

http://www.e-journals.net

ISSN: 0973-4945; CODEN ECJHAO E-Journal of Chemistry Vol. 5, No.3, pp. 627-633, July 2008

Synthetic, Spectral and Thermal Studies of Tin(IV) Complexes of 1, 5-Benzodiazepines

SURESH[#], PADAKI SRINIVAS[‡], T. SURESH[†], M. REVANASIDDAPPA^{*§} and SYED KHASIM[¶]

[#]Department of Applied Science and Biotechnology, Bellary Engineering College, Bellary – 583 104, Karnataka, India.

[‡]Department of Chemistry, P.D.A. College of Engineering, Gulbarga – 585 102, Karnataka, India.

[†]Department of Industrial Chemistry, Gulbarga University Post Graduate Centre, Vinayaka Nagar, Cantonment, Bellary- 583 104, Karnataka, India.

[§]Department of Chemistry, [¶]Department of Physics, PES School of Engineering,Hosur Road, Bangalore- 560 100 Karnataka, India. *revum@rediffmail.com*

Received 12 October 2007; Accepted 22 December 2007

Abstract: Tin(IV) complexes of 7-substituted 6,7-benzo-1,5-dizepines have been synthesized in absolute alcoholic medium. Elemental analysis indicates that the complexes have 1:2 stoichiometry of the type L_2SnCl_4 TGA data support this conclusion. Molar conductance values in DMF at 10^{-3} M suggest that, these complexes are non-electrolytes. Infrared spectral data shows the involvement of C=N and NH groups in coordination with the metal ion. X-ray diffraction pattern of few representative complexes indicate that, these are having simple cubic crystal structure. The energy of activation and order of reaction are calculated using TGA data of the complexes. All these information support that Sn(IV) in these complexes exhibits coordination number eight.

Keywords: Thermal studies, Benzodiazepines, Electronic spectra.

Introduction

Tin is a toxic metal¹. The effective antidotes tried to remove toxic metals from human body involves chelating agents^{1,2}. Benzodiazepines are well known for their complexing capabalities³⁻⁷. A few transition metal complexes of 1,4-benzodiazepines have been reported¹⁻⁴ hitherto. We have reported a few transition metal complexes of 1,5-benzodiazepines^{8,9}(DMBDA). There is no report on the synthesis and characterization of tin^{IV} complexes of benzodiazepines. In this paper we report the synthesis, characterization and thermal studies of Tin(IV) complexes with the following benzodiazepines.

Experimental

Materials and methods

The chemicals used to prepare the ligands were of reagent grade. Substituted DMBDA were prepared using Thiele and Stimmig method⁹. Tin(IV) chloride from E-Merck was used without further purification.

Preparation of the complexes

To a solution of 0.01 M of the ligand in 25 mL dry ethyl alcohol was added with 0.005 M Tin(IV) chloride with constant stirring. The reaction mixture was stirred for half an hour and the complex separated was filtered, washed with ethyl alcohol and ether and dried over fused calcium chloride. The dried complex was powdered and purified by extracting in Soxhlet thimble using dry ethyl alcohol.

Elemental analysis

Tin(IV) and chloride in the complexes were estimated gravimetrically¹⁰. The nitrogen was determined by Dumas method¹⁰.

Physical measurements

The molar conductance measurements at the complexes were made on Elico CL-24 Conductivity Bridge with cell of cell constant 0.1. The infrared spectra of the ligands and their complexes were recorded on a Hitachi 290 spectrophotometer in the region 4000-250 cm⁻¹. The electronic spectra were taken with a Shimadzu UV-160A spectrophotometer and X-ray diffraction on PW1820 diffractometer with Cu LEF 40KV, 30mA X-ray tube in the 'd' value range o 1.5406 – 14.7184.

Results and Discussion

The elemental analysis (Table 1) conforms to the formation of 1:2 complexes of the type $Cl_4Sn(DMBDA)_2$. The molar conductance values of the complexes (Table 2) in DMF at 10^{-3} M concentration are too low to account for any dissociation. Hence, these complexes are regarded as non-electrolytes in DMF.

IR spectra

Important infrared frequencies of the ligands, complexes and their assignments are set out in Table 3 & 4. In the IR spectra of ligands, a broad band of medium intensity around 3350 cm⁻¹ has been assigned to v(NH) vibrations in view of the previous reports¹¹. A high intensity band at 1580 cm⁻¹ and bands in the 1225-960 and 750-650 cm⁻¹ regions have been assigned to v(C=N), aromatic inplane and outplane vibrations respectively on analogy with previous assignments¹¹⁻¹⁵.

Complex	Empirical formula	% Analysis, Found/ (Calcd.)					
		Nitrogen	Carbon	Chlorine	Tin		
(I_2) , $SnC1$	$(\mathbf{C} \cdot \mathbf{H} \cdot \mathbf{N}) \cdot \mathbf{S} \cdot \mathbf{C}^{\dagger}$	9.29	43.01	24.51	19.50		
$(1a)_2$ SIIC1 ₄	$(C_{11}\Pi_{12}\Pi_{2})_2$ SIICI ₄	(9.30)	(43.00)	(24.80)	(19.30)		
$(\mathbf{I}\mathbf{h})$ SpC1	$(\mathbf{C} \ \mathbf{H} \ \mathbf{N}) \ \mathbf{SnCl}$	8.86	45.87	22.87	18.67		
$(10)_2 \text{SHC} I_4$	$(C_{12}\Pi_{13}\Pi_{2})_2$ SIICI ₄	(8.90)	(46.00)	(23.00)	(18.90)		
$(\mathbf{I}_{\mathbf{a}}) \mathbf{S}_{\mathbf{a}} \mathbf{C}_{1}$	$(C \cup U \cup N \cup C) \cup S_{m} \cup C$	8.32	39.40	42.71	17.00		
$(1c)_2$ SIICI ₄	$(C_{11}\Pi_{11}\Pi_2 CI)_2$ SIICI ₄	(8.00)	(40.60)	(42.90)	(16.90)		
	$(\mathbf{C}, \mathbf{H}, \mathbf{N}, \mathbf{O}) \in \mathbf{C}^{1}$	12.10	38.04	20.46	17.00		
$(Id)_2SnCl_4$	$(C_{11}H_{11}N_3O_2)_2$ SnCl ₄	(12.20)	(38.40)	(20.80)	(16.80)		
$(\mathbf{L}_{\mathbf{r}}) \in \mathbf{C}^{\mathbf{r}}$	$(\mathbf{C}, \mathbf{H}, \mathbf{N}) \in \mathbf{C}$	7.69	52.55	19.61	16.19		
$(1e)_2$ SnCl ₄	$(C_{16}H_{14}N_2)_2$ SnCl ₄	(7.80)	(52.40)	(19.90)	(16.20)		
		7.41	53.97	18.78	15.61		
$(If)_2 SnCl_4$	$(C_{17}H_{16}N_2)_2$ SnCl ₄	(7.40)	(54.00)	(19.00)	(15.40)		
		7.03	48.18	35.63	14.80		
$(Ig)_2SnCl_4$	$(C_{16}H_{13}N_2CI)_2$ SnCl ₄	(7.00)	(48.40)	(35.90)	(14.50)		
		10.27	46.94	17.36	14.42		
$(Ih)_2SnCl_4$	$(C_{16}H_{13}N_3O_2)_2$ SnCl ₄	(10.30)	(46.80)	(17.50)	(14.40)		
	Table 2. Molar extinction	on coefficien	t data of co	omplexes			
			M	-1			
Complex	Empirical formula	λ_{max} cm ⁻¹		olar extincti	on 1 ⁻¹ -1		
	1	1(100	coeffici	$ent(\varepsilon)$, L.mo	ol .cm		
	$(C_{11}H_{12}N_2)_2 \ SnCl_4$	16129		518			
$(Ia)_2SnCl_4$		17241		891			
		19120		1223			
		30675		1583			
		158/5	418				
$(ID)_2SnCl_4$	$(C_{12}H_{14}N_2)_2$ SnCl ₄	19157	1094				
		20325		1690			
	$(C_{11}H_{11}N_2Cl)_2$ SnCl ₄	15385		300			
$(Ic)_2SnCl_4$		16260	450				
		19231	/80				
		28571	2520				
	$SnCl_4$ (C ₁₁ H ₁₁ N ₃ O ₂) ₂ SnCl ₄	15152		218			
$(Id)_2SnCl_4$		16393	420				
· /- ·		19380	740				
		28011	2458				
	$(\mathbf{C} \mathbf{H} \mathbf{N}) \mathbf{G} \mathbf{C}^{\dagger}$	16129		600			
$(1e)_2$ SnCl ₄	$(C_{16}H_{14}N_2)_2$ SnCl ₄	19231		1523			
		30303	1652				
(If) ₂ SnCl ₄	$(C_{17}H_{16}N_{2})_{2}$ SnCl ₄	19120		188			
× 72	1/ 10 2/2	31546	244				
(T \ ~ ~ ~		16120	547				
$(Ig)_2SnCl_4$	$(C_{16}H_{13}N_2CI)_2 \text{ SnCl}_4$	19157	1025				
		30120	2500				
		16393		523			
$(Ih)_2SnCl_4$	$(C_{16}H_{13}N_3O_2)_2SnCl_4$	19608		815			
	10 13 5 272 -	29412		2580			

 Table 1. Analytical data of complexes

S. No.	Ligand	v(NH)	v(NH)	v(C=C)	v(C=N)	v(C=C) Aromatic		
01	Ia	3500b 3350b	3050s 2980s	1650s	1630m	1570m 1540sh		
		00000	_,			1520s 1580m		
02	Ib	3500b 3400b	3050s	1660m	1640m	1540sh		
		34000	29808			1520s		
03	Ic	3500b 3400b	3040s	1660m	1640m	1580m		
		3400b 3500b	29008			1520s		
04	Id	3350b	3000s 2980s	1660s	1620m	1560sh		
		3450b	27003			1520s		
05	Ie	3500b 3400b	3050s	1650s	1630m	1570s 1540s		
05	10	3350b	2980s	10505	105011	1520s		
		3500b	3050s			1580m		
06	If	If)6 If	3400b	2980s	1660s	1640m	1520s
		3500b	3040s			1540s 1570m		
07	Ig	3450b	2980s	1660s	1640s	1570m 1520s		
08	Ih	3500b	30005			1580m		
)8 Ih	08 Ih 3^{-1}	3450b	2980s	1660s	1620m	1560w
						15208		

Table 3. Important infrared frequencies of ligands and their assignments

b = broad, s = sharp, m = medium, sh = shoulder, w = weak

Table 4. Im	portant infrared	frequencies o	f few represe	ntative comple	xes and their	assignments.
			I IC II ICPICCO		neo conce chier	

		1		*		e
Complex	v(NH)	v(C=C)	v(C=N)	v(C=C) Aromatic	v(M-N)	v(M-Cl)
(Ia) ₂ SnCl ₄	3320s 3250m	1630s	1600s	1570s 1510s	570w 530w 505w 480w 460w	300sh 285sh
(Ib) ₂ SnCl ₄	3270s 3200w	1610s	1600s	1560sh 1540sh	580s 540w 520w 580w 470s 450s	300s 290s
(Ic) ₂ SnCl ₄	3250b 3150bw	1620s	1685sh	1680s 1560w	580s 560w 500w 480s 430s	300s 290s
(Ih) ₂ SnCl ₄	3200bw 3100bw	1520sh	1590s	1580s 1500s	580s 575w 480s 475s 425s	300s 290s

b = broad, s = sharp, m = medium, sh = shoulder, w = weak

In the infrared spectra of complexes the following changes are observed. The band due to v(NH) shifts and appears in the region 3320-3100 cm⁻¹ as a medium intensity split band. Coordination of –NH group to the metal increases the multiplicity associated with nitrogen and thus results in splitting and shifting of the band¹³. In the present context the NH vibration show a low frequency shift compared with the ligands. The v(C=N) band appears in the region 1570-1600 cm⁻¹ as high intensity band indicating that, the C=N group is involved in coordination with tin^{IV} through nitrogen. Coordination of these groups to the metal ion leaves the nitrogen atom partially positively charged, resulting in mobolising π electron density associated with C=C consequently affecting the bond order. As a result of this v(C=C) appears around 1640 cm⁻¹ as a band of varying intensity.

In addition to these changes, we observe medium intensity bands in the region 570-425 cm⁻¹ attributable to v(Sn-N) vibrations coupled with v(ligand) vibration. The bands appearing in the region 470-425 cm⁻¹ are regarded as due to v(Sn-N) vibrations. The medium intensity bands in the region 285-300 cm⁻¹ are assigned to v(Sn-Cl) vibrations. The assignments made in these regions are purely tentative and based on the previous reports^{5-7, 15}.

Electronic spectra

The electronic spectra were taken in DMF at 10^{-3} M concentration. The spectra are characterized by two bands in the region 20,000-33,333 cm⁻¹ and are attributed to π - π transitions¹⁶. In the spectra of complexes, the ligand bands are replaced by high intensity broad bands. In addition to the usual bands of the ligands, the high intensity band is observed around 29,411 cm⁻¹ and attributed to metal-ligand charge transfer band¹⁶. Appearance of this band confirms the formation of complexes.

X-ray (powder) diffraction

The powder diffraction of selected complexes have been indexed for simple cubic systems and the observed $\sin^2\theta$, d-values together with h, k, l and 'a' values are set out in Table 5. The values obtained for unit cell parameters a, b and c remain almost constant indicating *viz.*, a = b = c. This is the condition for simple cubic system.

Thermal studies

Thermograms obtained for a few complexes have been recorded and the data are summarized in Table 6. The thermogram for complex Ig shows four breaks. A gradual loss in the weight is observed from 255-325°C and the loss is about 8.59%. This computes to the loss of two of the four chlorides. The second weight loss is observed from 325-350°C and the per cent of weight loss is 8.59 which corresponds to the elimination of remaining two chlorides. Further, a steep decrease in the weight of 35.17% in the temperature range of 350-430°C is attributed to the oxidation of the ligand moiety. After this temperature there is no weight loss, as the formed species is thermally stable. The weight calculations agree well with the formation of SnO₂.

Tuble et Allay (powder) enhaction data							
Complex	d	$Sin^2\theta$	Ν	hkl	a	Crystal structure	
(Ig) ₂ SnCl ₄	5.71 3.95 3.40 3.15	0.135 0.197 0.227 0.248	2 4 5 6	110 200 210 211	8.075 7.900 7.600 7.710	Simple cubic	

Table 5. X-ray (powder) diffraction data

	Temn -	Loss in weight		\mathbf{F}^{0}	Order of	
Complex	°K	Found	Calculated	K. Cal	Reaction	Inference
(Ia) ₂ SnCl ₄	623 673 798 998	12.07 12.07 27.45 14.94	11.75 11.75 28.48 15.37	34	2.2	Loss due to Cl ₂ Loss due to another Cl ₂ Loss due to ligand Loss due to sublimation of SnO ₂
(Ig) ₂ SnCl ₄	598 618 703 996	8.59 8.59 33.59 12.19	8.91 8.91 33.69 11.65	23	1.2	Loss due to Cl_2 Loss due to another Cl_2 Loss due to ligand Loss due to sublimation of SnO_2

Table 6. Thermo gravimetric data of complexes

The complex Ia lost the weight between 100° and 235° C. The weight loss is gradual. In 235° - 350° C range the complex shows the steep decrease in the weight. This is due to the elimination of two chlorides. The other two chlorides are eliminated between $350-400^{\circ}$ C and the oxidation of the ligand in $400-560^{\circ}$ C with the formation of SnO₂. The percentage loss of weight is in accordance with the suggested empirical formula of the complexes.

The Freeman and Corroll¹⁷ equation has been deployed to evaluate order of reaction and energy of activation from thermograms.

A plot of
$$\frac{\Delta \log dw/dt}{\Delta \log Wr}$$
 vs $\frac{\Delta (T^{-1})}{\Delta \log Wr}$ gives a straight line with a slope $\pm E^*/2.303$ R

and intercept is -x.

Where, W = weight loss up to time t, Wr = (Wc-W) difference of weight loss between completing of reaction up to time t, E = energy of activation, X = order of reaction and T = absolute temperature.

The dw and Wr for the purpose of plot can be directly determined from thermograms. Intercepts directly gives order of reaction, and using R gas constant, slope can be calculated. The values of order of reaction and energy of activation are shown in Table 5. The high values of energy of activation obtained for these complexes are suggestive of their stability.

On the basis of elemental analysis, spectral and thermal studies the following structure may be assigned to the $Cl_4Sn(DMBDA)_2$:

Acknowledgement

The authors are thankful to Dr. Yashwanth Bhupal, Principal, Bellary Engineering Collage, Bellary and the President of HKE'S Society and Principal, PDA Collage of Engineering, Gulbarga for the constant encouragement.

References

- 1. Sunderman F W, Arch. Ind. Health, 1958, 18, 480.
- Volf V, Treatment of Incorporated Tansurenium Elements, *Tech. Rep. Ser.*, 1978, 184, I.A.E.A. Vienna.
- 3. Ouchi A, Takeuchi T, Nakatini N and Takahashi Y, Bull. Chem. Soc. Japan, 1971, 44, 434.
- 4. Hunter P W W and Webb G A, J. Inorg. Nucl. Chem., 1972, 34, 1511.
- 5. Preti C and Tosi G, J. Coord. Chem., 1976, 66, 81; J. Inorg. Nucl. Chem., 1979, 41, 263; Trans. Met. Chem., 1978, 3, 246.
- 6. Real R A, Munoz M N and Borras J, *Thermochem Acta.*, 1986, **101**, 83.
- Real R A and Borras J, Synth. React. Inorg. Met. Org. Chem., 1984, 14, 843; 857; 1986, 16, 13.
- 8. Suresh, Prabhakar B K and Kulkarni V H, Indian J. Chem., 1990, 29A, 486.
- 9. Suresh, Prabhakar B K and Kulkarni V H, Asian J. Chem., 1991, 4, 210.
- 10. Vogel A I, A Text Book of Quantitative Inorganic Chemistry, 4th Ed., 1978 William Clows Ltd., London.
- 11. Bellamy L J, Infrared Spectra of Organic Molecules, John Willey, New York, 1966.
- 12. Rassmussen R S, Tunicliff D D and Brattain R R, J. Am. Chem. Soc., 1949, 75, 2568.
- 13. Freeman N K, J. Am. Chem. Soc., 1953, 75, 1859.
- 14. Bush D H, and Bailer J C, J. Am. Chem. Soc., 1956, 78, 1137.
- 15. Bailer J C, Comprehensive Inorganic Chemistry, Pergamon Press, New York, 1978, 325.
- 16. Lever A B P, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968.
- 17. Freeman E S and Carroll B, J. Phys. Chem., 1958, 42, 394.

International Journal of Medicinal Chemistry

Organic Chemistry International

International Journal of Analytical Chemistry

Advances in Physical Chemistry

Journal of Theoretical Chemistry

Catalysts

Chromatography Research International

Journal of Chemistry

