
)

θ × ∫Z φ(Yt | 0, Z)H(dZ) +
∑Nn,−t

j=1 ej,−t × φ
(
Yt | 0, Z∗

j,−t
) .

(4.7)

Furthermore, the joint distribution of {Z1, . . . , ZNn} conditional on pn and Yn is given by

Nn∏

j=1

∏

t∈Cj

φ
(
Yt | 0, Z∗

j

)
H
(
dZ∗

j

)
. (4.8)

In this case {Z1, . . . , ZNn} are independent in both the prior, π(Z∗
Nn

| pn), and the posterior,
π(Z∗

Nn
| pn,Yn). However, it is not true in the more general dynamic GARCH model we

consider.
Usually, the parameters of interest are both the sequence {σ1, . . . , σn} and the predictive

density
∫
Z k(Yn+1 | Yn,Zn, Zn+1)G(dZn+1). These two sets of parameters are functions of Zn

under the mixture of GARCH(1,1) model, and the Bayesian estimators are taken to be the
expected means as outlined in Section 2. That is, writing the volatility as the vector σn(Zn) =
{σ1(Zn), . . . , σn(Zn)}

E[σn(Zn) | Yn] =
∑

pn

∫

Z
· · ·
∫

Z
σn
(
Z∗
Nn
,pn
)
π
(
dZ∗

Nn
,pn | Yn

)
,

E

[∫

Z
k(Yn+1 | Yn, Zn+1,Zn)G(dZn+1) | Yn

]
=
∑

pn

∫

Z
· · ·
∫

Z

∫

Z
k
(
Yn+1 | Yn, Zn+1,Z∗

Nn
,pn
)

× π
(
dZn+1 | Z∗

Nn
,pn
)
π
(
dZ∗

Nn
,pn | Yn

)
,

(4.9)

where π(dZ∗
Nn
,pn | Yn) denotes the posterior distribution of Zn = {Z∗

Nn
,pn} and π(dZn+1 |

Z∗
Nn
,pn) represents the Pólya Urn predictive density of Zn+1 given Zn.

5. Alternative Algorithmic Estimation Procedures

We now outline how the algorithms of Walker [20] and Papaspiliopoulos and Roberts [21]
may be applied to our GARCH(1,1) model mixed over the PKSS process. First, consider the
approach in Walker [20]. Beginning with (3.1) the weights can be written as

Wi =
∫

(0,Wi)
du =Wi

∫

(0,∞)
W−1

i I{(0,Wi)}(u)du =Wi

∫

(0,∞)
U(u | 0,Wi)du, (5.1)
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where I{(0,Wi)}(u) denotes the indicator function that I{(0,Wi)}(u) = 1 if 0 < u < Wi and
I{(0,Wi)}(u) = 0 otherwise, and U(u | 0,Wi) represents the uniform density on the interval
(0,Wi). Then, substituting (5.1), but without the integral over U, into (3.1), we obtain the
joint measure

G(dz, du) =
∞∑

i=1

WiU(u | 0,Wi)duδZi(dz). (5.2)

Furthermore, we can take the classification variables {δ1, . . . , δn} to indicate the points
{Zδ1 , . . . , Zδn} taken from the measure. The classification variables {δ1, . . . , δn} take values
from the integers {1, 2, . . .} and assign a configuration to model (2.2) so that the expression of
the likelihood is simpler without the product of sums. So, combining (5.2) with model (2.2)
yields

L(Yn,un,δn | Z,W) =
n∏

t=1

WδtU(ut | 0,Wδt)φ
(
Yt | 0, σ2

t (Zδt)
)
, (5.3)

where δn = {δ1, . . . , δn} and Zδt = {Zδ1 , . . . , Zδt} for t = 1, . . . , n. Here the random jumps that

build up the random measure G in (5.2) can be reexpressed as W1
d= V1 and Wi

d= Vi
∏i−1

j=1(1 −
Vj) for j = 2, 3, . . .. This is called the stick-breaking representation. Unfortunately, up to now,
this representation includes only the Poisson-Dirichlet processe is (α, θ) where Vis are Beta(1−
α, θ+iα) random variables. Further development will be required to fully utilise the approach
of Walker [20] for the PKSS process in general.

The likelihood (5.3) can be written as

L(Yn,un,δn | Z,V) =
n∏

t=1

Wδt(V)U(ut | 0,Wδt(V))φ
(
Yt | 0, σ2

t (Zδt)
)
, (5.4)

and MCMC algorithms for sampling un, δn, and V are straightforward and already included
in Walker ([20], Section 3). To complete the algorithm for our model it requires sampling from
Z. This can be achieved by sampling from Zj for all {j : δt = j} from

∏n
t=1φ

(
Yt | 0, σ2

t (Zδt)
)
H
(
dZj

)

∫
Z
∏n

t=1φ
(
Yt | 0, σ2

t (Zδt)
)
H
(
dZj

) , (5.5)

otherwise sample Zj from H(dZ) if there is no j equal to δt. Notice that there are infinite Zjs
contained in Z, but it is only required to sample at most n of them. The number of sampled
Zjs varies over iterations (see also ([20], Section 3) for details).

Papaspiliopoulos and Roberts [21] suggest an approach similar to Walker [20]. Con-
sider the classification variables {δ1, . . . , δn} and the stick-breaking representation of {W1,
W2, . . .} contributed by {V1, V2, . . .} defined above. Then the likelihood is immediately given
by

L(Yn,δn | Z,V) =
n∏

t=1

Wδt(V)φ
(
Yt | 0, σ2

t (Zδt)
)
. (5.6)
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The most challenging task is the reallocation of n observations over the infinite components
in (3.1), equivalent to sampling the classification variables {δ1, . . . , δn} over the MCMC itera-
tions. Here we will briefly discuss this task when it involves the variance σ2

t (Zδt) for our
model (see also Papaspiliopoulos and Roberts [21, Section 3]. Let

δn
(
i, j
)
=
{
δ1, . . . , δi−1, j, δi+1, . . . , δn

}
(5.7)

be the vector produced from δn by substituting the ith element by j. This is a proposed move
from δn to δn(i, j) where j = 1, 2, . . .. Notice that it is not possible to consider an infinite num-
ber ofZjs directly since we only have a finite number. Instead, we can employ the Metropolis-
Hastings sampler that considers a proposal probability mass function which requires only a
finite number of Zjs. The probabilities for the proposed moves are given by

qn
(
i, j
)
=

Wj

C(δn)
×

⎧
⎪⎨

⎪⎩

n∏

t=1
φ
(
Yt | 0, σ2

t (Zδt)
)|δi=j , for j = 1, . . . ,max{δ1, . . . , δn}

M(δn), for j > max{δ1, . . . , δn},
(5.8)

where M(δn) = maxj=1,...,max{δ1,...,δn}
∏n

t=1φ(Yt | 0, σ2
t (Zδt))|δi=j , and the proportional constant

is given by C(δn) =
∑max{δ1,...,δn}

j=1 Wj ×
∏n

t=1φ(Yt | 0, σ2
t (Zδt))|δi=j + (1 − ∑max{δ1,...,δn}

j=1 Wj) ×
M(δn). Then simulate a Uniform(0, 1) random variable Ui and accept the proposal to move
to δn(i, j) = {δ1, . . . , δi−1, δi = j, δi+1, . . . , δn} if j satisfies

∑j−1
�=0 qn(i, �) < Ui ≤ ∑j

�=1 qn(i, �),
where qn(i, 0) = 0. The acceptance probability for this Metropolis-Hastings is given by

α
(
δn,δn

(
i, j
))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if j ≤ max{δ1, . . . , δn} and max
{
δn
(
i, j
)}

= max{δ1, . . . , δn}

min

{

1,
C(δn)

C
(
δn
(
i, j
))

M
(
δn
(
i, j
))

∏n
t=1φ

(
Yt | 0, σ2

t (Zδt)
)

}

if j ≤ max{δ1, . . . , δn} and max
{
δn
(
i, j
)}

< max{δ1, . . . , δn}

min

{

1,
C(δn)

C
(
δn
(
i, j
))

∏n
t=1φ

(
Yt | 0, σ2

t (Zδt)
)|δi=j

M(δn)

}

if j > max{δ1, . . . , δn}.

(5.9)

This completes the task for sampling δn. Finally, similar to Walker [20], sampling Z only
needs (5.5). That is, for all {j : δt = j}, sample Zj from (5.5), otherwise sample Zj from
H(dZ) if there is no j equal to δt.

6. Application to the Standard & Poor’s 500 Financial Index

The methodology is illustrated on the daily logarithm returns of the S&P500 (Standard &
Poor’s 500) financial index, dated from 2006 Jan 03 to 2009 Dec 31. The data contains a total
of 1007 trading days and is available from the Yahoo Finance (URL: http://finance.yahoo
.com/). The log return is defined as Yt = 100(ln It − ln It−1) where It is the index at time t. The
algorithm described in Section 4 is used to estimate the nonparametric mixture models.
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Figure 1: Volatility estimates.

To compare the three different mixture models in Section 3, G is allocated in the Diri-
chlet process, the PD process, and the NGG process. In each case, the mean process is denoted
H and is a Gamma-Dirichlet distribution given byH(dν, dχ, dψ) = H1(dν)H2(dχ, dψ) where
H1(dν) is the Gamma(1,1) distribution andH2(dχ, dψ) is the Dirichlet(1,1,1) distribution. We
set the parameters of each process such that the variance of each process evaluated over the
same measure is equal. This reslts in θ = 2.3538 for the Dirichlet process, θ = 0.6769 and
α = 1/2 for the PD and β = 1 and α = 1/2 for the NGG. We also compare the results to a
no mixture GARCH(1,1) model in which the parameters (ν, χ, ψ) have a prior distribution
H1(dν)H2(dχ, dψ). We initialise the MCMC algorithm with a partition that separates all
integers, that is, pn = {C1 = {1}, C2 = {2}, . . . , Cn = {n}}. We run the MCMC algorithm for
20,000 iterations of which the first 10,000 iterations are discarded. The last 10,000 iterations
are considered a sample from the posterior density of {Z∗

n,pn}.
Figure 1 contains the volatility estimates (fitted data) for the no-mixture model, the

Dirichlet process, the DP process, and the NGG process. The no mixture model, the Dirichelt
process, and the PD process appear to give similar results. However, it is easy to distinguish
the NGG process from the other models since the volatility estimates of the NGG process
appear to better fit the observed spikes in the data. Figure 2 presents the predictive densities
for each model. Again, the no-mixture model, the Dirichlet process, and the PD process give
similar predictive density estimates in the sense that the distribution tails are all similar.
However, the NGG process model estimates a predictive density with substantially wider
tails than the other three models. Figures 1 and 2 suggest that the Dirichlet and PD processes
allocate fewer clusters and consider the periods of increased volatility as outliers within the
data. On the other hand the NGG process allocates more clusters and incorporates the periods
of increased volatility directly into its predictive density.

Finally, we evaluate the goodness of fit in terms of the marginal likelihoods. The loga-
rithm of the marginal likelihoods of the no mixture model, the Dirichlet process model,
PD process model, and the NGG process model are −1578.085, −1492.086, −1446.275, and
−1442.269, respectively. Under the marginal likelihood criterion all three mixture models
outperform the GARCH(1,1). Further, the NGG process outperforms the PD process which
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Figure 2: Predictive density estimates.

in turn outperforms the model proposed in Lau and So [9]. These results suggest that gene-
ralisations of the Dirichlet process mixture model should be further investigated for time-
dependent data.

7. Conclusion

In this paper we have extended nonparametric mixture modelling for GARCH models to
the Kingman-Poisson process. The process includes the previously applied Dirichlet process
and also includes the Poisson-Dirichlet and Normalised Generalised Gamma process. The
Poisson-Dirichlet and Normalised Generalised Gamma process provide richer clustering
structures than the Dirichlet process and have not been previously adapted to time series
data. An application to the S&P500 financial index suggests that these more general random
probability measures can outperform the Dirichlet process. Finally, we developed an MCMC
algorithm that is easy to implement which we hope will facilitate further investigation into
the application of nonparametric mixture modes to time series data.
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