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Alzheimer’s disease (AD) is the main cause of dementia for older people. Although several antidementia drugs such as
donepezil, rivastigmine, galantamine, and memantine have been developed, the effectiveness of AD drug therapy is still far
from satisfactory. Recently, the single nucleotide polymorphisms (SNPs) have been chosen as one of the personalized medicine
markers. Many pharmacogenomics databases have been developed to provide comprehensive information by associating SNPs
with drug responses, disease incidence, and genes that are critical in choosing personalized therapy. However, we found that
some information from different sets of pharmacogenomics databases is not sufficient and this may limit the potential functions
for pharmacogenomics. To address this problem, we used approximate string matching method and data mining approach to
improve the searching of pharmacogenomics database. After computation, we can successfully identify more genes linked to AD
and AD-related drugs than previous online searching. These improvements may help to improve the pharmacogenomics of AD for

personalized medicine.

1. Introduction

Alzheimer’s disease (AD), the most common form of demen-
tia, was first reported in 1906 [1]. In 2006, there were about
26.6 million AD patients worldwide and it was also common
in southern Taiwan [2]. Although AD has been identified for
a long time, most research progress was made in the recent
30 years [3]. However, no definitive cure is available for this
disease and eventually it leads to death. Therefore, the drug
discovery for Alzheimer’s disease remains challenging.
Single nucleotide polymorphisms (SNPs) are the most
common variation in human genomes [4]. The importance
of SNPs has been reviewed in genome-wide association
studies for its association with disease susceptibility and
drug metabolism [5, 6]. About 60-90% of the individual
variation of drug response depends on pharmacogenomic

factors. Therefore, SNP genotyping for candidate genes,
pharmacological research, and drug discovery may play an
increasingly important role in AD treatment. Meanwhile,
increasing amounts of related information require the assis-
tance of bioinformatics to construct the suitable databases
and web servers.

Recently, PharmGKB (the Pharmacogenetics and Phar-
macogenomics Knowledge Base) has been constructed to
provide a comprehensive database for pharmacogenomic
studies [7]. PharmGKB provides the pharmacogenetics
research network in terms of SNP discovery and drug
responses [8] with the fully curated knowledge for drug
pathways, drug-related genes, and relationships among genes,
drugs, and diseases. However, some information of different
functions of PharmGKB is insufficient to allow convenient
crosstalking between each other.



BioMed Research International

Disease

ﬁ> Gene

@ Drug

Personalized drug

SNP Z> Genotyping Z>

ACHE

Anticholine-

CHRNA
sterases

Ace 1nh1b1t0rs
plaln

Etanercept

Alzheimer’s
disease

PCR
resequencing

TagMan probes

Personalized
drug therapy

SNP '
microarrays

MALDI-TOF

PCR-RFLP

SNPS pool
PCR-CTPP

FIGURE 1: The flowchart for PharmGKB-based pharmacogenomics of AD in this study.

To solve this problem, we propose data mining method to
improve the searching of pharmacogenomics of AD based on
the download dataset of the PharmGKB resource.

2. Materials and Methods

The flowchart for pharmacogenomics in AD for personalized
drug studies is shown in Figure 1. First of all, the AD-related
drugs and genes are retrieved from PharmGKB download
data using approximate string matching method and data
mining approach. The genes associated with AD and the
genes associated with a single Alzheimer’s drug are identified
and compared with the online searching of PharmGKB.
Then, numerous SNPs of genes associated with AD are
identified. Through some SNP genotyping tools or assays, the
association studies to AD-related drugs may be evaluated.
Finally, the relevant information may be helpful for the
personalized drug research.

2.1. AD-Related Drugs Using Approximate String Matching
Based on PharmGKB Download Data. In order to study
the pharmacogenomics of AD, we downloaded the known
PharmGKB (the Pharmacogenetics and Pharmacogenomics
Knowledge Base) (http://www.pharmgkb.org/downloads/)
[9, 10] as source by the approximate string matching method
[11] to find out all AD-related drug classes. The meaningful
keywords associated with “Alzheimer’s disease” are shown in
Table 1. Then, these found drug classes are used to find out
associated genes by data mining approach. The description of
the approximate string matching method for all AD-related
drug classes gives a pattern string P = p,p,p; - P that
is, the meaningful keywords associated with “Alzheimer’s
disease” and a text string T = tt,t;---t,, that is, the
description for drug and disease retrieved from PharmGKB.

Findasubstring T; ; = t;t;,,f;,, - t;in T that has the smallest

edit distance [12] to the pattern P. The pseudocode for the edit
distance is shown in Algorithm 1.

2.2. Data Mining Method for PharmGKB Download Data. In
this study, we used a priori algorithm [13] for frequent item
set mining and association rule learning over PharmGKB.
The pseudocode for the a priori algorithm for data mining
in PharmGKB is shown in Algorithm 2. At first, a priori
algorithm has to find out the frequent gene in drug class for
“Alzheimer’s disease.” A set of genes can be mined from each
drug class. A priori algorithm is a “bottom up” approach,
where frequent gene subsets are extended one item at a
time (i.e., candidate generation) and groups of candidates are
tested against the data. This algorithm is terminated when no
further successful extensions are found.

2.3. SNP Searching for Genes Using the NCBI dbSNP. Every
gene contains numerous SNPs. In order to find out SNPs
of single gene for Alzheimers pharmacogenomics, NCBI
dbSNP (http://www.ncbi.nlm.nih.gov/snp) is used to search
in the study.

3. Results and Discussion

3.1. AD Information Based on PharmGKB Search. In Phar-
mGKB online searching, the SNP variants, related genes,
and drugs for AD are able to be retrieved. For example, the
SNP information such as rs2066853 and rs6313 is provided
(Figure 2). As shown in Figure 3, the AD-related genes such
as ADRB1, AHR, HTR2A, MTHFR, and PTGS2 are identified
and the related drugs such as olanzapine and risperidone
are searched. This information may assist the researchers
to study the pharmacogenomics of AD. Unfortunately, this
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TaBLE 1: The meaningful keywords associated with “Alzheimer’s disease” are retrieved from PharmGKB and they are applied to discover the

drug classes”.

ID Keywords

1 AD

2 Alzheimer’s disease

3 AD—Alzheimer’s disease

4 Acute Confusional Senile Dementia

5 Alzheimer Dementia, Presenile

6 Alzheimer Disease, Early Onset

7 Alzheimer Disease, Late Onset

8 Alzheimer Type Dementia

9 Alzheimer Type Senile Dementia

10 Alzheimer’s Disease, Focal Onset

1 Alzheimer’s disease, NOS

12 Dementia, Alzheimer Type

13 Dementia, Presenile

14 Dementia, Presenile Alzheimer

15 Dementia, Primary Senile Degenerative
16 Dementia, Senile

17 Dementias, Presenile

18 Dementias, Senile

19 Disease, Alzheimer

20 Disease, Alzheimer’s

21 Early Onset Alzheimer Disease

22 Focal Onset Alzheimer’s Disease

23 Late Onset Alzheimer Disease

24 Presenile Alzheimer Dementia

25 Presenile Dementia

26 Presenile Dementias

27 Primary Senile Degerative Dementia

28 Senile Dementia

29 Senile Dementia, Acute Confusional

30 Senile Dementia, Alzheimer Type

31 Senile Dementias

32 MeSH: D000544 (Alzheimer Disease)
33 MedDRA: 10001896 (Alzheimer’s disease)
34 NDFRT: N0000000363 (Alzheimer Disease [Disease/Finding])
35 SnoMedCT: 26929004 (Alzheimer’s disease)
36 UMLS: C0002395 (C0002395)

*Drug class is one of the functions listed in the ParamGKB download data.

PharmGKB online searching just provides limited informa-
tion and it insufficiently copes with the complexity of the drug
researches for Alzheimer’s personalized medicine.

3.2. PharmGKB-Based Data Mining of AD Information of
Drug Classes or Gene Symbols. In current study, our proposed

method is used to perform data mining for PharmGKB
download data in terms of the keyword “Alzheimer’s disease.”
As shown in Table 2, 22 kinds of AD-related drug classes
are identified from “drug classes” of PharmGKB. Their
corresponding PharmGKB accession ID, PubMed PMID, and
the number of genes that are associated with AD-related drug
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(1) // initialization
(2) fori«— Otomdo
() E@G,0) — i

(4) end for

(5) for j — 0tondo
(6) E(0,j) <0
(7) end for

(9) fori« 0tomdo

17) end for
(18) end for
(19) return E

(8) // edit distance E(i, f)

(10) for j < 0tondo

(1) if(T(j) = P(i)) then

12) EG,j) — (i-1,j-1)

(13) else

(14) min — MIN[E(i - 1, /), EG, j — 1)]
(15) E(i, j) < min+1

(16) end if

ArLcorITHM 1: Pseudocode for the edit distance used for approximate string matching.

(1) Apriori(PharmGKB, ¢)

3) k<2
(4) whileL, , #¢

11) end for

13)  kek+1

(14) end while

(15) return [JL,
k

(2) L, « (frequent genes in drug class for Alzheimer’s disease)

(5) Cye—{aufbllaeLl_,AbelJL,, Ab¢a}
(6)  for each drug class € PharmGKB

(7) C, < {gene | gene € C, A gene C drug class}
(8) for each candidate gene € C,

9) count[gene] « count[gene] +1

(10) end for

(12) Ly < {gene | gene € C; A count[gene] > &}

ALGORITHM 2: Pseudocode for a priori algorithm for the data mining in PharmGKB, where ¢ is a support threshold, L is the frequent gene
subsets that satisfy the support threshold, k is the number of current iterations, and C is the candidate set, and count[gene] accesses a field of

the data structure that represents gene candidate set.

classes are also presented. In total, 495 genes are identified
for AD information of drug classes (see Supplementary file
1: gene information includes PharmGKB Accession Id, gene
symbol, and publications are providing in different classes; it
is available online at http://dx.doi.org/10.1155/2014/897653).
Alternatively, 99 genes associated with AD are identified
from “gene symbols” of PharmGKB in terms of the keyword
“Alzheimer’s disease” These results suggest that the same
keyword, for example, Alzheimer’s disease, may identify
different numbers of AD-associated genes between “drug
classes” or “gene symbols” of PharmGKB.

After detailed examination, 67 genes in the gene symbols
searching (bold fonts of gene names as shown in Table 3) are
absent from the genes in the drug class searching (Table 2).

Furthermore, genes corresponding to the drug “memantine”
listed in Table 2 (drug classes) are not found in Table 3 (gene
symbols). Therefore, some current drugs have identified a
small number of AD-related genes in the drug class searching;
however, the remaining AD-related genes that may affect AD-
related drugs may be partly discovered in the gene symbols
searching. These novelly identified AD-related genes may be
the potential candidates for further drug development of AD.
These results demonstrated that our proposed data mining
method may be an improved AD pharmacogenomics study.

3.3. SNP Information of AD-Related Genes. The SNP statuses
for 99 AD-related genes are also provided in Table 3. This
SNP status for each gene is calculated from the online NCBI
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view legend
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Gene (138) Alternate Names / Tag SNPs Drugs (+ chr strand) Function Translation
AHR 152066853 1661G>A, 17369110G>A, 17379110G>A, G>A Missense Arg554Lys
AHR:554R>K, AHR:R554K, Arg554Lys
HTR2A  1s6313 102C>T, 160+869C>T, 28449940G>A, olanzapine G>A Intronic Ser34Ser
47469940G>A, 6230C>T, HTR2A:102C>T, risperidone
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FIGURE 2: PharmGKB-pharmacogenomics online query for the variant information (SNP rs#ID) of “Alzheimer’s disease.” Retrieval source:
http://www.pharmgkb.org/disease/PA443319¢previousQuery=Alzheimer’s%20disease.
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FIGURE 3: Gene and drug related information of “Alzheimer’s disease” online query from PharmGKB. Retrieval source: http://www.pharmgkb
.org/disease/PA443319?previousQuery=Alzheimer’s%20disease#tabview=table 3&subtab=33.
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TABLE 2: PharmGKB-based data mining results in terms of the PharmGKB accession ID, drug class, publications, and the number of gene

information of Alzheimer’s disease.

No.  PharmGKB accession ID Drug classes Publications*' Gene no.”
1 PA164712423 Anticholinesterases PMID: 20644562 20644562 14674789 6
2 PA164712308 Ace inhibitors, plain PMID: 17362841 24
3 PA449515 Etanercept PMID: 19027875 12
4 PALSIZS? Rivsstigmine 644562 509797 19230 :
5 PA450243 Lithium PMID: 17082448 13
Anti-inflammatory and
6 PA10384 antirheumatic products, PMID: 17082448 17082448 1
nonsteroids

7 PA449760 Glatiramer acetate PMID: 17082448 4
8 PA133950441 Hmg coa reductase inhibitors PMID: 17082448 39
9 PA151958596 Curcumin PMID: 17082448 2
10 PA451898 Vitamin ¢ PMID: 17082448 16
11 PA451900 Vitamin e PMID: 17082448 1
12 PA452229 Antidepressants PMID: 17082448 43
13 PA452233 Antipsychotics PMID: 17082448 46
u PAA49726 Gelantamie 15853556 20644562 14674789 12177686 7
15 PA10364 Memantine PMID: 17082448 0
16 PA451283 Rosiglitazone PMID: 16770341 34
17 PA448031 Acetylcholine PMID: 15695160 8
18 PA450626 Nicotine PMID: 15695160 88
19 PA137179528 Nimesulide PMID: 16331303 11810182 3
20 PA449394 Donepezil fé\gz?ééof;()g;;:éozég:ﬁszﬁl;f927332§f7012142731 ’
21 PA451576 Tacrine g;\;£122.7951§1)2§:211§082448 10801254 6
22 PA448976 Choline PMID: 8618881 122

*IPMID: PubMed article ID number.

*2The full gene names for each of the “drug classes” have been provided in the Supplementary file 1.

dbSNP queries. In general, many SNPs are found in these AD-
related genes. Some SNPs of these genes have been reported
to be associated with AD. For example, the APOE gene is
found in Table 3 and one of its SNPs, such as ApoE epsilon 4
allele, has been reported to be associated with AD [14]. With
suitable tools for SNP genotyping, these SNP candidates are
warranted for the pharmacogenomics research of AD.
Currently, there are many high throughput SNP genotyp-
ing methods developed (as shown in Figure 1), including PCR
resequencing [15], TagMan probes [16], SNP microarrays
[17], Matrix Assisted Laser Desorption/Ionization-Time of
Flight (MALDI-TOF) [18], and others [19, 20]. Furthermore,
some SNP genotyping tools or databases are also devel-
oped, such as SNP-RFLPing2 for comprehensive PCR-RFLP
information based on SNPs [21-24], algorithmic PCR-RFLP
primer design and restriction enzymes for SNP genotyping
[25, 26], and primer design for PCR-confronting two-pair
primers (PCR-CTPP) [27, 28]. These tools and methods

can provide useful and convenient information for SNP
genotyping in the AD pharmacogenomics studies.

4. Conclusions

AD is the most common form of dementia for older people.
The pharmacogenomics of AD still remains a challenge. In
this study, we propose the pharmGKB-based data mining
method to improve the gene discoveries for the potential
AD-related drug candidates. With the assistance of bioin-
formatics, this improvement can help researchers to develop
personal therapeutic drugs of AD.
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