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This paper is concerned with the existence results of nonlocal problems for a class of fractional impulsive integrodifferential
equations in Banach spaces. We define a piecewise continuous control function to obtain the results on controllability of the
corresponding fractional impulsive integrodifferential control systems. The results are obtained by means of fixed point methods.
An example to illustrate the applications of our main results is given.

1. Introduction

In recent decades, existence of mild solutions of nonlocal
Cauchy problems has been investigated extensively by many
researchers (see [1–15] and the references cited therein). The
study of abstract nonlocal semilinear initial value problems
was initiated by Byszewski and Lakshmikantham [11] and
Byszewski [12]. Byszewski [12] considered the existence and
uniqueness ofmild, strong, and classical solutions of nonlocal
Cauchy problems. Lin and Liu [8] studied the existence
and uniqueness of mild and classical solutions of semilinear
integrodifferential equations with nonlocal Cauchy prob-
lems. Using Krasnoselskii’s fixed point theorem, Schauder’s
fixed point theorem, and Banach contraction principle, Zhou
and Jiao [13] obtained several criteria on the existence and
uniqueness of mild solutions of nonlocal Cauchy problems
for fractional evolution equations without impulse.

Such analysis on nonlocal Cauchy problems is important
from an applied viewpoint, since the nonlocal condition has
a better effect in applications than a classical initial one. For
instance, the diffusion phenomenon of a small amount of gas
in a transparent tube can be given a better description than

using the usual local Cauchy problem. On the other hand,
controllability of nonlocal problems in Banach spaces has
become an active area of investigation; we refer the reader to,
for example, the papers [16–29]. The most common method
is to transform the controllability problem into a fixed-
point problem of solutions for an appropriate operator in a
function space, that is, the existence problem of differential
and integrodifferential equations. Unfortunately, by [16], we
know that the concept of mild solutions used in [14, 15, 17]
was not suitable for fractional evolution systems.

Chang et al. [18] investigated the controllability of a class
of first-order semilinear differential systems with nonlocal
initial conditions in a Banach space:

𝑥󸀠 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵𝑢 (𝑡) ,
𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥 (0) + 𝑔 (𝑥) = 𝑥0 ∈ X,
(1)

where 𝐴 generates a strongly continuous, not necessarily
compact, semigroup (𝑇(𝑡))𝑡≥0 in the Banach space X. Suf-
ficient conditions for the controllability of the first-order
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semilinear differential systemwith nonlocal initial conditions
were established.The approach used is Sadovskii’s fixed point
theorem.

Balachandran et al. [19] discussed the controllability of a
class of fractional integrodifferential systems with nonlocal
conditions in a Banach space:

𝑑𝑞𝑥 (𝑡)𝑑𝑡𝑞 = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡)) + 𝐵𝑢 (𝑡) ,
𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥 (0) + 𝑔 (𝑥) = 𝑥0 ∈ X.
(2)

Motivated by the work of the above papers and wide
applications of nonlocal Cauchy problems in various fields
of natural sciences and engineering, in this paper, we study
the existence of nonlocal problems for a class of fractional
impulsive integrodifferential systems in a Banach space of the
following type:

𝐷𝑞𝑡𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡)) ,
𝑡 ∈ 𝐼 = [0, 𝑏] , 𝑡 ̸= 𝑡𝑘,

Δ𝑥|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑘 = 1, 2, . . . , 𝑚,
𝑥 (0) + 𝑔 (𝑥) = 𝑥0 ∈ X,

(3)

where (𝐻𝑥)(𝑡) = ∫𝑡
0
ℎ(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 and 𝐷𝑞𝑡 is the Caputo

fractional derivative (0 < 𝑞 < 1); the state 𝑥(⋅) takes values in
the Banach space X. 𝐴 : 𝐷(𝐴) ⊆ X → X is the infinitesimal
generator of a strongly continuous semigroup (𝑇(𝑡))𝑡≥0 of
uniformly bounded operators inX, and𝐴 is a bounded linear
operator. 𝑓 : 𝐼 × X × X → X is a given X-value function;ℎ : Δ×X → X is continuous; here Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏},𝐼𝑘 : X → X, 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑚 < 𝑡𝑚+1 = 𝑏,Δ𝑥|𝑡=𝑡𝑘 = 𝑥(𝑡+𝑘 )−𝑥(𝑡−𝑘 ), 𝑥(𝑡+𝑘 ) = limℎ→0+𝑥(𝑡𝑘 +ℎ), and 𝑥(𝑡−𝑘 ) =
limℎ→0−𝑥(𝑡𝑘 + ℎ) represent the right and left limits of 𝑥(𝑡) at𝑡 = 𝑡𝑘, respectively. Using the similar method and a piecewise
continuous control function, we consider the controllability
of a class of fractional impulsive integrodifferential systems
with nonlocal initial conditions:

𝐷𝑞𝑡𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡)) + 𝐵𝑢 (𝑡) ,
𝑡 ∈ 𝐼 = [0, 𝑏] , 𝑡 ̸= 𝑡𝑘,

Δ𝑥|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑘 = 1, 2, . . . , 𝑚,
𝑥 (0) + 𝑔 (𝑥) = 𝑥0 ∈ X,

(4)

where 𝐵 is a bounded linear operator from 𝑈 to X and the
control function 𝑢(⋅) is given in 𝐿2[𝐼, 𝑈], with 𝑈 as a Banach
space.

We study the nonlocal initial problem (3) that describes a
more general form than the previous ones reported in [18, 19].
We introduce a suitable concept of PC-mild solutions for
nonlocal initial problem (3). We not only study the existence
and uniqueness of a mild solution for impulsive fractional
semilinear integrodifferential equation (3) but also define
a piecewise continuous control function and present the
results on the controllability of the corresponding fractional
impulsive integrodifferential system (4) which include some

known results obtained in [14, 17]. Assumptions in our results
are less restrictive.

2. Preliminaries and Lemmas

Throughout this paper, let us consider the set of functions
PC[𝐼,X] = {𝑥 : 𝐼 → X | 𝑥 ∈ 𝐶[(𝑡𝑘, 𝑡𝑘+1),X] and there
exist 𝑥(𝑡−𝑘 ) and 𝑥(𝑡+𝑘 ), 𝑘 = 0, 1, 2, . . . , 𝑚, with 𝑥(𝑡−𝑘 ) = 𝑥(𝑡𝑘)}.
Endowed with the norm ‖𝑥‖PC = sup𝑡∈𝐼‖𝑥(𝑡)‖, it is easy to
verify that (PC[𝐼,X], ‖ ⋅ ‖PC) is a Banach space. Let 𝐿𝐵(X) be
the Banach space of all linear and bounded operators on X.
For a 𝐶0-semigroup (𝑇(𝑡))𝑡≥0, we set𝑀1 = sup𝑡∈𝐼‖𝑇(𝑡)‖𝐿𝐵(X).
For each positive constant 𝑟, we set 𝐵𝑟 = {𝑥 ∈ PC[𝐼,X] :‖𝑥‖ ≤ 𝑟}. Obviously, 𝐵𝑟 is a bounded closed and convex
subset.

Definition 1. The fractional integral of order 𝛾 with the lower
limit zero for a function 𝑓 is defined as

𝐼𝛾𝑓 (𝑡) = 1Γ (𝛾) ∫
𝑡

0

𝑓 (𝑠)
(𝑡 − 𝑠)1−𝛾 𝑑𝑠, 𝑡 > 0, 𝛾 > 0, (5)

provided that the right side is point-wise defined on [0,∞),
where Γ(⋅) is the gamma function.

Definition 2. The Riemann-Liouville derivative of order 𝛾
with the lower limit zero for a function 𝑓 : [0,∞) → R can
be written as

𝐿𝐷𝛾𝑓 (𝑡) = 1Γ (𝑛 − 𝛾) 𝑑
𝑛

𝑑𝑡𝑛 ∫
𝑡

0

𝑓 (𝑠)
(𝑡 − 𝑠)1−𝑛+𝛾 𝑑𝑠,

𝑡 > 0, 𝑛 − 1 < 𝛾 < 𝑛.
(6)

Definition 3. The Caputo derivative of order 𝛾 for a function𝑓 : [0,∞) → R can be written as

𝐷𝛾𝑡𝑓 (𝑡) = 𝐿𝐷𝛾(𝑓 (𝑡) − 𝑛−1∑
𝑘=0

𝑡𝑘𝑘!𝑓(𝑘) (0)) ,
𝑡 > 0, 𝑛 − 1 < 𝛾 < 𝑛.

(7)

Remark 4. If 𝑓 is an abstract function with values inX, then
integrals that appear in Definitions 1–3 are taken in Bochner’s
sense.

Definition 5 (see [20]). Let X be a Banach space; a one-
parameter family 𝑇(𝑡), 0 ≤ 𝑡 < ∞, of bounded linear
operators from X to X is a semigroup of bounded linear
operators onX if

(1) 𝑇(0) = 𝐼; 𝐼 is the identity operator onX;
(2) 𝑇(𝑡 + 𝑠) = 𝑇(𝑡)𝑇(𝑠) for every 𝑡, 𝑠 ≥ 0 (the semigroup

property).

A semigroup of bounded linear operators, 𝑇(𝑡), is uniformly
continuous if lim𝑡↓0‖𝑇(𝑡) − 𝐼‖ = 0.
Definition 6 (see [21]). By a PC-mild solution of system (3),
we mean a function 𝑥 ∈ PC[𝐼,X] that satisfies the following
integral equation:
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𝑥 (𝑡) =
{{{{{{{{{{{{{{{{{{{{{

T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠 +T (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡−1 )) , 𝑡 ∈ (𝑡1, 𝑡2] ,...
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠 + 𝑚∑

𝑘=1

T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑡 ∈ ( 𝑡𝑚, 𝑏] ,
(8)

whereT(⋅) and S(⋅) are called characteristic solution opera-
tors and are given by

T (𝑡) = ∫∞
0

𝜉𝑞 (𝜃) 𝑇 (𝑡𝑞𝜃) 𝑑𝜃,

S (𝑡) = 𝑞∫∞
0

𝜃𝜉𝑞 (𝜃) 𝑇 (𝑡𝑞𝜃) 𝑑𝜃,
(9)

and, for 𝜃 ∈ (0,∞),
𝜉𝑞 (𝜃) = 1𝑞𝜃−1−1/𝑞𝜛𝑞 (𝜃−1/𝑞) ≥ 0,

𝜛𝑞 (𝜃) = 1𝜋
∞∑
𝑛=1

(−1)𝑛−1 𝜃−𝑞𝑛−1 Γ (𝑛𝑞 + 1)𝑛! sin (𝑞𝑛𝜋) ,
(10)

where 𝜉𝑞 is a probability density function defined on (0,∞);
that is,

𝜉𝑞 (𝜃) ≥ 0, 𝜃 ∈ (0,∞) ,
∫∞
0

𝜉𝑞 (𝜃) 𝑑𝜃 = 1. (11)

Definition 7 (see [21]). By a PC-mild solution of system (4),
we mean a function 𝑥 ∈ PC[𝐼,X] that satisfies the following
integral equation:

𝑥 (𝑡)

=
{{{{{{{{{{{{{{{{{{{{{

T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) + 𝐵𝑢 (𝑠)] 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) + 𝐵𝑢 (𝑠)] 𝑑𝑠 +T (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡−1 )) , 𝑡 ∈ ( 𝑡1, 𝑡2] ,...
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) + 𝐵𝑢 (𝑠)] 𝑑𝑠 + 𝑚∑

𝑘=1

T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑡 ∈ ( 𝑡𝑚, 𝑏] .

(12)

Definition 8. System (4) is said to be controllable on the
interval 𝐼 if, for every 𝑥0, 𝑥1 ∈ X, there exists a control𝑢 ∈ 𝐿2[𝐼, 𝑈] such that a mild solution 𝑥 of (4) satisfies𝑥(𝑏) + 𝑔(𝑥) = 𝑥1.
Lemma 9 (see [20]). Linear operator 𝐴 is the infinitesimal
generator of a uniformly continuous semigroup if and only if𝐴 is a bounded linear operator.

Lemma 10 (see [13] Krasnoselskii’s fixed point theorem). Let
X be a Banach space, let 𝐵 be a bounded closed and convex
subset ofX, and let 𝐹1, 𝐹2 be maps of 𝐵 intoX such that 𝐹1𝑥 +𝐹2𝑦 ∈ 𝐵 for every pair 𝑥, 𝑦 ∈ 𝐵. If 𝐹1 is a contraction and 𝐹2 is
completely continuous, then the equation 𝐹1𝑥 + 𝐹2𝑥 = 𝑥 has a
solution in 𝐵.
Lemma 11 (see [22, 23]). The operatorsT(𝑡) andS(𝑡) defined
by (9) have the following properties:

(i) For any fixed 𝑡 ≥ 0, T(𝑡) and S(𝑡) are linear and
bounded operators; that is, for any 𝑥 ∈ X,

‖T (𝑡) 𝑥‖ ≤ 𝑀1 ‖𝑥‖ ,
‖S (𝑡) 𝑥‖ ≤ 𝑞𝑀1Γ (1 + 𝑞) ‖𝑥‖ .

(13)

(ii) {T(𝑡), 𝑡 ≥ 0} and {S(𝑡), 𝑡 ≥ 0} are strongly continuous.
(iii) {T(𝑡), 𝑡 ≥ 0} and {S(𝑡), 𝑡 ≥ 0} are uniformly

continuous.

Remark 12. Since the infinitesimal generator 𝐴 is a linear
bounded operator and thanks to Definition 5 and Lemma 9,
we can get that (iii) is satisfied.

Lemma 13 (see [21]). For 𝜎 ∈ (0, 1] and 0 < 𝑎 ≤ 𝑏, |𝑎𝜎 −𝑏𝜎| ≤(𝑏 − 𝑎)𝜎.
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3. Existence and Uniqueness of
PC-Mild Solutions

In order to prove the existence and uniqueness of mild
solutions of (3), we have the following assumptions:

(H1) 𝑓 : 𝐼 ×X ×X → X is continuous and there exist two
functions 𝜇1, 𝜇2 ∈ 𝐿[𝐼,R+] such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)󵄩󵄩󵄩󵄩
≤ 𝜇1 (𝑡) 󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩 + 𝜇2 (𝑡) 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2󵄩󵄩󵄩󵄩 ,

𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ X.
(14)

(H2) ℎ : 󳵻 × X → X is continuous and there exists a
function ]1 ∈ 𝐶[𝐼,R+] such that

󵄩󵄩󵄩󵄩ℎ (𝑡, 𝑠, 𝑥1) − ℎ (𝑡, 𝑠, 𝑥2)󵄩󵄩󵄩󵄩 ≤ ]1 (𝑡) 󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩 ,
𝑥1, 𝑥2 ∈ X. (15)

(H3) 𝐼𝑘 : X → X are continuous and there exist 𝜔𝑘 ∈𝐶[𝐼,R+] such that

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥1) − 𝐼𝑘 (𝑥2)󵄩󵄩󵄩󵄩 ≤ 𝜔𝑘 (𝑡) 󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩 ,
𝑥1, 𝑥2 ∈ X, 𝑘 = 1, 2, . . . , 𝑚. (16)

(H4) 𝑔 is continuous and there exists a function 𝜙 ∈𝐶[𝐼,R+] such that

󵄩󵄩󵄩󵄩𝑔 (𝑥1) − 𝑔 (𝑥2)󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑡) 󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩 . (17)

(H5) The functionΩ𝑚(𝑡) : 𝐼 → R+ is defined by

Ω𝑚 (𝑡) = 𝑚𝜔0𝑀1 +𝑀1𝜙 (𝑡) + 𝑞𝑀1Γ (1 + 𝑞)
× ∫𝑡
0
(𝑡 − 𝑠)𝑞−1 (𝜇1 (𝑠) + ]01𝑏𝜇2 (𝑠)) 𝑑𝑠,

(18)

where ]01 = max{]1(𝑡) | 𝑡 ∈ 𝐼}, 𝜔0 = max{𝜔𝑘(𝑡) | 𝑡 ∈𝐼, 𝑘 = 1, 2, . . . , 𝑚}, and 0 < Ω𝑚(𝑡) < 1, 𝑡 ∈ 𝐼.
(H󸀠5) The constant Ω𝑢 and function Ω󸀠𝑚(𝑡) : 𝐼 → R+ are

defined by

Ω𝑢 = 𝜔0𝑚𝑀1 + 𝜙0𝑀1 + 𝑞𝐾𝑀1Γ (1 + 𝑞)
× ∫𝑏
0
(𝑏 − 𝑠)𝑞−1 (𝜇1 (𝑠) + ]01𝑏𝜇2 (𝑠)) 𝑑𝑠,

Ω󸀠𝑚 (𝑡) = 𝜔0𝑚𝑀1 + 𝜙0𝑀1 + 𝑞𝑀1Γ (1 + 𝑞)
× ∫𝑡
0
(𝑡 − 𝑠)𝑞−1 (𝜇1 (𝑡) + ]01𝑏𝜇2 (𝑡)) 𝑑𝑠

+ 𝑞𝑀1Ω𝑢Γ (1 + 𝑞) ∫
𝑡

0
(𝑡 − 𝑠)𝑞−1 𝑑𝑠,

(19)

where 𝜙0 = max{𝜙(𝑡) | 𝑡 ∈ 𝐼} and 0 < Ω󸀠𝑚(𝑡) < 1,𝑡 ∈ 𝐼.
Theorem 14. If hypotheses (H1)–(H5) are satisfied, then (3)
has a unique PC-mild solution.

Proof. Define the operator 𝑄 on PC[𝐼,X] by
(𝑄𝑥) (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{

T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠 +T (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡−1 )) , 𝑡 ∈ ( 𝑡1, 𝑡2] ,
...
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠 + 𝑚∑

𝑘=1

T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑡 ∈ ( 𝑡𝑚, 𝑏] .

(20)

For 0 ≤ 𝜏 < 𝑡 ≤ 𝑡1, by virtue of (20), we conclude that
‖(𝑄𝑥) (𝑡) − (𝑄𝑥) (𝜏)‖ ≤ ‖T (𝑡) −T (𝜏)‖ 󵄩󵄩󵄩󵄩𝑥0 − 𝑔 (𝑥)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

𝜏
(𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝜏

0
(𝑡 − 𝑠)𝑞−1 [S (𝑡 − 𝑠) −S (𝜏 − 𝑠)]

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝜏

0
[(𝑡 − 𝑠)𝑞−1 − (𝜏 − 𝑠)𝑞−1]S (𝜏 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .
(21)

It follows from Lemma 11, part (iii) and Lemma 13 that

‖(𝑄𝑥) (𝑡) − (𝑄𝑥) (𝜏)‖ 󳨀→ 0 as 𝑡 󳨀→ 𝜏. (22)
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Thus, we deduce that 𝑄𝑥 ∈ 𝐶[[0, 𝑡1],X]. For 𝑡1 < 𝜏 < 𝑡 ≤ 𝑡2,
we have

‖(𝑄𝑥) (𝑡) − (𝑄𝑥) (𝜏)‖ ≤ ‖T (𝑡) −T (𝜏)‖ 󵄩󵄩󵄩󵄩𝑥0 − 𝑔 (𝑥)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩T (𝑡 − 𝑡1) −T (𝜏 − 𝑡1)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐼1 (𝑥 (𝑡−1 ))󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

𝜏
(𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝜏

0
(𝑡 − 𝑠)𝑞−1 [S (𝑡 − 𝑠) − S (𝜏 − 𝑠)]

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝜏

0
[(𝑡 − 𝑠)𝑞−1 − (𝜏 − 𝑠)𝑞−1]S (𝜏 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .

(23)

From (23), we know that 𝑄𝑥 ∈ 𝐶[(𝑡1, 𝑡2],X]. Using the
same method, we obtain 𝑄𝑥 ∈ 𝐶[(𝑡2, 𝑡3],X],. . ., 𝑄𝑥 ∈

𝐶[(𝑡𝑚, 𝑏],X], and therefore 𝑄𝑥 ∈ PC[𝐼,X]. For each 𝑡 ∈(𝑡𝑖, 𝑡𝑖+1], 1 ≤ 𝑖 ≤ 𝑚, 𝑥, 𝑦 ∈ PC[𝐼,X],
󵄩󵄩󵄩󵄩(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝑀1𝜙 (𝑡) + 𝑞𝑀1Γ (1 + 𝑞) ∫

𝑡

0
(𝑡

− 𝑠)𝑞−1 × (𝜇1 (𝑠) + ]01𝑏𝜇2 (𝑠)) 𝑑𝑠 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩PC
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑖∑
𝑘=1

T (𝑡 − 𝑡𝑖) 𝐼𝑘 (𝑥 (𝑡−𝑘 ))

− 𝑖∑
𝑘=1

T (𝑡 − 𝑡𝑖) 𝐼𝑘 (𝑦 (𝑡−𝑘 ))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ Ω𝑖 (𝑡) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩PC .

(24)

When 𝑖 = 𝑚, we get

󵄩󵄩󵄩󵄩(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)󵄩󵄩󵄩󵄩 ≤ Ω𝑚 (𝑡) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩PC . (25)

It follows now fromΩ𝑖(𝑡) ≤ Ω𝑚(𝑡), (H5), and the contraction
mapping principle that 𝑄 has a unique fixed point 𝑥 ∈
PC[𝐼,X]; that is,

𝑥 (𝑡) =
{{{{{{{{{{{{{{{{{{{{{

T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠 +T (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡−1 )) , 𝑡 ∈ (𝑡1, 𝑡2] ,...
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠 + 𝑚∑

𝑘=1

T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑡 ∈ (𝑡𝑚, 𝑏] ,
(26)

is a unique PC-mild solution of (3). The proof is complete.

In order to obtain more existence results, we have the
following assumptions:

(H6) 𝑓 : 𝐼 ×X×X → X is continuous and there exist three
functions 𝜇3, 𝜇4, 𝜇5 ∈ 𝐿[𝐼,R+] such that󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝜇3 (𝑡) + 𝜇4 (𝑡) ‖𝑥‖ + 𝜇5 (𝑡) 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 ,

𝑡 ∈ 𝐼, 𝑥, 𝑦 ∈ X. (27)

(H7) ℎ : 󳵻 × X → X is continuous and there exist two
functions ]2, ]3 ∈ 𝐶[𝐼,R+] such that

‖ℎ (𝑡, 𝑠, 𝑥)‖ ≤ ]2 (𝑠) + ]3 (𝑠) ‖𝑥‖ , 𝑥 ∈ X. (28)

(H8) 𝐼𝑘 : X → X are continuous and there exist 𝜓𝑘 ∈𝐶[𝐼,R+] such that󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥)󵄩󵄩󵄩󵄩 ≤ 𝜓𝑘 (𝑡) ‖𝑥‖ , 𝑥 ∈ X. (29)

Define 𝜓0 = max {𝜓𝑘(𝑡) | 𝑡 ∈ 𝐼, 𝑘 = 1, 2, . . . , 𝑚}.

(H9) There exists a function 𝜅 ∈ 𝐶[𝐼,R+] such that
󵄩󵄩󵄩󵄩𝑔 (𝑥)󵄩󵄩󵄩󵄩 ≤ 𝜅 (𝑡) ‖𝑥‖ , 𝑥 ∈ X. (30)

Define 𝜅0 = max{𝜅(𝑡) | 𝑡 ∈ 𝐼}.
(H10) For all bounded subsets 𝐵𝑟, the set

Π𝑚,ℎ,𝛿 (𝑡) = {∫𝑡−ℎ
0

(𝑡 − 𝑠)𝑞−1S𝛿 (𝑡 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

+ 𝑚∑
𝑘=1

T𝛿 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) : 𝑥 ∈ 𝐵𝑟}
(31)

is relatively compact in X for arbitrary ℎ ∈ (0, 𝑡) and𝛿 > 0, whereT𝛿(𝑡) and S𝛿(𝑡) are defined by

T𝛿 (𝑡) = ∫∞
𝛿

𝜉𝑞 (𝜃) 𝑇 (𝑡𝑞𝜃) 𝑑𝜃,
S𝛿 (𝑡) = 𝑞∫∞

𝛿
𝜃𝜉𝑞 (𝜃) 𝑇 (𝑡𝑞𝜃) 𝑑𝜃.

(32)
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(H󸀠10) For all bounded subsets 𝐵𝑟, the set
Π󸀠𝑚,ℎ,𝛿 (𝑡)

= {∫𝑡−ℎ
0

(𝑡 − 𝑠)𝑞−1S𝛿 (𝑡 − 𝑠) [𝐹 (𝑠) + 𝐵𝑢 (𝑠)] 𝑑𝑠

+ 𝑚∑
𝑘=1

T𝛿 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) : 𝑥 ∈ 𝐵𝑟}
(33)

is relatively compact in X for arbitrary ℎ ∈ (0, 𝑡) and𝛿 > 0.
Theorem 15. Let hypotheses (H4) and (H6)–(H10) be satisfied.
If the inequalities

𝑞𝑏𝑞𝑀1Γ (1 + 𝑞) ∫
𝑏

0
𝜑2 (𝑠) 𝑑𝑠 + 𝑚𝑀1𝜓0 +𝑀1𝜅0 < 1,

𝜙0𝑀1 < 1
(34)

hold, where 𝜑2(𝑠) = 𝜇4(𝑠) + 𝜇5(𝑠) ∫𝑠0 ]3(𝜃) 𝑑𝜃 and 𝜙0 is as in(H󸀠5), then (3) has at least one PC-mild solution.

Proof. We shall present the results in six steps.

Step 1 (Continuity of 𝑄 defined by (20) on (𝑡𝑖, 𝑡𝑖+1] (𝑖 =0, 1, 2, . . . , 𝑚)). Let 𝑥𝑛, 𝑥 ∈ PC[𝐼,X] and ‖𝑥𝑛 − 𝑥∗‖PC →0 (𝑛 → ∞). Then 𝑟 = sup𝑛‖𝑥𝑛‖PC < ∞ and ‖𝑥∗‖PC < 𝑟.
For 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚), we have

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 (𝑡) − 𝑄𝑥 (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝑞𝑀1Γ (1 + 𝑞) ∫
𝑡

0
(𝑡 − 𝑠)𝑞−1

× 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))
− 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠
+ 𝜓0𝑀1 𝑚∑

𝑘=1

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥𝑛 (𝑡−𝑘 )) − 𝐼𝑘 (𝑥 (𝑡−𝑘 ))󵄩󵄩󵄩󵄩
+𝑀1 󵄩󵄩󵄩󵄩𝑔 (𝑥𝑛) − 𝑔 (𝑥)󵄩󵄩󵄩󵄩 .

(35)

Since the functions 𝑓, 𝐼𝑘, and 𝑔 are continuous, we conclude
that

𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠)) 󳨀→ 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) ,
𝑔 (𝑥𝑛) 󳨀→ 𝑔 (𝑥) ,

𝐼𝑘 (𝑥𝑛 (𝑡−𝑘 )) 󳨀→ 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑛 󳨀→ ∞.
(36)

Applications of (H6) and (H7) yield󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))󵄩󵄩󵄩󵄩
≤ 2𝜇3 (𝑠) + 2𝜇5 (𝑠) ∫𝑠

0
]2 (𝜃) 𝑑𝜃

+ (2𝜇4 (𝑠) + 2𝜇5 (𝑠) ∫𝑠
0
]3 (𝜃) 𝑑𝜃) 𝑟,

(37)

which implies that

(𝑡 − 𝑠)𝑞−1
⋅ 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))󵄩󵄩󵄩󵄩
∈ 𝐿1 [𝐼,R+] .

(38)

By Lebesgue’s dominated convergence theorem, we get

∫𝑡
0
(𝑡 − 𝑠)𝑞−1 × 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) ,𝐻𝑥𝑛 (𝑠))
− 𝑓 (𝑠, 𝑥 (𝑠) ,𝐻𝑥 (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠 󳨀→ 0,

(39)

and so

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 (𝑡) − 𝑄𝑥 (𝑡)󵄩󵄩󵄩󵄩PC = 0. (40)

Step 2 (𝑄maps bounded sets into bounded sets in PC[𝐼,X]).
From (20), we get

‖(𝑄𝑥) (𝑡)‖
= 󵄩󵄩󵄩󵄩T (𝑡) [𝑥0 − 𝑔 (𝑥)]󵄩󵄩󵄩󵄩
+ ∫𝑡
0
(𝑡 − 𝑠)𝑞−1 󵄩󵄩󵄩󵄩S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠

+ 𝑚∑
𝑘=1

󵄩󵄩󵄩󵄩T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 ))󵄩󵄩󵄩󵄩 ,

(41)

where 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))󵄩󵄩󵄩󵄩
≤ 𝜇3 (𝑠) + 𝜇5 (𝑠) ∫𝑠

0
]2 (𝜃) 𝑑𝜃

+ (𝜇4 (𝑠) + 𝜇5 (𝑠) ∫𝑠
0
]3 (𝜃) 𝑑𝜃) ‖𝑥‖

≤ 𝜑1 (𝑠) + 𝜑2 (𝑠) ‖𝑥‖ .

(42)

By Lemma 11 and (42), we obtain

‖(𝑄𝑥) (𝑡)‖ ≤ 𝑞𝑏𝑞𝑀1Γ (1 + 𝑞) ∫
𝑡

0
(𝜑1 (𝑠) + 𝜑2 (𝑠) ‖𝑥‖) 𝑑𝑠

+𝑀1 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩 + 𝑀1𝜅0 ‖𝑥‖ + 𝑚𝑀1𝜓0 ‖𝑥‖ .
(43)

Thus, for any 𝑥 ∈ 𝐵𝑟 = {𝑥 ∈ PC[𝐼,X] : ‖𝑥‖PC ≤ 𝑟}, we have
‖(𝑄𝑥) (𝑡)‖

≤ 𝑀1 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩 + 𝑞𝑏𝑞𝑀1Γ (1 + 𝑞) ∫
𝑏

0
𝜑1 (𝑠) 𝑑𝑠

+ ( 𝑞𝑏𝑞𝑀1Γ (1 + 𝑞) ∫
𝑏

0
𝜑2 (𝑠) 𝑑𝑠 + 𝑚𝑀1𝜓0 +𝑀1𝜅0) 𝑟

= 𝛾1.

(44)
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Hence, we deduce that ‖(𝑄𝑥)(𝑡)‖ ≤ 𝛾1, that is, 𝑄 maps
bounded sets into bounded sets in PC[𝐼,X].
Step 3 (𝑄(𝐵𝑟) is equicontinuous with 𝐵𝑟 on (𝑡𝑖, 𝑡𝑖+1] (𝑖 =0, 1, 2, . . . , 𝑚)). For any 𝑥 ∈ 𝐵𝑟, 𝑡󸀠, 𝑡󸀠󸀠 ∈ (𝑡𝑖, 𝑡𝑖+1] (𝑖 =0, 1, 2, . . . , 𝑚), we obtain

󵄩󵄩󵄩󵄩󵄩(𝑄𝑥) (𝑡󸀠󸀠) − (𝑄𝑥) (𝑡󸀠)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩T (𝑡󸀠󸀠) 𝑥0 −T (𝑡󸀠) 𝑥0󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩T (𝑡󸀠󸀠) 𝑔 (𝑥) −T (𝑡󸀠) 𝑔 (𝑥)󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡󸀠󸀠

0
(𝑡󸀠󸀠 − 𝑠)𝑞−1S (𝑡󸀠󸀠 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

− ∫𝑡󸀠
0
(𝑡󸀠 − 𝑠)𝑞−1S (𝑡󸀠 − 𝑠) 𝐹 (𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑚∑
𝑘=1

T (𝑡󸀠󸀠 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 ))

− 𝑚∑
𝑘=1

T (𝑡󸀠 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 ))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .

(45)

Based on a straightforward computation, we have

󵄩󵄩󵄩󵄩󵄩(𝑄𝑥) (𝑡󸀠󸀠) − (𝑄𝑥) (𝑡󸀠)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩T (𝑡󸀠󸀠) −T (𝑡󸀠)󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩T (𝑡󸀠󸀠) 𝑔 (𝑥) −T (𝑡󸀠) 𝑔 (𝑥)󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡󸀠󸀠

𝑡󸀠
(𝑡󸀠󸀠 − 𝑠)𝑞−1S (𝑡󸀠󸀠 − 𝑠) 𝐹 (𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡󸀠

0
[(𝑡󸀠󸀠 − 𝑠)𝑞−1 − (𝑡󸀠 − 𝑠)𝑞−1]S (𝑡󸀠󸀠 − 𝑠)

⋅ 𝐹 (𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡󸀠

0
(𝑡󸀠 − 𝑠)𝑞−1

⋅ [S (𝑡󸀠󸀠 − 𝑠) −S (𝑡󸀠 − 𝑠)] 𝐹 (𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 𝑚𝑀1 󵄩󵄩󵄩󵄩󵄩T (𝑡󸀠󸀠 − 𝑡󸀠) − 𝐼󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥 (𝑡−𝑘 ))󵄩󵄩󵄩󵄩 .

(46)

It follows from Lemma 11, part (iii) and Lemma 13 that
lim𝑡󸀠󸀠→𝑡󸀠‖(𝑄𝑥)(𝑡󸀠󸀠) − (𝑄𝑥)(𝑡󸀠)‖ = 0. Thus, 𝑄(𝐵𝑟) is equicon-
tinuous with 𝐵𝑟 on (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚).
Step 4 (𝑃𝑖 map 𝐵𝑟 into a precompact set in X (𝑖 = 1, . . . , 𝑚)).
We define the operator

(𝑄𝑥) (𝑡) = (𝑃𝑖𝑥) (𝑡) + (𝐿𝑥) (𝑡) , (47)

where

(𝐿𝑥) (𝑡) = T (𝑡) [𝑥0 − 𝑔 (𝑥)] ,
(𝑃𝑖𝑥) (𝑡)

= ∫𝑡
0
(𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

+ 𝑖∑
𝑘=1

T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑖 = 1, . . . , 𝑚.

(48)

Define Π = 𝑃𝑖𝐵𝑟 and Π(𝑡) = {(𝑃𝑖𝑥)(𝑡) : 𝑥 ∈ 𝐵𝑟} for 𝑡 ∈ 𝐼.
Set

Π𝑖,ℎ,𝛿 (𝑡) = {(𝑃𝑖,ℎ,𝛿𝑥) (𝑡) : 𝑥 ∈ 𝐵𝑟} , (49)

where

Π𝑖,ℎ,𝛿 (𝑡) = {∫𝑡−ℎ
0

(𝑡 − 𝑠)𝑞−1S𝛿 (𝑡 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

+ 𝑖∑
𝑘=1

T𝛿 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) : 𝑥 ∈ 𝐵𝑟} .
(50)

From hypotheses we imposed and the same method used
in [16, Theorem 3.2], it is not difficult to verify that the setΠ(𝑡) can be arbitrary approximated by the relatively compact
set Π𝑖,ℎ,𝛿(𝑡). Thus, 𝑃𝑖(𝐵𝑟)(𝑡) are relatively compact inX.

Step 5 (𝐿𝑥 + 𝑃𝑖𝑦 ∈ 𝐵𝑟 for 𝑥, 𝑦 ∈ 𝐵𝑟 (𝑖 = 1, . . . , 𝑚)). Note that
𝑞𝑏𝑞𝑀1Γ (1 + 𝑞) ∫

𝑏

0
𝜑2 (𝑠) 𝑑𝑠 + 𝑚𝑀1𝜓0 +𝑀1𝜅0 < 1. (51)

Choose

𝑀1 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩 + (𝑞𝑏𝑞𝑀1/Γ (1 + 𝑞)) ∫𝑏0 𝜑1 (𝑠) 𝑑𝑠
1 − (𝑞𝑏𝑞𝑀1/Γ (1 + 𝑞)) ∫𝑏0 𝜑2 (𝑠) 𝑑𝑠 − 𝑚𝑀1𝜓0 −𝑀1𝜅0

≤ 𝑟
(52)

and define operators 𝐿 and 𝑃𝑖 on 𝐵𝑟 by
(𝐿𝑥) (𝑡) = T (𝑡) [𝑥0 − 𝑔 (𝑥)] ,
(𝑃𝑖𝑥) (𝑡)

= ∫𝑡
0
(𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

+ 𝑖∑
𝑘=1

T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑖 = 1, . . . , 𝑚.

(53)

It is sufficient to proceed exactly as in step 1 to step 4 of the
proof to deduce that 𝑃𝑖 are continuous and compact. Thus, to
complete this proof, it suffices to show that 𝐿 is a contraction
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mapping and that 𝐿𝑥+𝑃𝑖𝑦 ∈ 𝐵𝑟 for 𝑥, 𝑦 ∈ 𝐵𝑟. Indeed, for any𝑥 ∈ 𝐵𝑟, by virtue of (43) and (51), we have

‖(𝑄𝑥) (𝑡)‖
≤ 𝑀1 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩 + 𝑞𝑏𝑞𝑀1Γ (1 + 𝑞) ∫

𝑏

0
𝜑1 (𝑠) 𝑑𝑠

+ ( 𝑞𝑏𝑞𝑀1Γ (1 + 𝑞) ∫
𝑏

0
𝜑2 (𝑠) 𝑑𝑠 + 𝑚𝑀1𝜓0 +𝑀1𝜅0) 𝑟

≤ 𝑟.

(54)

Consequently, if 𝑥, 𝑦 ∈ 𝐵𝑟, then 𝐿𝑥 + 𝑃𝑖𝑦 ∈ 𝐵𝑟.
Step 6 (𝐿 is a contraction mapping). For any 𝑡󸀠, 𝑡󸀠󸀠 ∈(𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚) and 𝑥, 𝑦 ∈ PC[𝐼,X], we have

󵄩󵄩󵄩󵄩(𝐿𝑥) (𝑡) − (𝐿𝑦) (𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩T (𝑡) (𝑔 (𝑥) − 𝑔 (𝑦))󵄩󵄩󵄩󵄩
≤ ‖T (𝑡)‖ 󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)󵄩󵄩󵄩󵄩
≤ 𝜙0𝑀1 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩PC .

(55)

Since 𝜙0𝑀1 < 1, 𝐿 is a contraction mapping. Hence, by
Lemma 10, we conclude that (3) has at least one PC-mild
solution on 𝐼. This completes the proof.

4. Controllability Results

In this section, we impose the following conditions to prove
the results.

(H11) Define 𝐼𝑖 = (𝑡𝑖−1, 𝑡𝑖] (𝑖 = 1, 2, . . . , 𝑚 + 1). The linear
operator𝑊𝑖 from 𝐿2[𝐼𝑖, 𝑈] intoX defined by

𝑊𝑖𝑢 = ∫𝑡𝑖
0
(𝑡𝑖 − 𝑠)𝑞−1S (𝑡𝑖 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠 (56)

induces an invertible operator 𝑊̃−𝑖 defined on𝐿2[𝐼𝑖, 𝑈]/Ker𝑊𝑖 and there exists a positive constant𝐾 > 0 such that ‖𝐵𝑊̃−𝑖 ‖ ≤ 𝐾.
Theorem 16. If hypotheses (H1)–(H4), (H󸀠5), and (H11) are
satisfied, then system (4) is controllable on 𝐼.
Proof. Using (H11), for an arbitrary function 𝑥(⋅), we define
the piecewise continuous control 𝑢 by

𝑢 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑊̃−1 [𝑥0 + 𝑥1 − 𝑥0𝑚 + 1 −T (𝑡1) [𝑥0 − 𝑔 (𝑥)] − ∫𝑡10 (𝑡1 − 𝑠)𝑞−1S (𝑡1 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠] (𝑡) , 𝑡 ∈ [0, 𝑡1] ,
𝑊̃−2 [𝑥0 + 2 (𝑥1 − 𝑥0)𝑚 + 1 −T (𝑡2) [𝑥0 − 𝑔 (𝑥)] − ∫𝑡20 (𝑡2 − 𝑠)𝑞−1S (𝑡2 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠 −T (𝑡2 − 𝑡1) 𝐼1 (𝑥 (𝑡−1 ))] (𝑡) , 𝑡 ∈ (𝑡1, 𝑡2] ,
...
𝑊̃−𝑚+1 [𝑥1 −T (𝑏) [𝑥0 − 𝑔 (𝑥)] − ∫𝑏0 (𝑏 − 𝑠)𝑞−1S (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠 − 𝑚∑

𝑘=1

T (𝑏 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 ))] (𝑡) , 𝑡 ∈ (𝑡𝑚, 𝑏] .

(57)

On the basis of this control, with a similar proof to
Theorem 14, we can conclude that the operator 𝑄 defined by

(𝑄𝑥) (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) + 𝐵𝑢 (𝑠)] 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) + 𝐵𝑢 (𝑠)] 𝑑𝑠 +T (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡−1 )) , 𝑡 ∈ (𝑡1, 𝑡2] ,
...
T (𝑡) [𝑥0 − 𝑔 (𝑥)] + ∫𝑡0 (𝑡 − 𝑠)𝑞−1S (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) + 𝐵𝑢 (𝑠)] 𝑑𝑠 + 𝑚∑

𝑘=1

T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑡 ∈ (𝑡𝑚, 𝑏] ,

(58)
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has a fixed point 𝑥(⋅). This fixed point is a PC-mild solution
of system (4), which implies that the system is controllable on𝐼. The proof is complete.

Theorem 17. Assume that hypotheses (H4), (H6)–(H9), (H󸀠10),
and (H11) are satisfied. If the inequalities

𝑞𝑏𝑞𝑀1Γ (1 + 𝑞) ∫
𝑏

0
(𝜑2 (𝑠) + 𝑁1) 𝑑𝑠 + 𝑚𝑀1𝜓0 +𝑀1𝜅0 < 1,

𝜙0𝑀1 < 1
(59)

hold, where 𝑁1 = 𝑞𝐾𝑀1 ∫𝑏0 (𝑏 − 𝑠)𝑞−1𝜑2(𝑠) 𝑑𝑠/Γ(1 + 𝑞) +𝑚𝐾𝑀1𝜓0 and 𝜑2(𝑠) and 𝜙0 are as in Theorem 15, then system
(4) is controllable on 𝐼.
Proof. The proof is similar to that of Theorem 15 and so is
omitted.

5. Example

Consider the following nonlinear partial integrodifferential
equation of the form

𝜕1/3𝜕𝑡1/3 𝑧 (𝑡, 𝑦)

= ∫1
0
(𝑦 − 𝑠) 𝑧 (𝑠, 𝑦) 𝑑𝑠 + 𝑓 (𝑡, 𝑧 (𝑡, 𝑦) ,𝐻𝑧 (𝑡, 𝑦))

+ 𝜇 (𝑡, 𝑦) ,
𝑧 (𝑡, 0) = 𝑧 (𝑡, 1) = 0, 𝑡 ∈ 𝐽 = [0, 1] ,
𝑧 (0, 𝑦) + 𝜙 (𝑡) 𝑧 (𝑡, 𝑦) = 𝑧0 (𝑦) , 0 ≤ 𝑦 ≤ 1,
Δ𝑧|𝑡=1/2 = 𝐼1 (𝑥(12

−)) ,

(60)

where 𝜇 : 𝐽 × (0, 1) → (0, 1) is continuous. Let us take X =𝐶([0, 1]). Consider the operator 𝐴 : 𝐷(𝐴) ⊆ X → X defined
by

(𝐴𝑤) (𝑡) = ∫1
0
(𝑦 − 𝑠)𝑤 (𝑠) 𝑑𝑠. (61)

It is not difficult to get

‖𝐴𝑤‖ = ‖𝑤‖∫1
0

󵄨󵄨󵄨󵄨𝑦 − 𝑠󵄨󵄨󵄨󵄨 𝑑𝑠 = (12 − 𝑦 (1 − 𝑦)) ‖𝑤‖
≤ 12 ‖𝑤‖

(62)

and, clearly, 𝐴 is the infinitesimal generator of a uniformly
continuous semigroup (𝑇(𝑡))𝑡≥0 on X. Put 𝑥(𝑡)(𝑦) = 𝑧(𝑡, 𝑦)
and 𝑢(𝑡)(𝑦) = 𝜇(𝑡, 𝑦), and take

𝑓 (𝑡, 𝑥,𝐻𝑥) = 𝑘0𝑥 + 𝐻𝑥,
(𝐻𝑥) (𝑡) = ∫𝑡

0
ℎ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠,

ℎ (𝑡, 𝑠, 𝑥) = 𝑘1𝑥,
𝐼1 (𝑥) = 𝜔 (𝑡) 𝑥,
𝑔 (𝑥) = 𝜙 (𝑡) 𝑥,

(63)

where 𝑘0 and 𝑘1 are positive constants and 𝜔(𝑡) and 𝜙(𝑡) are
continuous functions. Then 𝑓 : [0, 1] × X × X → X and𝐼1 : X → X are continuous functions; 𝑓, 𝑔, 𝐼1, and ℎ satisfy(H6)–(H9), respectively.

For 𝑦 ∈ (0, 1], we define
𝑊1𝑢 = ∫1/2

0
(12 − 𝑠)

−2/3

S(12 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,
𝑊2𝑢 = ∫1

0
(1 − 𝑠)−2/3S (1 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

(64)

where

T (𝑡) 𝑤 (𝑠) = ∫∞
0

𝜉1/3 (𝜃) 𝑤 (𝑡1/3𝜃 + 𝑠) 𝑑𝜃,
S (𝑡) 𝑤 (𝑠) = 13 ∫

∞

0
𝜃𝜉1/3 (𝜃) 𝑤 (𝑡1/3𝜃 + 𝑠) 𝑑𝜃,

(65)

and, for 𝜃 ∈ (0,∞),
𝜉1/3 (𝜃) = 3𝜃−4𝜛1/3 (𝜃−3) ,
𝜛1/3 (𝜃)

= 1𝜋
∞∑
𝑛=1

(−1)𝑛−1 𝜃−(𝑛+3)/3 Γ ((𝑛 + 3) /3)𝑛! sin(𝑛𝜋3 ) .
(66)

Moreover, the linear operator 𝑊𝑖 from 𝐿2[𝐼𝑖, 𝑈] (𝑖 = 1, 2)
into X induces an invertible operator 𝑊̃−𝑖 defined on𝐿2[𝐼𝑖, 𝑈]/Ker𝑊𝑖 and there exists a positive constant 𝐾 > 0
such that ‖𝐵𝑊̃−𝑖 ‖ ≤ 𝐾; that is, (H11) is satisfied. With the
choices of 𝐴, 𝑓, 𝑔,𝐻, and 𝐵 = 𝐼 (the identity operator), we
see that (60) is an abstract formulation of (4). All conditions
of Theorem 17 are able to be fulfilled, so we deduce that (60)
is controllable on 𝐼. On the other hand, we have󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥,𝐻𝑥) − 𝑓 (𝑡, 𝑦,𝐻𝑦)󵄩󵄩󵄩󵄩

≤ 𝑘0 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + 𝑘1 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ,󵄩󵄩󵄩󵄩ℎ (𝑡, 𝑠, 𝑥) − ℎ (𝑡, 𝑠, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝑘1 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ,󵄩󵄩󵄩󵄩𝐼1 (𝑥) − 𝐼1 (𝑦)󵄩󵄩󵄩󵄩 ≤ 𝜔 (𝑡) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ,󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑡) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 .

(67)

It is easy to see that all assumptions of Theorem 16 are
satisfiedwhen using the suitable choices of 𝑘0, 𝑘1, 𝜔, 𝜙. Hence,
Theorem 16 can also yield controllability of (60) on 𝐼.
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6. Conclusions

In this paper, we studied the existence and uniqueness results
for a class of impulsive fractional semilinear integrodifferen-
tial equations with nonlocal initial conditions in a Banach
space. Introducing the concept of PC-mild solutions and
using the piecewise continuous control functions and uni-
formly continuous semigroup, we obtained the controllability
results for the corresponding fractional impulsive integrod-
ifferential system. Assuming that the semigroup is compact
and utilizing some additional conditions, Hernández and
O’Regan [30] showed that some known results on exact
controllability (see the references cited therein) are valid if
and only if the Banach space is finite dimensional. Recently,
Hernández et al. [31] pointed out that some recent results on
exact controllability of abstract differential systems with an
unbounded linear operator dominated by a sectorial operator
were not applicable. Contrary to those results, we do not need
in our results conflicting conditions, which, in a certain sense,
is a significant improvement compared to the results in the
cited papers. An illustrative example is given to demonstrate
the effectiveness of the results obtained. Our future work will
focus on constrained controllability, nonlocal problems, and
their applications in nonlinear dynamical systems (see [32–
36]).
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