
Research Article
Kuijia: Traffic Rescaling in Software-Defined Data Center WANs

Che Zhang , Hong Xu, Libin Liu, Zhixiong Niu, and Peng Wang

NetX Lab, City University of Hong Kong, Kowloon Tong, Hong Kong

Correspondence should be addressed to Che Zhang; czhang226-c@my.cityu.edu.hk

Received 27 September 2017; Accepted 6 November 2017; Published 15 January 2018

Academic Editor: Yang Xu

Copyright © 2018 Che Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Network faults like link or switch failures can cause heavy congestion and packet loss. Traffic engineering systems need a lot of time
to detect and react to such faults, which results in significant recovery times. Recent work either preinstalls a lot of backup paths
in the switches to ensure fast rerouting or proactively prereserves bandwidth to achieve fault resiliency. Our idea agilely reacts to
failures in the data planewhile eliminating the preinstallation of backuppaths.WeproposeKuijia, a robust traffic engineering system
for data center WANs, which relies on a novel failover mechanism in the data plane called rate rescaling.The victim flows on failed
tunnels are rescaled to the remaining tunnels and enter lower priority queues to avoid performance impairment of aboriginal flows.
Real system experiments show that Kuijia is effective in handling network faults and significantly outperforms the conventional
rescaling method.

1. Introduction

Traffic engineering (TE) is increasingly implemented using
software-defined networking (SDN), especially in inter-data
center WANs. Examples include Google’s B4 and Microsoft’s
SWAN [1, 2]. Usually, some tunnel protocol is used: the
controller establishes multiple tunnels (i.e., network paths)
between an ingress-egress switch pair and configures splitting
weights at the ingress switch. The ingress switch then uses
hashing based multipath forwarding such as ECMP to send
flows.

An important issue about TE that is commonly over-
looked in the literature is robustness against failures. In
reality, failures are the norm rather than exception, especially
for large networks. Table 1 shows failure statistics data from
Microsoft’s data center WAN [3].The probability of having at
least one link failure within five minutes, which corresponds
to the TE frequency [1, 2], is more than 20%. Even with a
single link failure, the impact can be severe as a data center
WAN operates near capacity for maximum efficiency [1, 2].

Controller intervention offers the best failure recovery
performance given its global network view. However, recom-
puting a new TE plan and updating the forwarding rules
across the entire network take at least minutes and are
error-prone [4–6]. When the controller is being attacked by

Distributed Denial of Service, or others, the reaction time of
the controller can be even longer [7–9].Therefore, we need to
have a mechanism to protect the data plane from congestion
after failures without the intervention of a controller. For
responsiveness, a simple data plane reactive method called
rescaling is deployed in practice. Upon detecting the failure,
the ingress switch normalizes splitting weights to redirect
traffic among the remaining tunnels [6]. Rescaling quickly
restores connectivity without involving the controller at all.
However, since traffic is still sending at the original rates, local
rescaling more than often leaves the network in a congested
state [6].

Some solutions have emerged to solve this practically
important issue. Suchara et al. [10] propose to precompute
the splitting weights for arbitrary faults to reduce transient
congestion. This approach may not work well for large
production networks due to the exponentially many failure
cases. Liu et al. [6] propose forward fault correction (FFC).
FFC proactively considers failures when formulating the
TE problem. As a result, the TE solution can guarantee
no congestion happens for arbitrary 𝑘 faults with rescaling.
Intuitively, such strong guarantees come with a price: in FFC,
a portion (about 5%–10% depending on 𝑘) of the network
capacity has to be always left vacant in order to handle traffic
from rescaling. This means hundreds of Gbps bandwidth is

Hindawi
Security and Communication Networks
Volume 2018, Article ID 6361901, 12 pages
https://doi.org/10.1155/2018/6361901

http://orcid.org/0000-0002-7138-4377
https://doi.org/10.1155/2018/6361901

2 Security and Communication Networks

Table 1: Link failure frequencies in Microsoft data center WAN [3].

Number of link failures Time intervals
2min 5min 10min

1 10.6% 21.5% 31.2%
2 0.14% 1.1% 4.2%
3 0.14% 0.7% 1.4%

wasted most of the time. Arguably, the cost outweighs the
benefits of eliminating transient congestion.

Thus, the following question remains largely open: canwe
design a robust TE system that is (1) responsive in quickly
restoring connectivity, (2) effective in reducing congestion
without excessive bandwidth overhead, and (3) practical and
simple enough to be deployed in existing switches?

Our main contribution is the design and evaluation of
Kuijia (the word “Kuijia” means armor in Chinese; Kui is
for protecting the head and neck, and Jia is for protecting
the torso), a robust TE system for data center WANs that
answers the above question affirmatively. We argue to isolate
the affected flows from the aboriginal ones to avoid the pro-
pagation of failure impact. This is particularly useful when
there aremany latency-sensitive flows like video, online shop-
ping, and search whose traffic is rapidly growing due to the
development of mobile devices and high-speed cellular net-
working.

Kuijia relies on a novel failover mechanism in the data
plane called rate rescaling that rescales the traffic sending rates
in addition to splitting weights, by using priority queueing at
switches. The victim flows are still rescaled to the remaining
tunnels, but they now enter a lower priority queue at the
switches and do not compete with aboriginal flows on the
remaining tunnels. Effectively, their sending rates are auto-
matically throttled to only using the available bandwidth of
the remaining tunnels without the need for controller inter-
vention.

Kuijia with rate rescaling offers an advantage over simple
rescaling. Rescaling only ensures the failed link is avoided.
Yet, flows are still sending at their original rates to the remain-
ing tunnels. Clearly, with the loss of capacity, many packets
will be dropped after rescaling, and every TCP flow on the
remaining tunnels will back off and suffer from throughput
loss. Rate rescaling ensures there is no congestion even with
the victim flows, and the aboriginal flows are not affected.
It maintains the responsiveness of rescaling, is simple to
implement as priority queueing, is widely supported by com-
mercial switches, and is effective in utilizing the available
bandwidth due to the work-conserving nature.

This paper is an extended version of work published in
[11]. We extend our previous work to handle traffic with
multiple priorities. Specifically, we propose a new flow table
decomposition method to produce multiple tables in order
to reduce the number of flow entries. For experiment, we
add a large-scale simulation to demonstrate our design of
using original weights for rate rescaling is more simple and
effective compared with storing and using the precomputed
weights. In addition, we add testbed experiments to evaluate
performance and flow entries’ memory usage of Kuijia for

multipriority traffic. We also add a new section to discuss
several issues related to the use of Kuijia in a production data
center WAN and we explain them in three aspects, which
include traffic characteristics, traffic priorities, and impact of
flow size to hashing.

2. Related Work

Failures in SDN. There is much work to deal with failures
in SDN. New abstractions are proposed in [12, 13] to enable
developers to write fault-tolerant SDN applications. Some
other work relies on the local fast failover mechanism
introduced in OpenFlow to design new functions. Schiff et
al. [14] propose SmartSouth to provide a new data plane for
OpenFlow switches that can implement fault-tolerantmecha-
nisms. Borokhovich et al. [15] develop algorithms to compute
failover tables. Chang et al. [16] develop an optimization-
theoretic framework to validate network designs under
uncertain demands and failures. Kuijia is different in that it
focuses on remedying the congestion due to rescaling.

Failures in Data Center WANs. The most widely used
approach to deal with network failures, including link or
switch failures, is to recompute a new TE solution based
on the changed topology and reprogram the switches [1, 2].
However, such a reactive approach is not fast and efficient
enough as discussed in Section 1.

Several proactive approaches have been proposed to
solve this important problem. Suchara et al. [10] modify
the ingress switches’ rescaling behavior. Rather than simple
proportional rescaling, tunnel splitting weights are based on
the set of residual tunnels after the failure. These weights
are precomputed and preconfigured at switches. Although
it achieves near-optimal load balancing, this approach can
handle only a limited number of potential failure cases
as there are exponentially many of them to consider, and
switches have limited space for flow rules.

Liu et al. [6] propose forward fault correction (FFC) to
handle failures proactively. FFC ensures that each time the
operator computes a new TE, it is congestion-free not only
without any failures, but also with any link failures that could
happen in the following TE interval. This is in sharp contrast
to recomputing TE after failures as it requires no update to
TE in response to failures. Although FFC spreads network
traffic such that congestion-free property is guaranteed under
arbitrary combinations of up to 𝑘 failures, the price is very
high. About 5%–10% of the network capacity depending on 𝑘
has to be always left vacant to handle traffic from rescaling.
SWAN [1] develops a new technique that also leverages a
small amount of scratch capacity on links to apply updates
in a provably congestion-free manner.

Instead of waiting for rescaling in the ingress switches,
Zheng et al. [17] use backup tunnels that start from the
failing switch and end at the egress switches to redirect the
affected traffic. It can be faster and more effective in reducing
congestion but the cost is still high as there are exponentially
many failure cases to consider. The large number of flow
entries required for backup tunnels is too expensive for the
limited hardware tables [18].

Security and Communication Networks 3

s2

s1 s4

s3

8

8

8

s2

s1 s4

s3

12

12

s2

s1 s4

s3

2
8

8

Link capacity: 10
Link failure

Congestion

Link failure

(a) Initial traffic distribution (b) Traffic distribution after rescaling

2

(c) Traffic distribution after rate rescaling

Congestion

Figure 1: Comparison of rescaling and rate rescaling in handling a single link failure.

Our method, Kuijia, is different from the existing work
as we use priority queueing in switches, which is simple
to implement in practice and has no overhead of excessive
bandwidth or a large number of flow entries for backup
tunnels.

3. Motivation

We motivate our idea using a simple example. Figure 1(a)
shows a small network with traffic sent from s1 to s4. The
traffic is routed over three tunnels: s1 → s2 → s4 (T1),
s1 → s4 (T2), and s1 → s3 → s4 (T3). Each tunnel is
configured with the same weight and carries 8Gbps traffic.
When link s2–s4 in T1 fails, s1 rescales the traffic to the
remaining two tunnels, resulting in traffic distribution as
shown in Figure 1(b). Since the traffic is still sent at 24Gbps,
the remaining tunnels T2 and T3 need to carry 12Gbps each
and are heavily congested.

The difference between Kuijia and conventional rescaling
is that Kuijia differentiates aboriginal traffic on remaining
tunnels from victim traffic rescaled to them. Kuijia places
the victim traffic into a low priority queue of the remaining
tunnels, while the aboriginal traffic enters a higher prior-
ity queue. With Kuijia, traffic is distributed as shown in
Figure 1(c). The victim traffic (shown in yellow) uses the
remaining capacity of T2 and T3 and sends at 2Gbps in each
tunnel. This does not cause any congestion or packet loss for
the aboriginal flows and fully utilizes the link capacity.

We experimentally verify the effectiveness of Kuijia using
a testbed on Emulab [19]. We connect 4 Emulab servers
running OpenvSwitch (OVS) [20] to form the same topology
as in Figure 1. A dedicated server runs the controller to
manage the network. In Kuijia, 3 strict priority queues
are configured on the egress ports of each switch. Control
messages enter the highest priority queue with priority 0.
Normal application traffic has priority 1 but is demoted to
priority 2 once it is rescaled to other tunnels after failures.
For simplicity, both rescaling and Kuijia are implemented in
the control plane: a switch informs the controller of a link
failure. The controller then adjusts the flow splitting weights
and priority numbers at the corresponding ingress switches
of the victim flows.

Switch s1 starts iperf TCP connections to s4 over three
tunnels. Since in our example rescaling splits the victim flow
on T1 to T2 and T3, we configure s1 to send two iperf TCP
flows f1 and f2 over T1. Flow f1 is rescaled to T2 and f2 to T3. s1
sends another twoflows f3 and f4 overT2 andT3, respectively.

Table 2: Testbed experiment for the motivation example, where the
remaining tunnels have a vacant capacity for victim traffic.

Flows f1 f2 f3 f4
Rescaling
Before failure 380Mbps 381Mbps 762Mbps 762Mbps
After failure 379Mbps 378Mbps 584Mbps 586Mbps
Kuijia
Before failure 380Mbps 381Mbps 762Mbps 762Mbps
After failure 177Mbps 177Mbps 762Mbps 762Mbps

Table 3: Testbed experiment for the motivation example, where the
remaining tunnels do not have a vacant capacity.

Flows f1 f2 f3 f4
Rescaling
Before failure 475Mbps 468Mbps 943Mbps 941Mbps
After failure 472Mbps 474Mbps 465Mbps 470Mbps
Kuijia
Before failure 475Mbps 468Mbps 943Mbps 941Mbps
After failure 0.074Mbps 0.011Mbps 943Mbps 941Mbps

We run two experiments with different extents of conges-
tion to demonstrate the effectiveness of Kuijia. Table 2 shows
the result when flows f3 and f4 send at 800Mbps and f1 and f2
send at 400Mbps each before failure.This represents the case
when the remaining tunnels (T2 andT3) have vacant capacity.
We observe that, with simple rescaling, the throughput of all
flows degrades after failures, since the aggregate demand of
victim and aboriginal flows (1.2 Gbps) exceeds 1 Gbps. Now
with Kuijia, aboriginal flows f3 and f4 are not affected at all as
shown in Table 2, and the victim flows use the vacant capacity
of 200Mbps without causing any congestion or packet loss.

Table 3 shows the result when f3 and f4 send at 1 Gbps and
f1 and f2 send at 500Mbps each before failure.This represents
the case when the remaining tunnels do not have any capacity
for the victim traffic. Rescaling again causes severe congestion
to aboriginal traffic on the remaining tunnels, and after TCP
convergence f3 and f4 achieve throughput of ∼470Mbps.
With Kuijia, the victim traffic (f1 and f2) does not obtain any
throughput and the aboriginal flows are not impacted at all.

4. Design

In this section, we first introduce the background of TE and
rescaling implementation in production data center WANs,

4 Security and Communication Networks

and then we explain the design of Kuijia and its difference
from rescaling.

4.1. Background. In a data center WAN, after the controller
computes the bandwidth allocation and weights for all the
tunnels of each ingress-egress switch pair, it issues the group
table entries and flow table entries in OpenFlow [1, 21].
Label-based forwarding is usually used to reduce forwarding
complexity [2]. The ingress switch uses group entry in the
group table to split traffic across multiple tunnels and assigns
a label to traffic of a specific tunnel.The downstream switches
simply read the label and forward packets based on the flow
entries for that label from the flow table. As an example,
Figure 2 shows the group tables and flow tables of four
switches for the network used in Figure 1. The forwarding
label can be MPLS, VLAN tags, and so forth.

Flows are hashed to different tunnels consistently (and
different labels are applied) when they arrive at the ingress
switch for simplicity. Thus, splitting weights are configured
as ranges of the hashed values. For example, in Figure 3(a),
the weights are 0.5, 0.3, and 0.2 for tunnels T1, T2, and T3,
respectively. For simple rescaling, its implementation is as
follows. Suppose tunnel T1 fails as in the motivation example.
The ingress switch rescales the traffic to the remaining tunnels
by removing the bucket in the group entry that corresponds
to the failed tunnel as shown in Figure 2 (entries with ∗
only exist in Kuijia, not in rescaling). The entries in the blue
table are issued after failures. In addition, since T1 fails, the
hash value ranges for T2 and T3 also “rescale” accordingly, so
that weights of T2 and T3 are now 0.6 and 0.4. As discussed
already, this may cause congestion after rerouting the victim
traffic [6].

4.2. Kuijia. Here, we explain the detailed design of Kuijia
for SDN based data center WANs. We focus on dealing with
single link failures, which are most common in production
networks as shown in Table 1. Multiple link failures are rare
and can be handled by controller intervention on a need basis.

We proposeKuijia with rate rescaling to reduce the impact
of congestion after failures. Its design is simple and can be
implemented in OpenFlow switches. Suppose there are 𝑘
tunnels for traffic between a given ingress-egress switch pair,
and one tunnel fails. Kuijia keeps the original hash range and
separates the hash range of the failed tunnel into 𝑘 − 1 parts
according to weights of the 𝑘 − 1 tunnels to form the new
hash ranges. It also marks the hash range of the failed tunnel
to low priority in order to enforce priority queueing.Thisway,
Kuijia can differentiate the aboriginal traffic on the remaining
𝑘 − 1 tunnels from the victim traffic that is rescaled to them.
For the same example in Figure 3(b), when T1 fails, its hash
range is split into two parts for T2 and T3 with weights to 0.3
and 0.2, respectively. One can easily verify that the aboriginal
flows on T2 and T3 are still hashed to the same ranges and
routed normally. Victim traffic on T1 is now rescaled to T2
and T3 and tagged as low priority in order not to affect the
aboriginal flows.

In order to verify that it is effective to use the original
weights and just separate the hash range of the failed tunnels,
we compare it to rerouting using precomputed weights. The

precomputation works as follows. For a given link failure,
we keep the weights of unaffected tunnels and sending
rates of unaffected flows unchanged. We take the remaining
bandwidth of each link and tunnel, as well as the victim flows
that need to be rerouted, as the input of a new TE program
and compute the best weights for these victim flows. Clearly,
recomputing the weights yields the optimal performance to
deal with the failure. We run experiments with 10 random
graphs each having 100 nodes and 200 links. For each graph,
we randomly select 40 switch pairs for 10 runs, and each pair
has 3 tunnels. As [10] shows, even in a large ISP backbone,
three or four tunnels per switch pair is sufficient. In each run,
we vary the demand of each switch pair from 0.8Gbps to
3.0Gbps. We sequentially fail all the edges one by one and
then compute the average throughput loss for each demand.

Figure 4 shows the comparison result.Weobserve that the
performance of using original weights is highly comparable
to that of precomputing new weights. As each switch pair has
3 tunnels and they may have some common links, with one
link down, there is only one or two remaining tunnels for
each affected switch pair. When the demand is small, which
means the network is not that congested before failure, simply
using original weights can meet the demand in most cases.
When the demand becomes larger, which means the network
is more congested, using TE to precompute weights cannot
reduce throughput loss much further. Reference [10] also
shows similar results.The results demonstrate that our design
of using original weights and separating the hash range is
simple and effective and also avoids the complexity of storing
the precomputed weights.

Note that when one link fails, any intermediate switch
may potentially become congested due to rescaling. Thus, it
is necessary for all switches to perform priority queueing for
the victim flows, not just the corresponding ingress switch. To
do that, there are two ways.The first one is to compute which
links will be congested after rescaling, and then we only need
to configure the corresponding flow entries at those switches
to realize priority queueing. Although thismethod uses fewer
flow entries, it is hard to achieve in reality because the ingress
switch has no information of all the traffic in the network, and
the controller has to compute which links will be congested
after failures actually happen, which defeats the purpose of
having a data plane failover mechanism.

Thus, Kuijia uses a simple method that doubles the flow
entries in all switches for each tunnel. We have a normal
priority queue and a low priority queue at each port of each
switch. Each queue has the same set of flow entries to route
traffic. Traffic with low priority tags is sent to the low priority
queue as shown in Figure 5. This is simple to implement in
the data plane and can handle any link failures quickly.

For example, in Figure 2, for aboriginal flows sending to
10.0.2.0/24, theymatch low = 0, inport = 1, pathid = 3 in s3
and go to queue(1).The corresponding entry,matching low=
1, inport= 1, pathid= 3will go to queue(2) which is the low
priority queue and is used when there are victim flows due to
link failure, for example, when the s2–s4 link is down. In the
ingress switch s1, the group table applies low priority tags to
the victim flows (entries with∗) and directs the packets to the
outport which is connected to the next-hop switch.

Security and Communication Networks 5

s2

s1 s4

s3

8

8

8

Port 1

Port 3

Port 2

Port 1

Port 3

Port 2

Port 1

Port 1

Port 2

Port 2

low = 0, inport = 1, pathid = 1 enqueue(1), outport = 2
low = 1, inport = 1, pathid = 1

Prio

1
enqueue(2), outport = 2

low = 0, inport = 2, pathid = 1 enqueue(1), outport = 1
low = 1, inport = 2, pathid = 1

1
enqueue(2), outport = 1

Match Action

low = 0, inport = 1, pathid = 3 enqueue(1), outport = 2
low = 1, inport = 1, pathid = 3

Prio

1
enqueue(2), outport = 2

low = 0, inport = 2, pathid = 3 enqueue(1), outport = 1
low = 1, inport = 2, pathid = 3

1
enqueue(2), outport = 1

Match Action

low = 0, ipdst in iprange = 10.0.2.0/24 popmpls(), enqueue(1), outport = 4
low = 1, ipdst in iprange = 10.0.2.0/24

Prio

1
popmpls(), enqueue(2), outport = 4

ipdst in iprange = 10.0.1.0/24 go to group 11

Match Action

Port 4 Port 4

10.0.2.0/2410.0.1.0/24

low = 0, ipdst in iprange = 10.0.1.0/24 popmpls(), enqueue(1), outport = 4
low = 1, ipdst in iprange = 10.0.1.0/24

Prio

1
popmpls(), enqueue(2), outport = 4

ipdst in iprange = 10.0.2.0/24 go to group 11

Match Action

group 1

bucket 1: weight = 100, pushmpls(pathid = 1, low = 0), enqueue(1), outport = 1
bucket 2: weight = 100, pushmpls(pathid = 2, low = 0), enqueue(1), outport = 2
bucket 3: weight = 100, pushmpls(pathid = 3, low = 0), enqueue(1), outport = 3

group 1

bucket 3: weight = 100, pushmpls(pathid = 2, low = 0), enqueue(1), outport = 2

After s2–s4 link down

bucket 4: weight = 100, pushmpls(pathid = 3, low = 0), enqueue(1), outport = 3

Flow table @s2

Flow table @s3

Flow table @s4Flow table @s1

Group table @s1

Group table @s1

group 1

bucket 1: weight = 100, pushmpls(pathid = 1, low = 0), enqueue(1), outport = 1
bucket 2: weight = 100, pushmpls(pathid = 2, low = 0), enqueue(1), outport = 2
bucket 3: weight = 100, pushmpls(pathid = 3, low = 0), enqueue(1), outport = 3

group 1

bucket 3: weight = 100, pushmpls(pathid = 2, low = 0), enqueue(1), outport = 2

After s2–s4 link down

bucket 4: weight = 100, pushmpls(pathid = 3, low = 0), enqueue(1), outport = 3

Group table @s4

Group table @s4

∗
2

∗
2

∗
2

∗
2

∗
2

∗
2

∗
＋uijia

∗bucket 1: weight = 50, pushmpls(pathid = 2, low = 1), enqueue(2), outport = 2
∗bucket 2: weight = 50, pushmpls(pathid = 3, low = 1), enqueue(2), outport = 3

∗bucket 1: weight = 50, pushmpls(pathid = 2, low = 1), enqueue(2), outport = 2
∗bucket 2: weight = 50, pushmpls(pathid = 3, low = 1), enqueue(2), outport = 3

Figure 2: The design of flow table and group table of each switch in the simple topology.

01234567012345670123456701234567
+-----------+-----------+-----------+-----------+

+-----------+-----------+-----------+-----------+

| T1 | |T2 | T3

| |T2 T3|
+-----------+-----------+-----------+-----------+

(a)

01234567012345670123456701234567
+-----------+-----------+-----------+-----------+

+-----------+-----------+-----------+-----------+

| T1 | |T2 | T3

| |T2 low T2T3 low T3| ||
+-----------+-----------+-----------+-----------+

(b)

Figure 3: The change of hash range after failure.

0.7

0.6

0.5

0.4

0.3

0.2Th
e w

ho
le

 th
ro

ug
hp

ut
 lo

ss
 (G

bi
ts/

se
c)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

The demand for each (ingress, egress) switch pair (Gbits/sec)

Reroute using original weights
Reroute using precomputed weights

Figure 4: The whole throughput loss after single link failure as
demand increases.

Each intermediate switch of the tunnel matches packets
on priority, inport, and pathid. Victim flows are then routed

to queue(2) (rerouting flow, low priority tag = 1) of outport
while aboriginal flows are routed to queue(1).

Note that as TCP connection needs two-way communica-
tion, the flow entries and group entries are also issued for two-
way communication. For example, if s1 sends TCP packets
to s4 through s1-s3-s4, we need to issue the flow entries not
only for the direction of s1 → s3 → s4, but also for the
reverse direction of s4 → s3 → s1 (e.g., s3 has the flow entry:
match{low = 0, inport = 2, pathid = 3}, actions{enqueue(1),
outport = 1}). Hence, the TCPACKpackets could be returned
to s1 by matching the flow entry of switches in the reverse
direction. We use MPLS label field to store our path ID
(each tunnel (path) has a unique path ID) and tc field to store
our low priority tag (0 means aboriginal flow and 1 means
victim flow).

4.3. Multiple Priorities. Kuijia can also be extended to handle
traffic with multiple priorities. We have assumed that all
traffic has the same priority before failures thus far. In
practice, it is common for networks to use multiple prior-
ities to differentiate applications with distinct performance
requirements [22, 23]. Kuijia can be extended to this setting
so that high priority victim flows could also obtain as much
bandwidth as possible after rerouting.

To illustrate Kuijia’s working for multipriority traffic,
consider a simple case where switches in the network have

6 Security and Communication Networks

Queue (0)

Queue (1)

Queue (2)

Normal traffic

Packets are always
dequeued from
the highest priority
queue

Rescaling traffic

Control message

Figure 5: The switch queues in Kuijia.

tc = 0, inport = 1, label = 1 enqueue(1), outport = 2

tc = 1, inport = 1, label = 1 enqueue(2), outport = 2

tc = 2, inport = 1, label = 1 enqueue(3), outport = 2

Match Action

Flow table 1

tc = 0, inport = 2, label = 1 enqueue(1), outport = 1

tc = 1, inport = 2, label = 1 enqueue(2), outport = 1

tc = 2, inport = 2, label = 1 enqueue(3), outport = 1

(a)

enqueue(1), outport = 2

Match Action

Flow table 3

enqueue(2), outport = 2

Match Action

tc = 0

tc = 1

inport = 1

inport = 2

goto_table: 3

goto_table: 4

Flow table 2

goto_table: 2

Match Action

Flow table 1

label = 1

enqueue(3), outport = 2tc = 2

enqueue(1), outport = 1

Match Action

Flow table 4

enqueue(2), outport = 1

tc = 0

tc = 1

enqueue(3), outport = 1tc = 2

(b)

inport = 1

Match Action

Flow table 2

inport = 2

goto_table: 3, outport = 2

goto_table: 3, outport = 1

tc = 0 enqueue(1)

Match Action

tc = 1 enqueue(2)

Flow table 3

goto_table: 2

Match Action

Flow table 1

label = 1

tc = 2 enqueue(3)

(c)

Figure 6: The example of three kinds of design for flow entries under multiple priorities.

8 priority queues each. The highest priority 0 is for control
traffic. We set priorities 1 to 4 for high priority traffic, while
we set priority 6 for background low priority traffic before
failures. After a link failure, the high priority victim flows are
rerouted by Kuijia to the remaining tunnels through priority
5 to guarantee they can get bandwidth by occupying the
bandwidth of low priority traffic. Similarly, the low priority
victim flows are rerouted to the remaining tunnels through
priority 7 which is the lowest priority to guarantee that the
aboriginal flows are not affected.

Note two design particulars here. First, Kuijia ensures that
the lowest priority traffic is always dropped first when there is
not enough bandwidth. Second, the bandwidth of each high
priority queue can be changed by occupying the bandwidth
of lower priority.

Therefore, we set the maximum bandwidth for the pri-
ority queue(0) to queue(6) to the capacity of each link and
the minimum bandwidth for the lowest priority queue(7) to
queue(0).

One challenge with multiple priorities is how to handle
the increased number of flow entries required to implement
Kuijia. Using a simple example where s1 sends traffic with 3
priorities to s2 from inport 1 to outport 2, we can show
how to reduce the memory usage of flow entries of s1 step
by step. Our previous design [11], as shown in Figure 6(a),
implements rate rescaling by replicating the flow entries with
some parameter changes. This results in high memory usage
as each flow entry includes duplicated information, such as
label= 1 in eachmatch part.We can reduce such duplication
by using a greedy heuristic proposed in [22]. This still results
in duplicated information between flow table 3 and flow table
4 as in Figure 6(b). Notice that these two tables are the same
except the outport. We now propose a newmethod that can
further reduce the duplicated information by the following
analysis.

Notice that sometimes the values in match and action
have correspondence between each. For instance, in Fig-
ure 6(a), ignoring others, for the same inports in the match
field, the outports are also the same in the action field
(inport = 1 corresponding to outport = 2 and vice versa).
Therefore, we can further reduce the number of tables by
recording such correspondence and checking it in each
decomposition. In this example, finally we can get Figure 6(c)
which saves one table compared to Figure 6(b) by adding the
corresponding outport in the action of flow table 2.

This new flow table decomposition method is useful for
Kuijia withmultiple priorities. Traffic with different priorities
goes through the same tunnels for each switch pair. If we
built the flow tables based on simple replication as shown
in Figure 6(a), most flow entries are almost the same except
that different priority traffic needs to be tagged differently
and matched to different priority queues. This yields a lot
of opportunities for our decomposition method to exploit,
and we can reduce the memory utilization of flow and group
tables. For example, in Figure 7, the first flow entry in s1 is
for traffic from s4 to s1. As there is only one outport for s1
in the simple topology, we only need to match the dst ip
10.0.0.0/21 of each packet in flow table 1 and then go to flow
table 2 to check the tc (traffic class) filed in MPLS to decide
which queue the packet should go to. Next it goes back to
flow table 1 to execute next action popmpls() and output
the packet from outport 4. The detailed explanation of the
packet processing pipeline for multiple tables can be found in
page 19 of [24].

Figure 8 shows the memory usage comparison between
replicating flow entries and our newflow table decomposition
method for the example shown in Figure 7. For simplicity, we
treat thememory usage of eachmatch (e.g., ipdst in ip range=
10.0.0.0/21) and action (e.g., enqueue(1)) the same—32 bits.
Using our new method, the slope of the curve for multiple

Security and Communication Networks 7

s2

s1 s4

s3

8

8

8

Port 1

Port 3

Port 2

Port 1

Port 3

Port 2

Port 1

Port 1

Port 2

Port 2

Port 4 Port 4

ipdst in iprange = 10.0.0.0/21 goto_table: 2, popmpls(), outport = 4

Match Action

After s2–s4 link down

Flow table 1 @s1

Group table @s1, s4

Group table @s1, s4

goto_table: 2

Match Action

Flow table 1 @s2

inport = 1

Match Action

Flow table 2

inport = 2

goto_table: 3, outport = 2

goto_table: 3, outport = 1

label = 1

inport = 1

Match Action

Flow table 2

inport = 2

goto_table: 3, outport = 2

goto_table: 3, outport = 1

tc = 0 enqueue(1)

Match Action

tc = 1 enqueue(2)

Flow table 3

enqueue(5)

tc = 5 enqueue(6)
enqueue(7)

tc = 0 enqueue(1)

Match Action

tc = 1 enqueue(2)

Flow table 2

enqueue(5)

tc = 5 enqueue(6)
enqueue(7)

tc = 0 enqueue(1)

Match Action

Flow table 2

tc = 1 enqueue(2)

tc = 2 enqueue(3)

tc = 3 enqueue(4)
enqueue(5)

tc = 5 enqueue(6)
enqueue(7)

tc = 0 enqueue(1)

Match Action

tc = 1 enqueue(2)

Flow table 3

enqueue(5)

tc = 5 enqueue(6)
enqueue(7)

ipdst in iprange = 10.0.101.0/24 goto_group: 1

goto_table: 2

Match Action

Flow table 1 @s3

label = 3

ipdst in iprange = 10.0.102.0/24 goto_group: 2

ipdst in iprange = 10.0.103.0/24 goto_group: 3

ipdst in iprange = 10.0.104.0/24 goto_group: 4

ipdst in iprange = 10.0.105.0/24 goto_group: 5

group i (i = 5)

bucket 1: weight = 100, pushmpls(tc = i, label = 1), enqueue(i + 1), outport = 1
bucket 2: weight = 100, pushmpls(tc = i, label = 2), enqueue(i + 1), outport = 2
bucket 3: weight = 100, pushmpls(tc = i, label = 3), enqueue(i + 1), outport = 3

After s2–s4 link down

Group table @s1, s4

Group table @s1, s4

ipdst in iprange = 10.0.96.0/20 goto_table: 2, popmpls(), outport = 4

Match Action

Flow table 1 @s4

ipdst in iprange = 10.0.1.0/24 goto_group: 1

ipdst in iprange = 10.0.2.0/24 goto_group: 2

ipdst in iprange = 10.0.5.0/24 goto_group: 5

Without Kuijia, actually the simpler design for rescaling can only have one group table,

but as our Kuijia wants to reroute the victim flows with lower priority in order not to

affect the aboriginal flows, we need more group tables to distinguish those flows.

10.0.1.0/24, . . . , 10.0.6.0/24 10.0.101.0/24, . . . , 10.0.106.0/24

...
...

∗
Ｎ＝ = 4

∗
Ｎ＝ = 6

...
...

∗
Ｎ＝ = 4

∗
Ｎ＝ = 6

...
...

...
...

∗
Ｎ＝ = 4

∗
Ｎ＝ = 6

∗
Ｎ＝ = 6

∗
Ｎ＝ = 4

∗Kuijia

bucket 1: weight = 100, pushmpls(tc = i − 1, label = 1), enqueue(i), outport = 1
bucket 2: weight = 100, pushmpls(tc = i − 1, label = 2), enqueue(i), outport = 2
bucket 3: weight = 100, pushmpls(tc = i − 1, label = 3), enqueue(i), outport = 3

group i (1 ≤ i ≤ 4)

group i

bucket 3: weight = 100, pushmpls(tc = i − 1, label = 2), enqueue(i), outport = 2
bucket 4: weight = 100, pushmpls(tc = i − 1, label = 3), enqueue(i), outport = 3

∗
＜Ｏcket 1: weight = 50, pushmpls(tc = 4, label = 2), enqueue(5), outport = 2

∗bucket 2: weight = 50, pushmpls(tc = 4, label = 3), enqueue(5), outport = 3

group i (i = 5)

bucket 3: weight = 100, pushmpls(tc = i, label = 2), enqueue(i + 1), outport = 2
bucket 4: weight = 100, pushmpls(tc = i, label = 3), enqueue(i + 1), outport = 3

∗bucket 1: weight = 50, pushmpls(tc = 6, label = 2), enqueue(7), outport = 2
∗bucket 2: weight = 50, pushmpls(tc = 6, label = 3), enqueue(7), outport = 3

Figure 7: The design of flow table and group table of each switch in the simple topology under multiple priorities.

tables is about 0.36 times the slope of the curve for simple
replicatingmethod.Thismeans ourmethod can reducemore
and more memory when the number of priorities increases
(e.g., when there are 8 priorities, more than half of the
memory of flow entries is saved).

5. Evaluation

We conduct comprehensive testbed experiments on Emulab
to assess the effectiveness of Kuijia in this section. The
evaluation details for nonpriority traffic are in the first three
subsections and the fourth one shows the evaluation for
multiple priority traffic.

5.1. Setup

Testbed Topology. We adopt a small-scale WAN topology for
Google’s inter-data center network reported in [1], which we
refer to as the Gscale topology. There are 12 switches and 19
links as illustrated in Figure 9.We use a d430 node in Emulab
running OVS to emulate a WAN switch in Gscale. Each link
capacity is 1 Gbps. Each switch port has three queues: queue
0 is for control messages, queue 1 is for normal flows, and
queue 2 is for rescaled flows. We test both TCP and UDP
traffic sources using iperf.

TE Implementation. Similar to prior work [2, 6], we assume
that there are 3 TE tunnels or paths between an ingress-
egress switch pair. We use edge-disjoint paths whenever
possible.The TE solution is obtained by solving a throughput
maximization programusingCVX.The corresponding group
tables and flow tables are then configured by a RYU controller
[25] at each switch. Rate limiting is done by the Linux tc.

1 2 3 4 5 6 7 8

Priority number

0

50

100

150

200

250

300

M
em

or
y

of
 fl

ow
 en

tr
ie

s (
1

st
an

ds
 fo

r 3
2

bi
ts)

Multiple tables
Nonmultiple tables

Figure 8: Memory utilization comparison of two designs for flow
entries under multiple priorities.

Instead of generating a large number of individual flows
between an ingress-egress switch pair, we simply launch 2
iperf aggregated flows on each TE tunnel and rescaling will
reroute them to the two remaining tunnels separately after
a single link failure. In total, there are 6 iperf aggregated
flows for an ingress-egress switch pair. We determine the
bandwidth of each iperf aggregated flow according to the
weights of the tunnels. For example, if the TE result shows the
bandwidth allocated to a switch pair is 300Mbps and weights

8 Security and Communication Networks

s1 s4 s7 s9 s11

s12s10s8s6

s5s2

s3

Figure 9: The Gscale topology.

for each tunnel are 0.5, 0.3, and 0.2, the bandwidth of the two
iperf flows on the first tunnel is 300∗ 0.5 ∗ 0.3/(0.3 + 0.2) =
90Mbps and 60Mbps, respectively. Similar to BwE [21], we
use the DSCP field to carry the path ID in the packet header,
since Emulab uses VLAN internally to connect its machines.
We use the ECN bit as the priority tag. In environments when
ECN or DSCP is already used, we can use other fields in IP
options or MPLS for these purposes.

Now, since we do not have many flows, rescaling is
implemented by a controller changing the action of the
flow entries for the victim flows, so they are routed to the
remaining tunnels. For Kuijia, the controller also changes the
priority tag and sends the victim flows to the low priority
queue after a failure.

Traffic. We use five random ingress-egress switch pairs in
each experiment. We vary the demand of each switch pair
from 0.8Gbps to 1.6Gbps in order to see Kuijia’s performance
with different extents of congestion. For each demand, we
repeat the experiment three times and report the average.

5.2. Benefit of Kuijia. We first look at the benefit of Kuijia
compared to rescaling. Three types of flows are affected by
link failures. The first is the victim flows that are routed
through the failed link.The second type is the directly affected
flows, which are routed through path segments that the
victim flows are rescaled to. The third type is the indirectly
affected flows, which pass through path segments that the
directly affected flows use. As these flows are hardly affected
(less than 1% for rescaling and almost no effect for Kuijia in
the experiments), we do not include them in the figures. Here,
we focus on the directly affected flows. The results of victim
flows are discussed in the next subsection.

For TCP flows, we evaluate the throughput loss after the
failure for the directly affected flows shown in Figure 10. As
the demand of each ingress-egress switch pair increases, the
average throughput loss in terms of percentage for directly
affected flows increases with the simple rescaling. This is
because as demand increases, more links in the network may
be fully utilized even before failure. After rescaling, they
become congested and all flows passing these links suffer
throughput loss. For Kuijia, as we reroute the victim flows
with low priority, they are the only flows suffering packet loss
and throughput degradation after failures. Thus, even when
the demand is 1.6Gbps for each ingress-egress switch pair, the
average throughput loss of directly affected flows is little.

We also look at the convergence time of TCP after the
link failure, which measures how long it takes for all flows to
achieve stable throughput. Again, due to the cascading effect

7

6

5

4

3

2

1

0

−1

−2

Th
ro

ug
hp

ut
 lo

ss
 (%

)

0.8 1.0 1.2 1.4 1.6

Demand

Kuijia
Rescaling

Figure 10: Throughput loss of directly affected TCP flows.

Table 4: Comparison of average TCP convergence time (s).

Link failure Links 2-3 down Links 7–9 down Links 10-11 down
Demand 0.8 Gbps

Rescaling 1 1 1
Kuijia <1 <1 <1

Demand 1.0 Gbps
Rescaling 3.75 4.50 1.75
Kuijia <1 <1 <1

Demand 1.2 Gbps
Rescaling 11.00 12.00 12.75
Kuijia <1 <1 <1

Demand 1.4 Gbps
Rescaling 10.50 16.00 12.25
Kuijia <1 2.33 <1

Demand 1.6 Gbps
Rescaling 11.25 9.83 22.00
Kuijia 1.25 1.33 <1

of rescaling, all flows suffer from packet loss and enter the
congestion avoidance phase. The convergence time is over 10
seconds when the demand exceeds link capacity as shown in
Table 4. Now, with Kuijia, only victim flows need to back off,
and thus the convergence time is greatly reduced to less than
1 second in almost all cases. One can also observe that the
convergence time exhibits less variance with Kuijia compared
to rescaling, since the congestion levels of tunnels can be
vastly different with rescaling.

The benefit of Kuijia for UDP traffic is different. We use
packet loss rate to measure the performance of UDP flows.
The results are shown in Figure 11. For directly affected flows,
packet loss rate with Kuijia is less than 2% in almost all cases,
implying that the impact is negligible. Rescaling, on the other
hand, results in much higher packet loss rates which are also
increasing as demand increases.

Security and Communication Networks 9

Kuijia
Rescaling

10

8

6

4

2

0

Pa
ck

et
 lo

ss
 ra

te
 (%

)

0.8 1.0 1.2 1.4 1.6

Demand

Figure 11: Packet loss rate of directly affected UDP flows.

60

50

40

30

20

10

0

Th
ro

ug
hp

ut
 lo

ss
 (%

)

0.8 1.0 1.2 1.4 1.6

Demand

Kuijia
Rescaling

Figure 12: The overhead of TCP victim flows.

5.3. Overhead. Victim flows perform worse in Kuijia com-
pared to rescaling, since they are the only flows that suffer
throughput loss due to failures. We now look at this overhead
of Kuijia. The result for both TCP and UDP traffic is shown
in Figures 12 and 13. When demand of each switch pair
increases, the average throughput loss of TCP victim flows
and average packet loss rate of UDP flows also increase. We
believe this is a reasonable trade-off to make, because in
case of a link failure, traffic that traverses through this link
is inevitably affected, especially when the demand exceeds
link capacity in the first place. On the other hand rescaling
causes too much collateral damage by making many other
flows suffer from congestion, which should be avoided.

5.4. Benefit of Kuijia for Multipriority Traffic. We now use
experiments to demonstrate the performance of Kuijia with

Kuijia
Rescaling

50

40

30

20

10

0

Pa
ck

et
 lo

ss
 ra

te
 (%

)

0.8 1.0 1.2 1.4 1.6

Demand

Figure 13: The overhead of UDP victim flows.

120

100

80

60

40

20

0

−20

Th
ro

ug
hp

ut
 lo

ss
 (M

bi
ts/

se
c)

0.8 1.0 1.2 1.4 1.6

Demand (Gbits/sec)

Directly affected low priority in Kuijia
Directly affected low priority in rescaling
Victim low priority in Kuijia
Victim low priority in rescaling

Figure 14: Throughput loss of low priority directly affected flows
and victim flows under multiple priorities.

multipriority traffic. Here, the setup is similar to Section 5.1.
The difference is that now we have 4 queues for each port of
the switches and each switch pair has 12 iperf TCP flows. Six
flows are high priority traffic going through queue(0) before
failure and queue(1) after failure if they are the victim flows.
Correspondingly, the remaining six are for low priority traffic
going through queue(2) before failure and queue(3) after
failure if they are victim flows. Note that the setup is a simpli-
fication of the 8-priority design in Section 4.3. According to
[1], we set the ratio of low/high priority traffic to 10.

The result is shown in Figure 14. As demand increases,
the average throughput loss increases with simple rescaling

10 Security and Communication Networks

Before failure After s2-s3 link down

s2 s5

s3 s6 s8

s1 s4 s7 s9 s11

s12s10

s2 s5

s3 s6 s8

s1 s4 s7 s9 s11

s12s10

Figure 15: The partial flows’ change after a link failure in one Gscale testbed experiment.

15.928 + 66.305

174.390 + 697.241

70.136

71.331

713.810

110.012

27.392

128.847

Kuijia Rescaling
Before failure After failure Before failure After failure

17.360 + 67.350

174.431 + 697.263

67.596

67.217

631.937

82.406

27.101

215.339

Figure 16: The traffic (Mbps) change of different priorities for flows passing s3 → s5 when demand = 1.2Gbps.

for both victim low priority flows and directly affected low
priority flows. For Kuijia, only the victim low priority flows
suffer from throughput loss. The reason is similar to the
explanation for Figure 10.

In order to compare the changes of traffic volume of
different priorities after a link failure, we use the example as
shown in Figure 15. Before failure, the purple (s2 → s3 →
s5 → s6 → s7) and red (s3 → s2 → s1) flows pass through
the link s2-s3 (two directions), and the green (s3 → s5 →
s4 → s1) and blue (s3 → s5 → s6 → s1) flows pass through
the link s3 → s5 (single direction). After the link s2-s3 link
is down, the purple flows are rerouted to s7 without taking
s3 → s5, so we remove it in the right topology of Figure 15.
The red flows are rerouted through the remaining tun-
nels.

We compute the traffic volume of flows passing through
the link s3 → s5 before and after failure for each priority
and show the comparison result in Figure 16. The same color
represents the same priority traffic, and from up to down,
the priority decreases. The white area is traffic volume of the
purple flows which will be rerouted away after s2-s3 link is
down. As the ratio of low/high priority traffic is 10, we can
observe that, for both Kuijia and rescaling, the high priority
directly affected flows (the italic numbers in the top red area)
and high priority victimflows (the black numbers on the right
side of the yellow area for Kuijia and of the second red area for
rescaling) are almost not affected by the link failure. However,
for rescaling, the low priority directly affected flows suffer the
throughput loss (697.263Mbps decreases to 631.937Mbps) as
it reroutes the victim flows with unchanged priorities. When
the number of priorities increases and the volume of rerouted
victim flows increases, the benefit of Kuijia can be more
salient.

To evaluate the benefit of our new flow table decomposi-
tion method proposed in Section 4.3, we count the number

of match fields and actions of each flow entry in the
experiment (e.g., a flow entry: match {tc = 0, inport =
1, label = 1}, actions {enqueue(1), outport = 2}; the
number of fields is 3 + 2 = 5). We find that our new flow
table decomposition method can reduce the average number
of fields for all the flow entries used in the experiment at least
from 2552 (without using multiple tables) to 1580. It can save
about 38% memory.

6. Discussion

We now discuss several issues pertaining to the use of Kuijia
in a production data center WAN.

Traffic Characteristics. The benefit of Kuijia depends on the
traffic’s characteristics. For elastic traffic like file transfer
which is TCP friendly, no matter how large the bandwidth is,
the file can be received finally.Therefore, in Google BwE [21],
many of their WAN links run at 90% utilization by sending
elastic traffic at a low priority. In these cases, rescalingmay be
good enough as it shares the bandwidth after rescaling across
many users. With Kuijia, some users have to suffer significant
throughput loss which may stall their transmission and hurt
their experience.

However, for inelastic traffic like video conferencing,
video streaming, online search, or stock trading, they all need
a certain level of bandwidth to be delivered on time with
quality. As a result, Kuijia is much better here as it limits
the impact of failures to the victim flows. It is much worse
when the cascading effect of simple rescaling causes many
users to experience playback delay, whereas Kuijia limits the
performance impact to only the victim flows that have to
suffer from failures no matter what. With the rapid growth
of mobile traffic, there will be more andmore inelastic traffic,
creating more use cases for Kuijia in data center WANs.

Security and Communication Networks 11

Traffic Priorities. As a data center WAN carries both elastic
and inelastic traffic, it usually employs priorities to differenti-
ate the QoS [1, 2, 21]. Inelastic traffic is given high priority
while elastic traffic is given low priority [1, 2, 21]. Thus, it
is important to consider multipriority when dealing with
failures. In such a case, Kuijia’s potential benefit can be more
significant in the future, given the growth of high priority
inelastic traffic such as video.

Impact of Flow Size toHashing. In intra-data center networks,
it is known that hashing based ECMP leads to suboptimal
performance due to flow size imbalance. A few elephant
flows may be hashed to the same path among many choices
creating hotspots in the network. This does not happen in
data center WANs. The WAN carries aggregated flows over
more than thousands of individual TCP flows across the
wide area, using a few sets of tunnels [1, 2, 6, 21]. The
aggregated behavior of flows is a persistent flow with infinite
data to send, which is the common abstraction used in the
literature [1, 2, 6, 21]. TE calculates the splitting ratios of the
aggregated flow across a few tunnels as well as the sending
rate for the next interval. Hashing works well and can achieve
the splitting ratios given by TE when the actual number of
TCP flows is extremely large compared to the number of
paths (tunnels) available. Thus, hash imbalance is not an
issue.

7. Conclusion

We develop Kuijia, a robust TE system for data center WANs
based on rate rescaling method, to reduce the affected flows
due to data plane faults by rerouting the victim flows from
failure tunnels to other healthy tunnels with lower priority.
This protects the aboriginal traffic of those healthy tunnels
from congestion and packet loss, as the traffic from the
failure tunnels will suffer them. By evaluating our method
in Emulab Gscale testbed that we implemented, the results
show that Kuijia works well for both nonpriority traffic and
multipriority traffic whether in pure SDN network or in a
hybrid network like Emulab.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work is supported in part by the Hong Kong RGC ECS-
21201714, GRF-11202315, and CRF-C7036-15G.

References

[1] S. Jain, A. Kumar, S. Mandal et al., “B4: Experience with a
globally-deployed software definedWAN,” in Proceedings of the
ACMSIGCOMM2013 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIG-
COMM 2013, pp. 3–14, China, August 2013.

[2] C.-Y. Hong, S. Kandula, M. Zhang, V. Gill, M. Nanduri, and R.
Wattenhofer, “Achieving high utilization with software-driven

WAN,” in Proceedings of the ACM Conference on SIGCOMM,
pp. 15–26, ACM, Hong Kong, August 2013.

[3] M. Zhang andH.H. Liu, Private Conversation withTheAuthors,
Microsoft Research, March 2015.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P.
Sharma, and S. Banerjee, “DevoFlow: Scaling flowmanagement
for high-performance networks,” in Proceedings of the ACM
SIGCOMM, pp. 254–265, New York, NY, USA, August 2011.

[5] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D.
Maltz, “zUpdate: Updating data center networks with zero loss,”
inProceedings of the ACMSIGCOMM2013 Conference onAppli-
cations, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM 2013, pp. 411–422, China, August
2013.

[6] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gel-
ernter, “Traffic engineering with forward fault correction,” in
Proceedings of the 2014 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM 2014, pp. 527–538,
USA, August 2014.

[7] S. M. Mousavi and M. St-Hilaire, “Early detection of DDoS
attacks against SDN controllers,” in Proceedings of the 2015 Inter-
national Conference on Computing, Networking and Communi-
cations, ICNC 2015, pp. 77–81, USA, February 2015.

[8] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of
securing networks using software defined networking,” IEEE
Transactions on Reliability, vol. 64, no. 3, pp. 1086–1097, 2015.

[9] Q. Yan and F. R. Yu, “Distributed denial of service attacks in soft-
ware-defined networking with cloud computing,” IEEE Com-
munications Magazine, vol. 53, no. 4, pp. 52–59, 2015.

[10] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford,
“Network architecture for joint failure recovery and traffic
engineering,” in Proceedings of the the ACM SIGMETRICS joint
international conference, p. 97, San Jose, California, USA, June
2011.

[11] C. Zhang, H. Xu, L. Liu et al., “Kuijia: Traffic rescaling in data
center WANs,” in Proceedings of the 37th IEEE Sarnoff Sympo-
sium, Sarnoff 2016, pp. 142–147, USA, September 2016.

[12] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire:
Declarative fault tolerance for software-defined networks,” in
Proceedings of the 2013 2nd ACM SIGCOMMWorkshop on Hot
Topics in Software Defined Networking, HotSDN 2013, pp. 109–
114, China, August 2013.

[13] S. H. Yeganeh and Y. Ganjali, “Beehive: Towards a simple
abstraction for scalable software-defined networking,” in Pro-
ceedings of the 13th ACM SIGCOMMWorkshop on Hot Topics in
Networks, HotNets 2014, USA, October 2014.

[14] L. Schiff, M. Borokhovich, and S. Schmid, “Reclaiming the
brain: Useful OpenFlow functions in the data plane,” in Pro-
ceedings of the 13th ACM SIGCOMM Workshop on Hot Topics
in Networks, HotNets 2014, USA, October 2014.

[15] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane
connectivity with local fast failover: Introducing OpenFlow
graph algorithms,” in Proceedings of the 3rd ACM SIGCOMM
2014 Workshop on Hot Topics in Software Defined Networking,
HotSDN 2014, pp. 121–126, USA, August 2014.

[16] Y. Chang, S. Rao, and M. Tawarmalani, “Robust validation of
network designs under uncertain demands and failures,” in
Proceedings of the USENIX NSDI, 2017.

[17] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “We’ve got
you covered: Failure recovery with backup tunnels in traffic

12 Security and Communication Networks

engineering,” in Proceedings of the 24th IEEE International Con-
ference on Network Protocols, ICNP 2016, Singapore, November
2016.

[18] N.Katta,O.Alipourfard, J. Rexford, andD.Walker, “Rule-Cach-
ing Algorithms for Software-Defined Networks,” Tech. Rep.,
Princeton University, 2014.

[19] The University of Utah, Emulab, 2017, http://www.emulab.net/.
[20] B. Pfaff, J. Pettit, T. Koponen et al., “The design and imple-

mentation of open vSwitch,” in Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation,
NSDI 2015, pp. 117–130, usa, May 2015.

[21] A. Kumar, S. Jain, U. Naik et al., “BwE: flexible, hierarchical
bandwidth allocation for WAN distributed computing,” in
Proceedings of the ACM Conference on Special Interest Group on
Data Communication (SIGCOMM ’15), pp. 1–14, London, UK,
August 2015.

[22] L. Molnár, G. Pongrácz, G. Enyedi et al., “Dataplane special-
ization for high-performance OpenFlow software switching,”
in Proceedings of the 2016 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM 2016, pp. 539–552,
Brazil, August 2016.

[23] J. M. Wang, Y. Wang, X. Dai, and B. Bensaou, “SDN-based
multi-class QoS-guaranteed inter-data center traffic manage-
ment,” in Proceedings of the 2014 3rd IEEE International Con-
ference on Cloud Networking, CloudNet 2014, pp. 401–406,
Luxembourg, October 2014.

[24] Open Networking Foundation, OpenFlow Switch Specifica-
tion 1.5.1, 2015, https://www.opennetworking.org/images//open-
flow-switch-v1.5.1.pdf.

[25] SDN Framework Community, RYU, 2016, https://github.com/
osrg/ryu.

http://www.emulab.net/
https://www.opennetworking.org/images//openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images//openflow-switch-v1.5.1.pdf
https://github.com/osrg/ryu
https://github.com/osrg/ryu

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

