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A spherical simplex-radial cubature quadrature Kalman filter (SSRCQKF) is proposed in order to further improve the nonlinear
filtering accuracy. The Gaussian probability weighted integral of the nonlinear function is decomposed into spherical integral and
radial integral, which are approximated by spherical simplex cubature rule and arbitrary order Gauss-Laguerre quadrature rule,
respectively, and the novel spherical simplex-radial cubature quadrature rule is obtained. Combined with the Bayesian filtering
framework, the general form and the specific form of SSRCQKF are put forward, and the numerical simulation results indicate that
the proposed algorithm can achieve a higher filtering accuracy than CKF and SSRCKF.

1. Introduction

The nonlinear state estimation problem widely exists in
signal processing, target tracking, intelligent sensing, and
other fields, which is a subject undergoing intense study [1–
4]. In suboptimal nonlinear filtering under Bayesian theory
framework, the posterior probability density function (pdf)
is assumed to be Gaussian distribution, and the core issue is
to calculate the intractable integral as “nonlinear function ×
Gaussian pdf.” Since to achieve the analytical solution is diffi-
cult for the integral, the focus of the research is seeking a high-
precision integral rule for its numerical approximation [5].

The most widely used nonlinear Kalman filtering algo-
rithms are extended Kalman filter (EKF) [6, 7] and unscented
Kalman filter (UKF) [8, 9], respectively. EKF uses the first-
order Taylor formula to linearize the nonlinear function
directly, thereby has only first-order filtering accuracy, and
needs to calculate the Jacobianmatrix, which limits its further
application. UKF adopts a set of sigma points to approx-
imate the intractable integral and achieves a third-order
accuracy. However, the selection of the sigma points and
corresponding weights lacks rigorous mathematical basis,
and the stability of numerical calculation is reduced for
the high-dimensional system. Cubature Kalman filter (CKF)
proposed by Arasaratnam and Haykin [10, 11] decomposes

the intractable integral into spherical integral and radial
integral, which are approximated by the third-order cubature
rule. CKF not only has a rigorous mathematical basis in
selecting the cubature points but also has a complete stability
in numerical calculation [12–14]. Moreover, Wang et al. [15]
proposed the spherical simplex-radial cubature Kalman filter
(SSRCKF), in which the spherical simplex rule instead of
spherical rule is used in calculating the spherical integral
[16–18]. However, radial integral is calculated by moment
matching method in both CKF and SSRCKF, which cannot
guarantee the optimal solution. To solve this problem, Shovan
and Swati [19] proposed cubature quadrature Kalman filter
(CQKF): the algorithm adopts the same method for solving
the spherical integral as CKF, but, for radial integral, arbitrary
order Gaussian-Laguerre quadrature formula is used to
achieve a higher radial integral accuracy, so as to improve
the filtering accuracy further. It is also pointed out that CKF
is a simplified form of CQKF with the first-order Gaussian-
Laguerre quadrature in radial integral.

In order to further improve the nonlinear Kalman filter-
ing accuracy, this paper proposes a novel spherical simplex-
radial cubature quadrature Kalman filter (SSRCQKF). The
structure of this paper is as follows. The spherical simplex-
radial cubature quadrature rule is proposed in Section 2,
and the SSRCQKF algorithm is proposed in Section 3, the
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numerical simulation results of strong nonlinear system and
target tracking are shown in Section 4, and finally the conclu-
sion is given in Section 5.

2. Spherical Simplex-Radial Cubature
Quadrature Rule

2.1. Spherical Simplex-Radial Cubature Rule. Consider the
integral 𝐼(f) = ∫

𝑅𝑛
f(x)𝑒−xΤx𝑑x, let x = 𝑟y, where y denotes the

unit sphere surface that satisfies yΤy = 1, 𝑟 ≥ 0 denotes the
sphere radius, and, then, 𝐼(f) can be decomposed into the fol-
lowing spherical integral and radial integral [10]:

𝑆 (𝑟) = ∫
𝑈𝑛

f (𝑟y) 𝑑𝜎 (y)
𝑅 = ∫∞

0
𝑆 (𝑟) 𝑟𝑛−1𝑒−𝑟2𝑑𝑟.

(1)

In general, the analytical solutions of above integrals are
difficult to obtain, so the numerical approximate method is
considered. It is pointed out in [15] that the spherical integral
can be approximated using the spherical simplex rule that
contains 2𝑛 + 2 integral points as follows:

𝑆 (𝑟) = 𝐴𝑛2 (𝑛 + 1)
𝑛+1∑
𝑖=1

[f (𝑟a𝑖) + f (−𝑟a𝑖)] , (2)

where 𝐴𝑛 = 2√𝜋𝑛/Γ(𝑛/2) denotes the surface area of n-
dimensional unit sphere with Γ(𝑛) = ∫∞

0
𝑥𝑛−1𝑒−𝑥𝑑𝑥 repre-

senting the Gamma function, a𝑖 = [𝑎𝑖,1 𝑎𝑖,2 ⋅ ⋅ ⋅ 𝑎𝑖,𝑛]Τ, and𝑖 = 1, 2, . . . , 𝑛 + 1 denotes the 𝑖th vertex of the 𝑛-dimensional
simplex, whose elements are defined as follows:

𝑎𝑖,𝑗 =
{{{{{{{{{{{{{{{{{

−√ 𝑛 + 1𝑛 (𝑛 − 𝑗 + 2) (𝑛 − 𝑗 + 1) , 𝑗 < 𝑖
0, 𝑗 > 𝑖
√ (𝑛 + 1) (𝑛 − 𝑖 + 1)𝑛 (𝑛 − 𝑖 + 2) , 𝑖 = 𝑗.

(3)

2.2. Gaussian-Laguerre Quadrature Rule. For the radial inte-
gral 𝑅 = ∫∞

0
𝑆(𝑟)𝑟𝑛−1𝑒−𝑟2𝑑𝑟, let 𝑟2 = 𝑡 and we get 𝑅 =

(1/2) ∫∞
0

𝑆(√𝑡)𝑡(𝑛−2)/2𝑒−𝑡𝑑𝑡; furthermore, let 𝑔(𝑡) = 𝑆(√𝑡)
and 𝛽 = (𝑛 − 2)/2; then 𝑅 = (1/2) ∫∞

0
𝑔(𝑡)𝑡𝛽𝑒−𝑡𝑑𝑡 is obtained;

the integral term in 𝑅 is approximated using the following
Gaussian-Laguerre quadrature rule [20]:

∫∞
0

𝑔 (𝑡) 𝑡𝛽𝑒−𝑡𝑑𝑡 ≈ 𝑚∑
𝑗=1

𝐴𝑗𝑔 (𝑡𝑗) , (4)

where 𝑡𝑗 denote the quadrature points, which can be solved
from the solutions of the following 𝑚-order Chebyshev-
Laguerre polynomial.

𝐿𝛽𝑚 (𝑡) = (−1)𝑚 𝑡−𝛽𝑒𝑡 𝑑𝑚𝑑𝑡𝑚 (𝑡𝛽+𝑚𝑒−𝑡) = 0. (5)

And 𝐴𝑗 denote the corresponding weights, which can be
solved as follows:

𝐴𝑗 = 𝑚!Γ (𝛽 + 𝑚 + 1)
𝑡𝑗 [�̇�𝛽𝑚 (𝑡𝑗)]2 . (6)

It can be seen that the approximation accuracy of the
above rule depends on the number of quadrature points.

2.3. Spherical Simplex-Radial Cubature Quadrature Rule.
Equation (4) is substituted into rule 𝑅, and we obtain

𝑅 = 12 ∫∞
0

𝑔 (𝑡) 𝑡𝛽𝑒−𝑡𝑑𝑡 = 12
𝑚∑
𝑗=1

𝐴𝑗𝑔 (𝑡𝑗) . (7)

The spherical simplex rule (2) and 𝑔(𝑡) = 𝑆(√𝑡) are
plugged into (7) to obtain

𝑅 = 12
𝑚∑
𝑗=1

𝐴𝑗𝑆 (√𝑡𝑗) = 𝐴𝑛4 (𝑛 + 1)
𝑚∑
𝑗=1

𝐴𝑗

⋅ 𝑛+1∑
𝑖=1

[f (√𝑡𝑗a𝑖) + f (−√𝑡𝑗a𝑖)] = √𝜋𝑛2 (𝑛 + 1) Γ (𝑛/2)
⋅ 𝑚∑
𝑗=1

𝐴𝑗𝑛+1∑
𝑖=1

[f (√𝑡𝑗a𝑖) + f (−√𝑡𝑗a𝑖)] .

(8)

Due to ∫
𝑅𝑛
f(x)𝑁(x; x,P𝑥)𝑑x = (1/√𝜋𝑛) ∫

𝑅𝑛
f(√2P𝑥x +

x)𝑒−xΤx𝑑x, the Gaussian probability weighted integral of
arbitrary nonlinear function is obtained as follows:

∫
𝑅𝑛
f (x)𝑁 (x; x,P𝑥) 𝑑x = 12 (𝑛 + 1) Γ (𝑛/2)

⋅ 𝑚∑
𝑗=1

𝐴𝑗𝑛+1∑
𝑖=1

[f (√2𝑡𝑗P𝑥a𝑖 + x)
+ f (−√2𝑡𝑗P𝑥a𝑖 + x)] .

(9)

Equation (9) is the novel spherical simplex-radial cuba-
ture quadrature rule that proposed in this paper, which
requires the calculation of 2(𝑛+1)𝑚points and corresponding
weights. In particular, it can be solved that 𝑡1 = 𝑛/2, 𝐴1 =Γ(𝑛/2) when 𝑚 = 1, and results in the spherical simplex-
radial cubature rule.Thus, the spherical simplex-radial cuba-
ture rule is the degenerate form of the proposed rule, and the
proposed rule can achieve a higher approximation accuracy
when 𝑚 ≥ 2.
3. SSRCQKF Algorithm

3.1. The General Form of SSRCQKF. Consider the following
discrete nonlinear system with additive noise:

x𝑘 = f (x𝑘−1) + w𝑘−1

z𝑘 = h (x𝑘) + k𝑘

w𝑘−1 ∼ (0,Q𝑘−1)
k𝑘 ∼ (0,R𝑘) ,

(10)



Journal of Electrical and Computer Engineering 3

where x𝑘 ∈ R𝑛 denotes the state vector, z𝑘 ∈ R𝑛𝑧 denotes the
measurement vector, and the noises w𝑘, k𝑘 are uncorrelated
Gaussian white noise. With the system dimension 𝑛 and the

order𝑚 of Chebyshev-Laguerre polynomial being known, 𝑡𝑗,𝑗 = 1, . . . , 𝑚 can be solved by (5), and the corresponding
weights can be calculated as follows:

𝜔𝑖 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑚!Γ (𝛽 + 𝑚 + 1)
2 (𝑛 + 1) Γ (𝑛/2) 𝑡1 [�̇�𝛽𝑚 (𝑡1)]2 , 𝑖 = 1, . . . , 2𝑛 + 2

𝑚!Γ (𝛽 + 𝑚 + 1)
2 (𝑛 + 1) Γ (𝑛/2) 𝑡2 [�̇�𝛽𝑚 (𝑡2)]2 , 𝑖 = 2𝑛 + 3, . . . , 4 (𝑛 + 1)

...
𝑚!Γ (𝛽 + 𝑚 + 1)

2 (𝑛 + 1) Γ (𝑛/2) 𝑡𝑚 [�̇�𝛽𝑚 (𝑡𝑚)]2 , 𝑖 = 2 (𝑚𝑛 + 𝑚 − 𝑛) − 1, . . . , 2 (𝑛 + 1)𝑚.

(11)

The matrix a = [a1 a2 ⋅ ⋅ ⋅ a𝑛+1] consists of a𝑖 that is
used to construct the following expansion matrix [a −a] =[a1 a2 ⋅ ⋅ ⋅ a𝑛+1 −a1 −a2 ⋅ ⋅ ⋅ −a𝑛+1]. The subscript 𝑖 in [⋅]𝑖
denotes the 𝑖th column of matrix; based on the rule (9) and

Bayesian filtering framework, the primary calculation process
of the general form of SSRCQKF algorithm is listed as fol-
lows:

Calculate the following points:

x̂(𝑖)𝑘−1 =
{{{{{{{{{{{{{{{{{{{

x̂+𝑘−1 + √2𝑡1P+𝑘−1 [a −a]
𝑖
, 𝑖 = 1, . . . , 2 (𝑛 + 1)

x̂+𝑘−1 + √2𝑡2P+𝑘−1 [a −a]
𝑖
, 𝑖 = 2𝑛 + 3, . . . , 4 (𝑛 + 1)

...
x̂+𝑘−1 + √2𝑡𝑚P+𝑘−1 [a −a]

𝑖
, 𝑖 = 2 (𝑚𝑛 + 𝑚 − 𝑛) − 1, . . . , 2 (𝑛 + 1)𝑚.

(12)

Calculate the nonlinear propagation of the points:

X(𝑖)𝑘 = f𝑘−1 (x̂(𝑖)𝑘−1) . (13)

Calculate the prior state estimation and prior error
covariance matrix:

x̂−𝑘 = 2(𝑛+1)𝑚∑
𝑖=1

𝜔𝑖X(𝑖)𝑘
P−𝑘 = 2(𝑛+1)𝑚∑

𝑖=1

𝜔𝑖 (X(𝑖)𝑘 − x̂−𝑘) (X(𝑖)𝑘 − x̂−𝑘)Τ + Q𝑘−1.
(14)

Calculate the following points:

x̂(𝑖)𝑘 =
{{{{{{{{{{{{{{{{{{{

x̂−𝑘 + √2𝑡1P−𝑘 [a −a]
𝑖
, 𝑖 = 1, . . . , 2 (𝑛 + 1)

x̂−𝑘 + √2𝑡2P−𝑘 [a −a]
𝑖
, 𝑖 = 2𝑛 + 3, . . . , 4 (𝑛 + 1)

...
x̂−𝑘 + √2𝑡𝑚P−𝑘 [a −a]

𝑖
, 𝑖 = 2 (𝑚𝑛 + 𝑚 − 𝑛) − 1, . . . , 2 (𝑛 + 1)𝑚.

(15)

Calculate the nonlinear propagation of the points:

Z(𝑖)𝑘 = h𝑘 (x̂(𝑖)𝑘 ) . (16)

Calculate the predicted measurement value:

ẑ𝑘 = 2(𝑛+1)𝑚∑
𝑖=1

𝜔𝑖Z(𝑖)𝑘 . (17)
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Calculate the predicted measurement covariance
matrix:

P𝑧 = 2(𝑛+1)𝑚∑
𝑖=1

𝜔𝑖 (Z(𝑖)𝑘 − ẑ𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ + R𝑘. (18)

Calculate the cross covariance matrix:

P𝑥𝑧 = 2(𝑛+1)𝑚∑
𝑖=1

𝜔𝑖 (x̂(𝑖)𝑘 − x̂−𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ . (19)

Calculate the Kalman filtering gain:

K𝑘 = P𝑥𝑧P
−1
𝑧 (20)

Calculate the a posteriori state estimation:

x̂+𝑘 = x̂−𝑘 + K𝑘 (z𝑘 − ẑ𝑘) . (21)

Calculate the a posteriori error covariance matrix:

P+𝑘 = P−𝑘 − K𝑘P𝑧K
Τ
𝑘 . (22)

It can be seen from the algorithmprocess that the filtering
accuracy depends on the order of the Gaussian-Laguerre
quadrature rule; the higher the order is, the higher that
estimation accuracy is achieved, but the more the points
and weights are required. However, for the identified 𝑚
and 𝑛, the points can be calculated in advance and stored
offline and called directly from the memory in the process
of implementation, that is necessary to improve the real-time
performance of the algorithm.

3.2.The Specific Form of SSRCQKFWhen𝑚 = 2. The general
form of SSRCQKF is presented in Section 3.1, and, in this
section, the specific formof SSRCQKF algorithmwhen𝑚 = 2
is given. When 𝑚 = 2, (7) is simplified as follows:

𝑅 = 12 [𝐴1𝑆 (√𝑡1) + 𝐴2𝑆 (√𝑡2)] . (23)

The values of 𝑡1 and 𝑡2 are needed to be calculated. Plug𝑚 = 2 into (5), we obtain
𝐿𝛽2 (𝑡) = 𝑡−𝛽𝑒𝑡 𝑑2𝑑𝑡2 (𝑡𝛽+2𝑒−𝑡) . (24)

The item (𝑑2/𝑑𝑡2)(𝑡𝛽+2𝑒−𝑡) is expanded to achieve 𝐿𝛽2(𝑡)
and its derivative �̇�𝛽2(𝑡) as follows:

𝐿𝛽2 (𝑡) = 𝑡2 − 2 (𝛽 + 2) 𝑡 + (𝛽 + 1) (𝛽 + 2)
�̇�𝛽2 (𝑡) = 2𝑡 − 2 (𝛽 + 2) . (25)

Let 𝐿𝛽2(𝑡) = 0, the solutions are 𝑡 = 𝛽 + 2 ± √𝛽 + 2,
combined with 𝛽 = (𝑛 − 2)/2, and we obtain

𝑡1 = 𝑛2 + 1 + √𝑛2 + 1
𝑡2 = 𝑛2 + 1 − √𝑛2 + 1.

(26)

Then, 𝐴1 and 𝐴2 are solved from (6) as follows:

𝐴1 = 𝑛Γ (𝑛/2)2𝑛 + 4 + 2√2𝑛 + 4
𝐴2 = 𝑛Γ (𝑛/2)2𝑛 + 4 − 2√2𝑛 + 4 .

(27)

Furthermore, the weights 𝜔𝑖 are solved as follows:

𝜔𝑖

= {{{{{{{

𝑛
4 (𝑛 + 1) (𝑛 + 2 + √2𝑛 + 4) , 𝑖 = 1, 2, . . . , 2𝑛 + 2

𝑛
4 (𝑛 + 1) (𝑛 + 2 − √2𝑛 + 4) , 𝑖 = 2𝑛 + 3, . . . , 4𝑛 + 4.

(28)

The spherical simplex-radial cubature quadrature rule
with 𝑚 = 2 is obtained by plugging 𝑡1, 𝑡2, 𝐴1, and 𝐴2 into
rule (9) as follows:

∫
𝑅𝑛
f (x)𝑁 (x; x,P𝑥) 𝑑x
= 𝑛

4 (𝑛 + 1) (𝑛 + 2 + √2𝑛 + 4)
⋅ 𝑛+1∑
𝑖=1

[f (x + √(𝑛 + 2 + √2𝑛 + 4)P𝑥a𝑖)

+ f (x − √(𝑛 + 2 + √2𝑛 + 4)P𝑥a𝑖)]
+ 𝑛

4 (𝑛 + 1) (𝑛 + 2 − √2𝑛 + 4)
⋅ 𝑛+1∑
𝑖=1

[f (x + √(𝑛 + 2 − √2𝑛 + 4)P𝑥a𝑖)

+ f (x − √(𝑛 + 2 − √2𝑛 + 4)P𝑥a𝑖)] .

(29)

Based on (29), the calculation steps of the specific form of
SSRCQKF when 𝑚 = 2 are given as follows.

Step 1 (filter initialization). One has

x̂+0 = 𝐸 (x0)
P+0 = 𝐸 [(x0 − x̂+0 ) (x0 − x̂+0 )Τ] . (30)

Cycle 𝑘 = 1, 2, . . ., and complete the following steps.
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Step 2 (time update). One has

x̂(𝑖)𝑘−1 = {{{{{
x̂+𝑘−1 + √(𝑛 + 2 + √2𝑛 + 4)P+

𝑘−1
[a −a]

𝑖
, 𝑖 = 1, 2, . . . , 2𝑛 + 2

x̂+𝑘−1 + √(𝑛 + 2 − √2𝑛 + 4)P+
𝑘−1

[a −a]
𝑖−2𝑛−2

, 𝑖 = 2𝑛 + 3, . . . , 4𝑛 + 4
X(𝑖)𝑘 = f𝑘−1 (x̂(𝑖)𝑘−1)
x̂−𝑘 = 𝑛

4 (𝑛 + 1) (𝑛 + 2 + √2𝑛 + 4)
2𝑛+2∑
𝑖=1

X(𝑖)𝑘 + 𝑛
4 (𝑛 + 1) (𝑛 + 2 − √2𝑛 + 4)

4𝑛+4∑
𝑖=2𝑛+3

X(𝑖)𝑘

P−𝑘 = 𝑛
4 (𝑛 + 1) (𝑛 + 2 + √2𝑛 + 4)

2𝑛+2∑
𝑖=1

(X(𝑖)𝑘 − x̂−𝑘 ) (X(𝑖)𝑘 − x̂−𝑘 )Τ

+ 𝑛
4 (𝑛 + 1) (𝑛 + 2 − √2𝑛 + 4)

4𝑛+4∑
𝑖=2𝑛+3

(X(𝑖)𝑘 − x̂−𝑘) (X(𝑖)𝑘 − x̂−𝑘)Τ + Q𝑘−1.

(31)

Step 3 (measurement update). One has

x̂(𝑖)𝑘 = {{{{{
x̂−𝑘 + √(𝑛 + 2 + √2𝑛 + 4)P−

𝑘
[a −a]

𝑖
, 𝑖 = 1, 2, . . . , 2𝑛 + 2

x̂−𝑘 + √(𝑛 + 2 − √2𝑛 + 4)P−
𝑘
[a −a]

𝑖−2𝑛−2
, 𝑖 = 2𝑛 + 3, . . . , 4𝑛 + 4

Z(𝑖)𝑘 = h𝑘 (x̂(𝑖)𝑘 )
ẑ𝑘 = 𝑛

4 (𝑛 + 1) (𝑛 + 2 + √2𝑛 + 4)
2𝑛+2∑
𝑖=1

Z(𝑖)𝑘 + 𝑛
4 (𝑛 + 1) (𝑛 + 2 − √2𝑛 + 4)

4𝑛+4∑
𝑖=2𝑛+3

Z(𝑖)𝑘

P𝑧 = 𝑛
4 (𝑛 + 1) (𝑛 + 2 + √2𝑛 + 4)

2𝑛+2∑
𝑖=1

(Z(𝑖)𝑘 − ẑ𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ

+ 𝑛
4 (𝑛 + 1) (𝑛 + 2 − √2𝑛 + 4)

4𝑛+4∑
𝑖=2𝑛+3

(Z(𝑖)𝑘 − ẑ𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ + R𝑘

P𝑥𝑧 = 𝑛
4 (𝑛 + 1) (𝑛 + 2 + √2𝑛 + 4)

2𝑛+2∑
𝑖=1

(x̂(𝑖)𝑘 − x̂−𝑘 ) (Z(𝑖)𝑘 − ẑ𝑘)Τ

+ 𝑛
4 (𝑛 + 1) (𝑛 + 2 − √2𝑛 + 4)

4𝑛+4∑
𝑖=2𝑛+3

(x̂(𝑖)𝑘 − x̂−𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ .

(32)

Step 4 (state update). One has

K𝑘 = P𝑥𝑧P
−1
𝑧

x̂+𝑘 = x̂−𝑘 + K𝑘 (z𝑘 − ẑ𝑘)
P+𝑘 = P−𝑘 − K𝑘P𝑧K

Τ
𝑘 .

(33)
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Figure 1: RMSE of state 1.

Table 1: Average RMSE of state.

Filters State 1 State 2 State 3
CKF 0.8743 0.6120 0.4928
SSRCKF 0.9540 0.7152 0.6429
SSRCQKF-2 0.8621 0.5737 0.4427
SSRCQKF-3 0.8570 0.5705 0.4305

4. Simulation Results and Analysis

4.1. Simulation 1. The effectiveness of the proposed SSRC-
QKF algorithm is verified by the following three-dimensional
strong nonlinear system, which includes trigonometric func-
tion operation, power operation, and exponential operation.

[[[[
[

𝑥1,𝑘+1
𝑥2,𝑘+1
𝑥3,𝑘+1

]]]]
]

= [[[[
[

3 sin2 (𝑥2,𝑘)
𝑥1,𝑘 + 𝑒−0.05𝑥3,𝑘

0.2𝑥1,𝑘 (𝑥2,𝑘 + 𝑥3,𝑘)
]]]]
]

+ [[[[
[

1
1
1
]]]]
]

𝑤𝑘

𝑧𝑘 = cos (𝑥1,𝑘) + 𝑥2,𝑘𝑥3,𝑘 + V𝑘,
(34)

where 𝑄 = 0.1, 𝑅 = 1, the theoretical initial value of the
nonlinear system is x0 = [−0.7 1 1]Τ, the filtering initial
value is x̂0 = [0 0 0]Τ, the initial covariance matrix is P0 =
I3×3. The SSRCQKF-2 (when 𝑚 = 2) and SSRCQKF-3 (when𝑚 = 3) are compared with CKF and SSRCKF, the simulation
step is 1, and the total step size is 100. The root mean square
error (RMSE) is used to describe the filtering accuracy and
run 500 times Monte-Carlo simulation, and the results are
shown in Figures 1–3. In order to show the details of the curve
more clearly, the data only between 30 and 80 are captured
in figures. It can be seen from the figures that the RMSE of
the proposed SSRCQKF is significantly smaller than the other
two algorithms.
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Figure 2: RMSE of state 2.
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Figure 3: RMSE of state 3.

Table 2: Variance RMSE of state 1.

Filters State 1 State 2 State 3
CKF 0.0108 0.0108 0.0097
SSRCKF 0.0120 0.0115 0.0217
SSRCQKF-2 0.0102 0.0089 0.0060
SSRCQKF-3 0.0099 0.0087 0.0056

In order to compare the four filters quantitatively, the
average value and variance of RMSE of the four filters in 100
steps are counted and listed in Tables 1 and 2, respectively.
From Table 1, we see that CKF achieves a higher filtering
accuracy than SSRCKF in this simulation. Compared with
CKF, the SSRCQKF-2 proposed in this paper improves the
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estimation accuracy of state 1 by 1.4%, improves the estima-
tion accuracy of state 2 by 6.26%, and improves the estimation
accuracy of state 3 by 10.17%. Compared with SSRCQKF-
2, the SSRCQKF-3 improves the estimation accuracy of
the three states by 0.59%, 0.56%, and 2.76%, respectively.
All these indicate that the proposed filter has the optimal
performance in terms of estimation accuracy. Moreover, the
RMSE variance of the two SSRCQKF are smaller than that
of the other two filters, which indicates that the estimated
fluctuation is more stable.

4.2. Simulation 2. The proposed SSRCQKF is applied in
target tracking in this section. The target is assumed to be
in constant velocity (CV) motion; the state equation of CV
model in two-dimensional case is described as follows:

X𝑘 = FCVX𝑘−1 + Gw𝑘−1, (35)

where X𝑘 = (𝑥𝑘, �̇�𝑘, 𝑦𝑘, ̇𝑦𝑘)Τ represents the target states
(position and velocity) at time index 𝑘,w𝑘 denotes the process
noise, FCV andG denote the state transformation matrix and
the noise driven matrix, which are defined, respectively, as
follows:

FCV =
[[[[[[[[
[

1 𝑇 0 0
0 1 0 0
0 0 1 𝑇
0 0 0 1

]]]]]]]]
]

,

G =
[[[[[[[[[[
[

𝑇22 0
𝑇 0
0 𝑇220 𝑇

]]]]]]]]]]
]

,

(36)

where 𝑇 is the sampling interval.
In target tracking system, the bearings-onlymeasurement

equation is written as follows:

𝑍𝑘 = arctan(𝑦𝑘 − 𝑦𝑟𝑥𝑘 − 𝑥𝑟) + V𝑘, (37)

where 𝑍𝑘 is the radar measurement at time 𝑘, (𝑥𝑟, 𝑦𝑟) is the
location of radar, and V𝑘 is the measurement noise.

In the simulation, the radar location is set to be(𝑥𝑟, 𝑦𝑟) = (200m, 300m), the simulation time is 40 s, 𝑇 =1, and the initial state of the target is (𝑥0, �̇�0, 𝑦0, ̇𝑦0) =(100m, 2m/s, 200m, 20m/s). The initial state and covari-
ance matrix are x̂+0 = (100m, 2m/s, 200m, 20m/s)Τ and
P+0 = diag[0.01, 0.01, 0.01, 0.01], respectively. The standard
deviation of the measurement noise is 0.1 deg. The Monte-
Carlo simulation is performed 500 times, and the tracking
accuracy is also evaluated using the RMSE.

The simulation results, including the position RMSE and
velocity RMSE of various filters, are shown in Figures 4 and 5,
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Figure 4: The position RMSE of various filters.
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Figure 5: The velocity RMSE of various filters.

respectively, and the partialmagnification is given to show the
details of the curve. It can be seen that the tracking accuracy
of CKF is significantly lower than that of other filters, and the
proposed SSRCQKF-2 and SSRCQKF-3 have achieved higher
target tracking accuracy than that of SSRCKF. The average
RMSE of the various filters is shown in Table 3, and compared
with CKF, the estimated position accuracy of SSRCKF is
improved by 20.85%, indicating that the spherical simplex-
radial cubature rule has higher accuracy than spherical-radial
cubature rule in this simulation. Since the second-order
Gauss-Laguerre rule is used in the SSRCQKF-2, the accuracy
is improved by 1.86% compared to SSRCKF. Due to the more
quadrature points used in SSRCQKF-3, its accuracy is higher
than that of SSRCQKF-2 by 1.50%. Through the analysis of
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Table 3: Average RMSE of various filters.

Filters Position RMSE/m Velocity RMSE/(m/s)
CKF 3.0372 0.1874
SSRCKF 2.4039 0.1655
SSRCQKF-2 2.3591 0.1642
SSRCQKF-3 2.3238 0.1630

the simulation results, the effectiveness of the proposed filter
is verified.

5. Conclusion

In order to further improve the filtering accuracy of the non-
linear system, this paper proposes a SSRCQKF algorithm by
combining the spherical simplex-radial cubature rule with
arbitrary order Gaussian-Laguerre quadrature rule. The pro-
posed algorithm has a higher filtering accuracy than CKF
and SSRCKF. The results of the two numerical simulations,
including the three-dimensional strongly nonlinear system
and target tracking, verify the validity of the proposed algo-
rithm.
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