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We construct a dyon solution for the noncommutative version of the Yang-Mills-Higgs model with a ϑ-term. Extending the
Noether method to the case of a noncommutative gauge theory, we analyze the effect of CP violation induced both by the ϑ-
term and by noncommutativity proving that the Witten effect formula for the dyon charge remains the same as in ordinary space.
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Gauge theories coupled to Higgs scalars exhibit a remarkable
phenomenon called Witten effect [1], related to the ϑ-angle.
Indeed, if one adds to a Yang-Mills-Higgs Lagrangian a ϑ-
term

ΔL = ϑ
e2

32π2
εμναβtr

(
FμνFαβ

)
, (1)

which explicitly violates CP, the electric charge qe of a dyon
is modified. Instead of being quantized, as in the ϑ = 0 case,
one has, for ϑ�=0,

qe =
(
n +

ϑ

2π

)
e , n ∈ Z. (2)

This result corresponds to a Julia-Zee dyon [2] with mag-
netic charge m = 4π/e. There are also arguments leading to
the conjecture that other CP violating interactions may also
induce a shift of the dyon charge [1].

CP violation can be induced not just by adding, as in (1),
new interactions to the Yang-Mills-Higgs Lagrangian but by
radically changing the setting of the theory. This is the case
of noncommutative gauge theories (NCGT) where the intro-
duction of noncommutation in space-time coordinates has
shown to affect the behavior under C, P, and T invariances
[3–6]. More specifically, one can prove that when noncom-
mutativity is restricted to space coordinates,

[
xi, xj

] = iθi j ,
[
xi, x0

] = 0, i, j = 1, 2, 3. (3)

As it is well known [4], NCGTs are not charge invariant.
Only if the usual field transformations are accompanied by

a change of sign in θi j , charge invariance is recovered. Hence,
if one takes θi j as a fixed parameter, CP is violated, although
CPT invariance is maintained since parity invariance is not
affected by the introduction of θ and time reversal undergoes
a change that compensates that in C.

It is then natural to pose the question whether the dyon
charge in noncommutative gauge theories receives a contri-
bution from a CP violating effect induced by noncommuta-
tivity even if the ϑ angle vanishes. Moreover, one could also
ask how the addition of the noncommutative version of the
term (1) modifies Q when both θi j �=0 and ϑ�=0.

We will analyze these questions in the present letter and,
to this end, we first discuss the properties of the dyon in a
noncommutative Yang-Mills-Higgs model with U(2) gauge
symmetry, calculate its charge at the quantum level and also
extend the theory in order to include a ϑ-term. Some of these
issues were briefly discussed in [7] starting from a monopole
solution obtained generalizing Nahm’s equations that de-
scribes BPS solitons [8] (some aspects of dyon solutions were
also considered in [9]). Here, instead, we will extend the
more explicit U(2) monopole solution found in [10, 11] to
the case of a dyon and then establish a noncommutative ver-
sion of the Noether theorem. We then discuss the issue of the
Witten effect in noncommutative space.

We start from the noncommutative U(2) Yang-Mills-
Higgs system

SNCYM = tr
∫

d4x
(
− 1

2
Fμν∗Fμν + DμΦ∗DμΦ

)
. (4)
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Gauge fields Aμ = AA
μ t

A take values in the Lie algebra of U(2)
with generators tA,A = 0, 1, 2, 3 (t0 = I/2, ta = σa/2, a =
1, 2, 3). Φ = ΦAtA is the Higgs multiplet and we consider
the Prasad-Sommerfield limit [12] in which the symmetry
breaking potential vanishes. Covariant derivatives and field
strength are given by

DμΦ = ∂μΦ− ie[Aμ,Φ]∗,

Fμν = ∂μAν − ∂νAμ − ie[Aμ,Aν]∗,
(5)

where the Moyal product and commutator are defined as

A(x)∗B(x) = exp
(
i

2
θμν∂

μ
x∂

ν
y

)
A(x)B(y)

∣
∣
∣∣
y=x

,

[
A(x),B(x)

]
∗ = A(x)∗B(x)− B(x)∗A(x).

(6)

As in (3) we will take θ0i = 0. This ensures a well-defined
Hamiltonian and unitarity at the quantum level.

To find noncommutative static dyon solutions we will
minimize the energy

E = tr
∫

d3x
(
Ei∗Ei + Bi∗Bi + DiΦ∗DiΦ + D0Φ∗D0Φ

)
,

Ei = −F0i , Bi = −1
2
εi jkF

jk.

(7)

Since we are working in the BPS limit, the vacuum expecta-
tion value enters as a boundary condition on the Higgs field,
trΦ2

vac = v2
0/2. As in ordinary space, (7) can be written in the

form

E = tr
∫

d3x
((
Ei − sinαDiΦ

)∗(Ei − sinαDiΦ
)

+
(
Bi − cosαDiΦ

)∗(Bi − cosαDiΦ
)

+ D0Φ∗D0Φ + 2 sinαEi∗DiΦ

+ 2 cosαBi∗DiΦ
)
,

(8)

leading to a Bogomol’nyi bound on the energy

E ≥ v0 sinαQ + v0 cosαM (9)

with Q and M are the electric and magnetic charges defined
as

Q = 2
v0

tr
∫

d3xEi∗DiΦ, M = 2
v0

tr
∫

d3xBi∗DiΦ.

(10)

The bound is saturated whenever the following BPS equa-
tions hold:

Ei = sinαDiΦ, (11)

Bi = cosαDiΦ, (12)

D0Φ = 0. (13)

In order to find an explicit dyon solution, we will now
consider an expansion of fields Aμ and Φ in powers of

the noncommutative parameter in θ, thus extending to the
dyon case the approach developed in [10] and [11] where
a purely magnetically charged solution was considered. One
starts from the exact Prasad-Sommerfield solution in ordi-
nary space [12] as giving the zeroth order of an expansion
in powers of θ for the monopole in noncommutative space.
Plugging this expansion into the BPS equations, one obtains
the noncommutative solution order by order in θ.

We take as zeroth-order approximation for the SU(2)
components the Prasad-Sommerfield dyon solution [12],

which we call Φa(0), Aa(0)
i , and Aa(0)

0 . Concerning the U(1)
components, absent in the original Julia-Zee dyon, we pro-

pose for simplicity Φ0(0) =A0(0)
i =A0(0)

0 = 0. To first order in
θ, an ansatz for the gauge potential and Higgs field compo-
nents on U(1), that obey covariance under the SO(3) rota-
tion corresponding to the diagonal subgroup of SO(3)gauge ×
SO(3)space, is

Ã0(1)
i = θi jx jA(r) + εi jkθ jkC(r) + xiε jklθ jkxlD(r),

Ã0(1)
0 = θi jεi jkxkK(r),

Φ̃
0(1) = θi jεi jkxkB(r),

(14)

where A(r),B(r),C(r),D(r) , and K(r) are radial functions
to be determined. The component on SU(2) to first order
in θ of the Bogomol’nyi equation is not going to be analyze,
because it is pure gauge.

One can easily see that Bogomol’nyi (11) and (13) imply,
to all orders in θ, the relation

A0 = sinαΦ. (15)

We have then proven, using a θ-expansion, a relation that was
proposed as an ansatz in [7] within Nahm’s approach to the
construction of monopole solutions. Now, (15) implies that
the BPS (11) is automatically satisfied and then the study of
the BPS system (11)-(12) is reduced to the analysis of the sole
equation

1
2
εi jkFjk = − cosαDiΦ (16)

which, except for the factor cosα, is nothing but the pure
noncommutative monopole equation. Then, after making
the appropriate rescaling, we have from [10, 11]

Ã(n)
i

(
xi
) = cos2n+1αA(n)

i

(
cosαxi

)
,

Φ̃
(
xi
)
(n) = cos2nαΦ(n)( cosαxi

)
, n = 1, 2, . . . ,

(17)

where A(n)
i and Φ(n) are the pure monopole solutions and

Ã(n)
0 (xi) is related to them through (15).

One can easily determine the asymptotic behavior of the
proposed solution and then compute the electric and mag-
netic charges of the dyon solution. One finds that the n > 0
terms do not contribute at the surface at infinity so that one
just recovers the n = 0 result, one finds

M = 4π
e

, Q =M tanα. (18)
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So that one can conclude that n > 0 orders in θ do not con-
tribute to the charges that thus coincide with those in ordi-
nary space. That is, CP violation induced by noncommuta-
tivity does not change, at least at the classical level, the charge
of the dyon, no trace of θi j , appears in Q.

In order to analyze charge quantization at the quantum
level, we use the Noether approach and canonically proceed
as originally done in [1] regarding the unbroken symmetry
which leaves the Higgs vacuum invariant and is associated to
the electric charge. To do this, we will not just consider action
(4) but the one including the noncommutative version of a
ϑ-term,

Sϑ = SNCYM +
e2ϑ

16π2

∫

d4xFμν∗F̃μν. (19)

In this way, we will be able to test possible modifications of
the dyon charge because both the noncommutativity and the
ϑ-term. As in ordinary space, the noncommutative version
of the ϑ-term can be written as a surface term [13] and hence
the equations of motion for action (19) and its dyon solu-
tions remain the same for all values of ϑ.

After symmetry breaking through the condition Φ2
vac =

v2
0/2, the unbroken symmetry is related to rotations Λ in the

direction of Φ leaving the Higgs vacuum invariant. Let us
consider such gauge transformations along the Higgs field
direction

Λ(x) = 1
v0
Φataε(x) , ε(∞) = 1,

δΛΦ = 0, δΛAμ = 1
ev0

DμΦ.
(20)

As first noticed for a scalar theory in [14], in order to apply
the Noether method in the noncommutative case, one has to
take into account ∗-commutators that, once integrated, give
a vanishing contribution. That is, from the well-honnored
Noether formula

δΛ(x)S =
∫

d4x∂μJ
μ
[
Φ(x),Aμ(x)

]
ε(x) (21)

one can at most infer that

δΛ(x)S = 0 =⇒ (∂μJμ) = tr
(
[O,P]∗ + [B,C]∗∗B + · · · )

(22)

for some proper functionals O,P,B,C, . . . since, once inte-
grated over space-time, the right-hand side in (22) vanishes
due to the ∗-product cyclic properties under integration.
Also when integrating (22) over 3 spaces to find the con-
served charge commutators vanish since, as explained above,
θ0i = 0. With all this, we finally have for the conserved
charge, which we call N ,

N = −1
e
Q +

ϑe

8π2
M. (23)

At large distances, exp (2πiN) should implement a 2π rota-
tion about the direction of Φ and hence the identity. Then
the eigenvalues of N have to be quantized in integer units n.

If we call qe and qg , the eigenvalues of the electric and mag-
netic charge operators, one then has

qe =
(
ne +

ϑe2

8π2
qg

)
. (24)

That is, we have obtained for the nonconmmutative dyon the
same formula that holds for the case of ordinary space, (2)
(qg = 4π/e).

In summary, we have constructed an explicit noncom-
mutative dyon solution showing that the relation (18) be-
tween classical electric and magnetic charge also holds
in noncommutative space. Moreover, after extending the
Noether approach to the case of a noncommutative gauge
theory, we have proven that CP violation introduced by the
commutation rule (3) does not change the Witten effect for-
mula; indeed, the dyon’s charge shift is θi j-independent. In
this respect, it should be interesting to consider other type of
noncommutativity and in particular, to investigate the case
of the dyon in the fuzzy sphere along the lines developed in
[15] where monopole solutions were constructed for the case
in which θi j = θrεi jkxk since in that case the coordinate de-
pendence of θi j may introduce definite changes in (24). We
hope to discuss this issue in the future.
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