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Droplets on insulating material suffer a nonvanishing total ponderomotive force because of the
inhomogeneity of the surrounding electric field. A series expansion of this total force is proven in
a two-dimensional setting by determining the line charge density at the boundary of the test body
via a Fredholm integral equation, which is solved by Fourier techniques. The influence of electric
charges in the neighborhood of the test body can be estimated as well as the convergence speed of
the series expansion. In all realistic applications the series converges very fast. The numerical effort
in the simulation of the motion of rainwater droplets on outdoor insulators reduces considerably.

Copyright q 2009 D. Langemann. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

The total force F acting on an uncharged test body in an inhomogeneous electric field is called
ponderomotive force [1]. It is the reason why an uncharged droplet moves within an electric
field in experiments [2], and it is an important influence factor for the motion of realistic
rainwater droplets on outdoor high-voltage insulating equipment [3, 4].

The simulation of moving rainwater droplets requires the determination of the
ponderomotive force, and the concentration on the total force F is a reasonable simplification
with respect to other influences like the weather. The computation of the electric fieldaround
the droplet is a computationally expensive task, which is dealt with finite integration
techniques in [5, 6] or by finite elements on an adaptive triangular grid in [4]. Similarly, a
related problem is solved in [7] in the investigation of ferromagnetic fluids.

In plasma physics, the ponderomotive force plays an important role [8], and therefore
the ponderomotive force sometimes seems to be strictly related to oscillating electric fields.
However, the same inhomogeneity of the electric field causes a nonvanishing divergence of
the Maxwell stress tensor and thus a force in classical electrodynamics as well as in plasma
physics.
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In a previous work, the droplet was idealized to a round conductive and undeformable
test body, and an explicit expression of the total force F could be derived [9–11]. This explicit
expression is a fast-converging series expansion in inhomogeneity indicators I(Ψ)

k
, which are

computed in terms of the undisturbed potential Ψ in the absence of the test body.
Until now, the series expansion was proven by introducing an auxiliary domain Θ

containing the domain Ω of the round test body. The potential Ψ at the boundary ∂Θ of the
auxiliary domain was used as Dirichlet boundary condition for the potential Φ disturbed
by the presence of the test body. After having derived the series expansion of F in a fixed
auxiliary domain Θ, an argumentation for extending the domain Θ was used.

This procedure is insatisfactory, because boundary conditions of Ψ and additional
charges in the vicinity of the test body are not regarded, and they would let fail the argument
of an extending Θ.

Here, we give a new proof of the series expansion in inhomogeneity indicators. This
new proof concentrates on the line charge σΓ at the boundary Γ = ∂Ω of the test body,
and it does not need any auxiliary domain. Basing on the proof, a new estimation of the
damped influence of neighbored charges on the test body is given. By similar investigations,
the diminishing behavior of the terms in the series for F is estimated. It can be shown that the
series converges at least as fast as a geometric series.

The present paper is organized as follows. It starts with preliminaries and notations
where the undisturbed electric potential Ψ and the potential Φ disturbed by the round,
conductive, and charge-free test body are presented. Here, the generated line charge density
σΓ at the boundary Γ of the test body is introduced. Section 3 solves a Fredholm integral
equation of first order by Fourier techniques and shows some facts which are needed to
give the series expansion of F in inhomogeneity indicators. Then, Section 4 deals with the
convergence behavior and the convergence speed of the series. Furthermore, it discusses the
diminishing speed of the summands in the series expansion and the decreasing influence of
more remote electric charges.

The paper ends with a short conclusion resuming the results and giving an outlook to
further investigations like, for example, the analogous investigation in higher dimensions or
the extension of the results to more general shapes of the test body.

2. Preliminaries and Notations

We denote the points of the two-dimensional Euclidean space R
2 by x = (x1, x2)

T. The polar
co-ordinates are named x = x(r, ϕ). The two-dimensional Laplacian operator −Δ : H1(R2) →
H−1(R2) maps H−1-functions in a weak or distributional sense.

The undisturbed electric potential Ψ ∈ H1(R2) is generated by a charge density
ρ ∈ H−1(R2) . The dielectricity constant is denoted by ε0. We normalize any possible relative
dielectricity, and the potential equation is

−ε0ΔΨ(x) = ρ(x) for x ∈ R
2,

lim
‖x‖→∞

Ψ(x) = 0,
(2.1)

where the boundary condition at infinity assures uniqueness of the solution [12]. It means
that the potential tends to zero for any unbounded sequence of points in R

2. In two
dimensions, that is, in R

2, the boundary condition at infinity contains the realistic condition
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that the sum of all charges in a bounded domain tends to zeros if the domain is increased
onto the whole space. This is an artefact of the two-dimensional setting. In the natural case of
three dimensions, it is not necessary to require a vanishing sum of the electric charge [13].

The formulation (2.1) includes possible boundary conditions at bounded domains
because they are effected by suitable charge densities too. The fundamental solution g of
the two-dimensional Laplacian −Δ is

g(z) = − 1
2π

ln‖z‖, (2.2)

and Green’s formula for (2.1) reads

Ψ(x) =
1
ε0

∫
R2
ρ(y)g(x − y) dy, (2.3)

where dy denotes an area element here.
The test body occupies the round domain Ω = {x : ‖x‖ < rΓ} with radius rΓ, where

‖ · ‖ is the Euclidean norm. The boundary of Ω is named Γ = ∂Ω = {x : ‖x‖ = rΓ}. The outer
normal is denoted by n = x/rΓ for x ∈ Γ. We denote the projection of x ∈ R

2 \ {0} onto the
boundary Γ as xΓ = rΓx/‖x‖.

The test body influences the undisturbed potential, and the resulting potential is called
the potential Φ ∈ H1(R2) disturbed by the presence of the test body. Since the test body is
conductive, the potentialΦ is constant inΩ. We denoteΦ(x) = c for x ∈ Ω, where the constant
c is unknown until now. Furthermore outside Ω, it is generated by the charge density ρ, too.
The conductivity condition of the test body requires

Ω ∩ supp ρ = ∅. (2.4)

The potential Φ bends on Γ, and thus it generates an additional charge density σ ∈ H−1(R2)
concentrated at Γ due to the separation of charges there, which obeys σ(x) = −ε0ΔΦ(x) for
x ∈ Γ in a weak sense and is identical to zero elsewhere. Since σ is concentrated on Γ, it can
be expressed as the product

σ(x) = σΓ(xΓ)δ(‖x‖ − rΓ) (2.5)

of the line charge density σΓ ∈ C(Γ) and the one-dimensional Dirac distribution δ. We show
a lemma about the line density.

Lemma 2.1. The generated line charge density is σΓ(xΓ) = −ε0∇Φ(xΓ)n with the unilateral outer
gradient ∇Φ(xΓ) at xΓ ∈ Γ.

Proof. We denote σ(x) = σ(r, ϕ) in polar coordinates, Φ(x) = Φ(r, ϕ) and σΓ(xΓ) = σΓ(ϕ),
respectively. With α > 0, (2.5) gives

σΓ(xΓ) =
∫ rΓ+α

rΓ−α
σ
(
r, ϕ

)
dr = lim

α→ 0+

∫ rΓ+α

rΓ−α
σ
(
r, ϕ

)
dr. (2.6)
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The Laplacian of the disturbed potential Φ is

ΔΦ(x) =

[
∂2

∂r2
+
1
r

∂

∂r
+

1
r2

∂2

∂ϕ2

]
Φ
(
r, ϕ

)
, (2.7)

in polar coordinates. With the Heaviside function H, the Laplacian for the potential Φ
bending at Γ reads

ΔΦ
(
r, ϕ

)
= δ(r − rΓ)

[
∂

∂r+
− ∂

∂r−

]
Φ
(
r, ϕ

)
+H(r − rΓ)

[
∂2

∂r2+
+
1
r

∂

∂r+

]
Φ
(
r, ϕ

)
+

1
r2

∂2

∂ϕ2
Φ
(
r, ϕ

)
,

(2.8)

where the unilateral derivatives are marked by the indices + and −, respectively. Since Φ is
constant on Γ and thus independent of the angle ϕ, (2.6) together with the constance of Φ
inside Ω gives

σΓ(xΓ) = −ε0 ∂

∂r+
Φ
(
rΓ, ϕ

)
= −ε0 ∂Φ(xΓ)

∂n
(2.9)

because Φ is constant in the orthogonal, angular direction.

Since the test body is free of charge, the integral over σ and hence over σΓ vanishes,
and the potential equation for the disturbed potential Φ reads

−ε0ΔΦ(x) = ρ(x) for x ∈ R
2 \Ω,

Φ(x) = c for x ∈ Ω,
∫
Γ
∇Φ(x)n dx = 0,

lim
‖x‖→∞

Φ(x) = 0,

(2.10)

where the first equation is Poisson’s equation with the charge density ρ outside the test body.
The second equation encodes the conductivity of the test body and, therefore, the constance of
the potential Φ in the test body and particularly at its boundary Γ. The third relation in (2.10)
contains the fact that the test body is free of charge, (cf. Lemma 2.1). Again, the boundary
condition ofΦ at infinity assures uniqueness. The line element on Γ is denoted by dx too. The
constant c is determined by the charge-free condition in (2.10) [9, 10].

Finally, the total ponderomotive force is given by

F=
ε0
2

∫
Γ
|∇Φ(x)|2n dx =

1
2

∫
Γ
σΓ(xΓ)|∇Φ(xΓ)|n dxΓ =

1
2ε0

∫
Γ
σΓ(xΓ)2n dxΓ, (2.11)

where the second equivalence follows from Lemma 2.1. The existence of the integral in the
defining (2.11) is not immediately obvious because the trace theorem [13] assures only
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∇Φ|Γ ∈ H−1/2(Γ) in general. However, due to the smooth boundary Γ, it holds true that
∇Φ|Γ ∈ L2(Γ) [14], and the integral in (2.11) is meaningful.

Now, the disturbed potential Φ is determined by the charge density ρ and by the
generated charge density σ. Thus, Green’s formula reads

Φ(x) =
1
ε0

∫
R2

[
ρ(y) + σ(y)

]
g(x − y) dy = Ψ(x) +

1
ε0

∫
Γ
σΓ(y)g(x − y) dy, (2.12)

where dy in the first term denotes an area element, and in the second term, it denotes the line
element on Γ, respectively, to the integration domain.

By the way, (2.12) includes the known fact that the influence of the test body onto the
neighborhood diminishes at least with the decreasing behavior of the fundamental solution.
Since the test body is charge-free and the sum of the line charge σΓ is vanishing, the influence
actually diminishes like the reciprocal of the distance in the two-dimensional setting.

3. Line Charge Density and a Fredholm Integral Equation

Weuse the preliminaries for deriving a Fredholm integral equation for the line charge density.
Further, we will solve it in dependence of the undisturbed potential Ψ. This solution will
enable us to express the total ponderomotive force F in terms of Ψ.

Theorem 3.1. Let rΓ ∈ (0, 1). If the line charge density σΓ fulfills

∫
Γ
σΓ(y)g(x − y)dy=

ε0
2πrΓ

∫
Γ
Ψ(y)dy − ε0Ψ(x) (3.1)

for all x ∈ Γ, then σΓ generates Φ with
∫
Γ∇Φ(x)ndx = 0 and with Φ(x) = c for all x ∈ Ω.

Proof. Starting with a vanishing difference and using condition (3.1), it holds true that

0 =
∫
Γ

(
ε0

2πrΓ

∫
Γ
Ψ(y) dy − ε0Ψ(x)

)
dx =

∫
Γ

∫
Γ
σΓ(y)g(x − y) dydx. (3.2)

Hence, one finds after changing the integration order

0 =
∫
Γ
σΓ(y)

∫
Γ
g(x − y) dx dy = C

∫
Γ
σΓ(y) dy (3.3)

with C =
∫
Γg(x − y)dx, which is independent of y because of the rotational symmetry of Γ.

With ‖x(rΓ, ϕ) − y(rΓ, 0)‖ = 2rΓ sin(ϕ/2), the constant C is calculated by

C = − 1
2π

∫2π

0
ln
(
2rΓ sin

ϕ

2

)
rΓdϕ = −rΓ ln rΓ. (3.4)
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Hence, rΓ ∈ (0, 1) implies C/= 0, and (3.3) together with Lemma 2.1 is the first proposition.
Again the requirement rΓ < 1 is an artefact of the two-dimensional setting, which does not
occur in three dimensions because the fundamental solution does not have any zeros then.

Next, (2.12) with the condition (3.1) gives

Φ(x) =
1

2πrΓ

∫
Γ
Ψ(y) dy = c for all x ∈ Γ, (3.5)

which is independent of x. Since Φ is constant on Γ and since there is no electric charge in Ω
(cf. (2.4)) it is true that Φ is constant in Ω.

Let us remark that the restriction rΓ < 1 does not occur in higher dimension because
the fundamental solutions do not change sign then. However, even rΓ < 1 can be overcome
by the transformation of coordinates.

Corollary 3.2. It holds true that c = Ψ(0) for every undisturbed potential Ψ.

Proof. The undisturbed potential Ψ is a potential function in Ω because of (2.4), and (3.5)
yields the proposition.

Using the proof of Corollary 3.2, condition (3.1) reads

∫
Γ
σΓ(y)g(x − y) dy = ε0[Ψ(0) −Ψ(x)] (3.6)

for all x ∈ Γ. This is a Fredholm integral equation of first order [15] for the determination
of σΓ. In the following, the integral equation (3.6) or (3.1), respectively, is solved by Fourier
techniques with the aim to determine σΓ and the total ponderomotive force F in (2.11).

Since the domain Ω is free of charge (cf. (2.4)) Ψ is a potential function, and it can be
given as

Ψ(x) = Ψ
(
r, ϕ

)
=

∞∑
k=−∞

ãkr
|k|eikϕ (3.7)

for all x ∈ Ω, that is, for r ∈ [0, rΓ]. The notation ak = ãkr
|k|
Γ , k ∈ Z gives

Ψ
(
rΓ, ϕ

)
=

∞∑
k=−∞

akeikϕ. (3.8)

In (3.8), we find the Fourier coefficients ak = ck(Ψ(rΓ, ·))which are defined by

ck
(
f
)
=

1
2π

∫2π

0
f
(
ϕ
)
e−ikϕ dϕ (3.9)
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for a 2π-periodic function f . We identify the point xΓ = xΓ(rΓ, ϕ)with the angle ϕ of the polar
coordinates, and (3.6) reads

∫2π

0
σΓ

(
ψ
)
g
(∣∣ϕ − ψ∣∣)rΓdψ = ε0

[
Ψ(0) −Ψ

(
rΓ, ϕ

)]
= −ε0

∞∑
k=−∞,k /= 0

akeikϕ (3.10)

for all ϕ ∈ [0, 2π) and with g = g(η) = ln(2rΓ sin(η/2)) for η ∈ [0, 2π] like in (3.4).
Since (3.10) is a convolution of the 2π-periodic functions σΓ = σΓ(ψ) and g = g(η), it

holds true [16] that

2πck(σΓ)ck
(
g
)
= ck

(
σΓ ◦ g

)
= −ε0ak

rΓ
(3.11)

for k /= 0 and c0(σΓ)c0(g) = 0. We compute ck(g) = 1/(4π |k|) for k /= 0, and we get

ck(σΓ) = −2ε0|k|
rΓ

ak (3.12)

for k /= 0. The term c0(σΓ) is not determined by the integral equations (3.6) or (3.10),
respectively (cf. Fredholm’s alternative [15]). However, (2.10) yields c0(σΓ) = 0 in the charge-
free condition. Therefore, we find

σΓ
(
ϕ
)
= −2ε0

rΓ

∞∑
k=−∞

|k|akeikϕ. (3.13)

Finally, the total ponderomotive force in (2.11) is

F =
2ε0
r2Γ

∫2π

0

( ∞∑
k=−∞

|k|akeikϕ
)2

n rΓdϕ with n =

(
cosϕ

sinϕ

)
. (3.14)

In fact (3.14) is already an expression for F in terms of the undisturbed potential Ψ, in
particular, in the Fourier coefficents of its restriction to the boundary of the round test body.
In the following, we develop a more convenient expression in terms of Ψ at the origin 0.

We consider the components of the force F = (F1, F2), and we have

F1 =
2ε0
r2Γ

∞∑
k=−∞

∞∑
�=−∞

|k||�|aka−�
∫2π

0

eiϕ + e−iϕ

2
ei(k−�)ϕ rΓdϕ. (3.15)

The evaluation of the integral gives

F1 =
2ε0π
rΓ

∞∑
k=−∞

∞∑
�=−∞

|k||�|aka−�(δk,�+1 + δk,�−1) (3.16)
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with the Kronecker symbol δk� , which is δk� = 1 if and only if k = � and vanishing else. Since
Ψ(rΓ, ·) is real-valued, it holds true a−k = ak, and the double sum reduces to

F1 =
4πε0
rΓ

∞∑
k=1

k(k + 1)(akak+1 + akak+1). (3.17)

Analogously, we find

F2 =
4πiε0
rΓ

∞∑
k=1

k(k + 1)(akak+1 − akak+1). (3.18)

On the other hand, the formula of Moivre gives (3.7) in Cartesian co-ordinates as

Ψ(x) = Ψ(x1, x2) = ã0 +
∞∑
k=1

ãk(x1 + ix2)k +
∞∑
k=1

ã−k(x1 − ix2)k. (3.19)

As defined in [9, 10] the inhomogeneity indicators are

I(Ψ)
k (x) = ∇

[
∇kΨ(x) : ∇kΨ(x)

]
, (3.20)

where “:” denotes the full tensor contraction of the kth derivatives ∇kΨ. The inhomogeneity
indicators encode the deviation of the undisturbed potential Ψ from the potential of a
homogeneous electric field, which has vanishing inhomogeneity indicators. In [9], it is shown
that ak = ãkr

|k|
Γ in (3.19) implies

I(Ψ)
k (0) =

2k+1k!(k + 1)!

r2k+1Γ

(
akak+1 + akak+1

iakak+1 − iakak+1

)
. (3.21)

The comparison of this result with (3.17) and (3.18) yields the series

F = 2πε0
∞∑
k=1

k

k!2
r2kΓ
2k

I(Ψ)
k (0), (3.22)

which is the proposed relation between the derivatives of the undisturbed potential Ψ at the
middle of the test body, which was set to 0 without loss of generality here. Equation (3.22)
allows us to separate the computation of the electric potential Ψ and the determination of
the total ponderomotive force F on an uncharged conductive body. So, the motion of the
body inside the electric field can be determined with a single computation of the undisturbed
electric potential. The following section will answer the question of the convergence speed of
the series (3.22).
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4. Convergence Speed of the Series

The domain of the test body itself is free of charge. The charge density ρ has a support which
is strictly remote of the test body (cf. (2.4)).

We investigate how the terms of the series (3.22) or rather (3.17) and (3.18),
respectively, depend on the charge density ρ. We remark that the undisturbed potential Ψ
depends linearly on ρ in (2.3), and hence the coefficients ak in (3.8) do so. Finally, the line
charge σΓ depends linearly on ρ via (3.13).

From a physical viewpoint, it is obvious – and we see it in the formulas too – that the
influence of the charges on the total force diminishes with the distance of the charge from
the test body. So, we will start with the investigation of a single point charge in the distance
t > rΓ from the origin 0. Since this setting is rotationally symmetric, this means, for example,
ρ(r, ϕ) = δ(t − r)δ(ϕ).

The undisturbed electric potential generated by this single point charge is

Ψ
(
r, ϕ

)
= − 1

2πε0
ln

√
t2 + r2 − 2rt cosϕ (4.1)

with the Fourier coefficients

ak = ck(Ψ(rΓ, ·)) = − 1

(2π)2ε0

∫2π

0
e−ikϕ ln

√
t2 + r2Γ − 2rΓt cosϕ dϕ (4.2)

as in (3.8) at the boundary Γ of the test body. With this abbreviation τ = trΓ/(t2 + r2Γ) < 1/2
holds true, that is

ln
√
t2 + r2Γ − 2rΓt cosϕ =

1
2
ln
(
t2 + r2Γ

)
+
1
2
ln
(
1 − 2τ cosϕ

)
. (4.3)

Thus in (4.2), the Fourier coefficients with k > 0 are

ak = − 1
8π2ε0

∫2π

0
e−ikϕ ln

(
1 − 2τ cosϕ

)
dϕ =

i
4kπ2ε0

∫2π

0
e−ikϕ

τ sinϕ
1 − 2τ cosϕ

dϕ. (4.4)

Since |2τ cosϕ| < 1, the term (1 − 2τ cosϕ)−1 can be written as geometric series, and we find
the relation

ak =
τ

8kπ2ε0

∫2π

0

(
e−i(k−1)ϕ − e−i(k+1)ϕ

) ∞∑
j=0

[
τ(eiϕ + e−iϕ)

]j
dϕ. (4.5)

The binomials in the sum do not vanish only in the cases that the exponents coincide with the
exponents i(k − 1)ϕ and −i(k + 1)ϕ in the sinus-term. Hence, we get

ak =
τk+1

4kπε0

[ ∞∑
n=0

(
2n − 1 + k

n

)
τ2n−1 −

∞∑
n=0

(
2n + 1 + k

n

)
τ2n+1

]
. (4.6)
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After separation of the first summand for n = 0 and an index shift in the first sum, we find

ak =
1

4πε0

[
τk

k
+ τk+2A(k, τ)

]
with A(k, τ) =

∞∑
n=0

τ2n

n + 1

(
2n + 1 + k

n

)
. (4.7)

The hypergeometric expression A(k, τ) is monotonously increasing in τ for every k > 0, and
it holds true that

A(k, 0) = 1, A

(
k,

1
2

)
=

4
(
2k − 1

)
k

. (4.8)

However, (4.7) shows that the coefficients ak are positive for k > 0, and (4.8) yields the
estimation

ak ≤ 1
4kπε0

[
τk + 4

(
2k − 1

)
τk+2

]
<

1
4kπε0

[
τk + (2τ)k+2

]
. (4.9)

Finally, we see that the modulus of the series in (3.17) and (3.18)fulfils

∣∣Fj∣∣ ≤ 8πε0
rΓ

∞∑
k=1

k(k + 1)akak+1 <
1

2πε0rΓ

∞∑
k=1

[
τk + (2τ)k+2

][
τk+1 + (2τ)k+3

]
(4.10)

for j ∈ {1, 2},which leads to convergent geometric series because of 2τ < 1. After the
evaluation of the geometric series in the right-hand expression in (4.10), we get the relation

∣∣Fj∣∣ < 1
2πε0rΓ

[
τ3

1 − τ2 +
24τ5

1 − 2τ2
+

32τ7

1 − 4τ2

]
. (4.11)

In realistic applications, electric charges are remote from the test body compared to the size of
the test body, for example, droplets on insulating material, and thus often we have τ � 1/2.
Then, the series (3.17) and (3.18) and hence the series in (3.22) converges fast.

At the same time, (4.10) estimates the influence of remote charges to its neighborhood.
For falling τ , that is, for an increasing distance t of the charge to the test body, it holds true
that

∣∣Fj∣∣ ∼ O
(
τ3
)

for τ → 0 with τ <
rΓ
t
. (4.12)

The discussion of this section is accomplished by the apprehensible fact that the influence of
a charge distribution can be estimated by a concentrated absolute charge distribution at the
nearest point of supp ρ to the test body. By (4.7)we know that |ak| ≤ q(t)with a positive and
monotonously decreasing function q in the case of a concentrated normed charge at distance
t. Consequently, a distributed charge density gives

|ak| ≤
∣∣∣∣∣
∫
supp ρ

ρ(x)q(‖x‖)dx
∣∣∣∣∣ ≤

∫
supp ρ

∣∣ρ(x)∣∣q(‖x‖)dx ≤ min
x∈ supp ρ

q(‖x‖)
∫
supp ρ

∣∣ρ(x)∣∣dx. (4.13)
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In fact (4.13) shows that the above investigation about the decreasing behavior of the
summands in the series expansion in (3.22) are valid for a distributed charge density
too. Furthermore, such a distributed charge density implies an even faster convergence, in
particular, in the realistic case of a vanishing total charge.

5. Conclusion

We have developed a series expansion for the total ponderomotive force acting on a round,
conductive, and charge-free test body in an homogeneous media. This is a reasonable
approximation for rainwater droplets on insulating material in outdoor high-voltage
equipment, because the total ponderomotive force only gives a tendency of their motion,
which is additionally influenced by the weather, further external causes, and by the surface
properties of the insulating material.

The motion of a rainwater droplet on insulating material [3–6] can be simulated
by the determination of the time-dependent position of the test body, which moves under
the influence of the ponderomotive force. Now, the series expansion in inhomogeneity
indicators considerately reduces the numerical effort in this simulation. It requires only
one solution of the field equation, and the derivatives needed in the determination of the
inhomogeneity indicators can beread out for every position. Compared to the determination
of the disturbed electric field around the test body, for example, the rainwater droplet, in its
present position, which changes in every time instant and time step, this single solution of
the partial differential equation is of a great advantage.

In the present paper, a new proof for the series expansion is given which argues with
the line density at the boundary of the test body in two dimensions. So, it does not need any
additional, non-physical domain in the neighborhood of the test body. The application of this
idea for higher dimensional settings, in particular, for three dimensions, is straightforward if
spherical harmonics [17] are used in the Fourier approach.

A mathematical much more challenging topic is the generalization of the series
expansion in inhomogeneity indicators for more generally shaped test bodies. For small
deviations from the circular form, the ideas in [18] about partial differential equations with
perturbated boundaries are a starting point.
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