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This paper investigates the problem of global stabilization for a class of switched nonlinear systems using multiple Lyapunov
functions (MLFs). The restrictions on nonlinearities are neither linear growth condition nor Lipschitz condition with respect to
system states. Based on adding a power integrator technique, we design homogeneous state feedback controllers of all subsystems
and a switching law to guarantee that the closed-loop system is globally asymptotically stable. Finally, an example is given to illustrate
the validity of the proposed control scheme.

1. Introduction

A switched system is a hybrid system which consists of a
family of subsystems, either continuous-time or discrete-time
subsystems, and a switching law, which defines a specific
subsystem that is active at each instant of time. In the last
decade, the problem of designing switching strategies for
switched systems has received a great attention [1–10] and
the references therein. A switched system may be either
stable or unstable, not depending on its subsystems but a
particular switching signal. Because of less conservativeness,
MLFsmethod is more preferable than othermethods. It plays
an important role in design for switched nonlinear systems in
the control literature [4, 5]. Based on the common Lyapunov
function approach, the existing designs of switched nonlinear
systems were restricted to triangular form under arbitrary
switchings via backstepping or forwarding method [7, 8, 10].
For switched nonlinear systems, it has not been used by
homogeneous domination control approach to the best of our
knowledge. The homogeneous domination approach begins
with the linear domination idea proposed in [11], where a
global output feedback stabilizer is constructed for uncertain
nonlinear system under a linear growth condition. The

work [12] deals with the stability of nonswitched nonlinear
systems using the homogeneous domination approach. Using
such method, how to tackle the problem of stabilization
for a class of more general switched nonlinear systems is
challenging. In this paper, motivated by [13], in some regular
conditions, theMLFsmethod is utilized to completely handle
the different coordinate transformations for all subsystems
by constructing proper switching law. Compared with the
existing literature on switched nonlinear systems, the results
of this paper have some advantages. At first, the problem
of global state feedback stabilization for a wider class of
nonlinear systems with some special forms is studied by
homogeneous domination approach, which simplifies the
control design procedure. Secondly, individual coordinate
transformations for subsystems are introduced into virtual
controllers, which decreases the conservativeness compared
with the common change of coordinate. Finally, the dual
controllers and a switching law are designed by constructing
the MLFs.

The outline of the paper is as follows. In Section 2,
we provide the system formulation and preliminaries. In
Section 3, we present a necessary and sufficient condition for
the stabilization issue and the main result of the paper. An
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illustrative example is given in Section 4. Our conclusion is
included in Section 5.

2. System Description and Preliminaries

We consider a class of switched nonlinear systems of the form
𝑥̇𝑖 = 𝑥𝑖+1 + 𝑓𝑖,𝜎(𝑡) (𝑥𝑖) + 𝑔𝑖,𝜎(𝑡) (𝑥) , 𝑖 = 1, . . . , 𝑛 − 1
𝑥̇𝑛 = 𝑢𝜎(𝑡) + 𝑓𝑛,𝜎(𝑡) (𝑥) , (1)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛 is the system state and 𝑢𝜎(𝑡)
is the subsystem input. 𝑥𝑖 = (𝑥1, . . . , 𝑥𝑖)𝑇, 𝑖 = 1, . . . , 𝑛. The
function 𝜎(𝑡) : [0,∞) → 𝑀 = {1, . . . , 𝑚} is a switching
signal which is assumed to be a piecewise continuous (from
the right) function of time. For each 𝑘 ∈ 𝑀, 𝑢𝑘 ∈ 𝑅 is
the control input of the 𝑘th subsystem. For any 𝑘 ∈ 𝑀,
and 𝑖 = 1, 2, . . . , 𝑛, the functions 𝑓𝑖,𝑘(⋅), 𝑖 = 1, . . . , 𝑛 and𝑔𝑙,𝑘(𝑥), 𝑙 = 1, . . . , 𝑛 − 1, 𝑘 ∈ 𝑀 are 𝐶∞ with respect to their
arguments and vanish at the origin; that is, 𝑓𝑖,𝑘(0) = 0 and𝑔𝑙,𝑘(0) = 0. In addition, we assume that the state of system (1)
does not jump at the switching instants; that is, the solution
is everywhere continuous and only finite switches can occur
in any finite time interval.

Obviously, the structure of the switched nonlinear sys-
tem (1) is much more general than the structure of the
nonswitched nonlinear systems called strict-feedback form
whose stabilization problem has been addressed in [12, 14]
when 𝑔𝑙,𝑘(𝑥) ≡ 0 and 𝑚 = 1. The existence of a common
Lyapunov function for all subsystems was shown to be a
necessary and sufficient condition for a switched system to
be asymptotically stable under arbitrary switchings [15]. If at
least one of the subsystems is not asymptotically stable, we
still solve the global stabilization problem for system (1) by
designing controllers for all subsystems and a switching law.

In the following, we collect some useful definitions and
lemmas which play important roles in this paper. The inno-
vative idea of homogeneity was introduced for the stability
analysis of a nonlinear system and has led to a number of
interesting results (see [16, 17]). We recall the definitions of
homogeneous systems with weighted dilation.

Definition 1. For real numbers 𝑟𝑖 > 0, 𝑖 = 1, . . . , 𝑛 and fixed
coordinates (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛, ∀𝜀 > 0.

(i) The dilation Δ 𝜀(𝑥) is defined by Δ 𝜀(𝑥) = (𝜀𝑟1𝑥1, . . . ,𝜀𝑟𝑛𝑥𝑛), ∀𝜀 > 0, with 𝑟𝑖 being called as the weights of the
coordinates. For simplicity of notation, we define dilation
weight Δ = (𝑟1, . . . , 𝑟𝑛).

(ii) A function 𝑉 ∈ 𝐶(R𝑛,R) is said to be homogeneous
of degree 𝜏 if there is a real number 𝜏 ∈ R such that

𝑉 (Δ 𝜀 (𝑥)) = 𝜀𝜏𝑉 (𝑥1, . . . , 𝑥𝑛) , ∀𝑥 ∈ R𝑛 \ {0} . (2)
(iii) A vector field 𝑓 ∈ 𝐶(R𝑛,R𝑛) is said to be homoge-

neous of degree 𝜏 if there is a real number 𝜏 ∈ R such that for𝑖 = 1, . . . , 𝑛
𝑓𝑖 (Δ 𝜀 (𝑥)) = 𝜀𝜏+𝑟𝑖𝑓𝑖 (𝑥1, . . . , 𝑥𝑛) , ∀𝑥 ∈ R𝑛 \ {0} . (3)
(iv) A homogeneous 𝑝-norm is defined as ‖𝑥‖Δ,𝑝 =(∑𝑛𝑖=1 |𝑥𝑖|𝑝/𝑟𝑖)1/𝑝, ∀𝑥 ∈ R𝑛, for a constant 𝑝 ≥ 1. For the

simplicity, we choose 𝑝 = 2 and write ‖𝑥‖Δ for ‖𝑥‖Δ,2.

Lemma 2. Suppose 𝑉 : R𝑛 → R is a homogeneous function
of degree 𝜏 with respect to the dilation weight Δ. Then the
following holds:

(i) 𝜕𝑉/𝜕𝑥𝑖 is homogeneous of degree 𝜏− 𝑟𝑖 with 𝑟𝑖 being the
homogeneous weight of 𝑥𝑖.

(ii) There is a constant 𝑐 such that
𝑉 (𝑥) ≤ 𝑐 ‖𝑥‖𝜏Δ . (4)

Moreover, if 𝑉(𝑥) is positive definite,
𝑐 ‖𝑥‖𝜏Δ ≤ 𝑉 (𝑥) , for a constant 𝑐 > 0. (5)

Lemma 3. For 𝑥 ∈ R, 𝑦 ∈ R,𝑝 ≥ 1 is a constant; the following
inequalities hold:

󵄨󵄨󵄨󵄨𝑥 + 𝑦󵄨󵄨󵄨󵄨𝑝 ≤ 2𝑝−1 󵄨󵄨󵄨󵄨𝑥𝑝 + 𝑦𝑝󵄨󵄨󵄨󵄨 ,
(|𝑥| + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)1/𝑝 ≤ |𝑥|1/𝑝 + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨1/𝑝

≤ 2(𝑝−1)/𝑝 (|𝑥| + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)1/𝑝 .
(6)

If 𝑝 ≥ 1 is an odd integer or a ratio of two odd integers,
󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝑝 ≤ 2𝑝−1 󵄨󵄨󵄨󵄨𝑥𝑝 − 𝑦𝑝󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑥𝑝 − 𝑦𝑝󵄨󵄨󵄨󵄨 ≤ 𝑝 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 (𝑥𝑝−1 + 𝑦𝑝−1)

≤ 𝑐 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨(𝑥 − 𝑦)𝑝−1 + 𝑦𝑝−1󵄨󵄨󵄨󵄨󵄨 ,
(7)

where 𝑐 > 0 is a constant.
Lemma 4. Suppose 𝑐 and 𝑑 are two positive real numbers.
Given any positive number 𝛾 > 0, the following inequality
holds:

|𝑥|𝑐 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝑑 ≤ 𝑐𝑐 + 𝑑𝛾 |𝑥|𝑐+𝑑 + 𝑑𝑐 + 𝑑𝛾−𝑐/𝑑 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝑐+𝑑 . (8)

Lemma 5. Let 0 ≤ 𝛿1 ≤ ⋅ ⋅ ⋅ ≤ 𝛿𝑛 be real numbers and 𝑐𝑗 ≥0, 𝑗 = 1, . . . , 𝑛. Then, ∀𝑥 ∈ R,
𝑐1 |𝑥|𝛿1 + 𝑐𝑛 |𝑥|𝛿𝑛 ≤ 𝑛∑

𝑗=1

𝑐𝑗 |𝑥|𝛿𝑗

≤ ( 𝑛∑
𝑗=1

𝑐𝑗)(|𝑥|𝛿1 + |𝑥|𝛿𝑛) .
(9)

3. Homogenous Stabilizer by State Feedback

In this section, we first construct a set of Lyapunov functions
for all subsystems of the following switched nonlinear sys-
tems:

𝑥̇𝑖 = 𝑥𝑖+1 + 𝑓𝑖,𝜎(𝑡) (𝑥𝑖) , 𝑖 = 1, . . . , 𝑛 − 1
𝑥̇𝑛 = 𝑢𝜎(𝑡) + 𝑓𝑛,𝜎(𝑡) (𝑥) (10)

which is exactly in (1) with 𝑔𝑖,𝜎(𝑡)(𝑥) = 0. Then we present the
homogeneous controllers of subsystems and a switching law
for system (10) under some regular conditions.
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To the best of our knowledge, no results on switched
nonlinear systems (10) in the use of the homogeneous dom-
ination approach have appeared. For system (10), a common
Lyapunov function is difficult to find because a common
coordinate transformation of all subsystems is difficult to
be exploited. On the other hand, if system (1) has only one
subsystem, the design problem reduces to the classical stabi-
lization design problem for nonswitched nonlinear systems.
According to the structure of system (1), however, system (1)
cannot constructively be stabilized by the existing methods
such as the adding a power integrator technique proposed in
[18, 19]. To obtain the homogenous state feedback controllers
of subsystems and a switching law, which globally stabilize
system (1), some assumptions are made as follows.

Assumption 6. For 𝑖 = 1, . . . , 𝑛, and 𝑘 ∈ 𝑀, there are
constants 𝜏𝑘 ≥ 0 and 𝜌𝑘 ≥ 0, such that

󵄨󵄨󵄨󵄨𝑓𝑖,𝑘 (𝑥𝑖)󵄨󵄨󵄨󵄨
≤ 𝜌𝑘 (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑟𝑖+1,𝑘/𝑟1,𝑘 + 󵄨󵄨󵄨󵄨𝑥2󵄨󵄨󵄨󵄨𝑟𝑖+1,𝑘/𝑟2,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨𝑟𝑖+1,𝑘/𝑟𝑖,𝑘) (11)

with the constants 𝑟𝑖,𝑘’s defined as

𝑟1,𝑘 = 1,
𝑟𝑖+1,𝑘 = 𝑟𝑖,𝑘 + 𝜏𝑘. (12)

Assumption 7. There are some constants 𝑎𝑙, 𝑙 = 1, . . . , 𝑘 such
that󵄨󵄨󵄨󵄨𝑔𝑖,𝑘 (𝑥)󵄨󵄨󵄨󵄨

≤ 𝑎1 (󵄨󵄨󵄨󵄨𝜉1,1󵄨󵄨󵄨󵄨(𝑛−1)𝜏1/𝑟1,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑖,1󵄨󵄨󵄨󵄨(𝑛−1)𝜏1/𝑟1,𝑘) + ⋅ ⋅ ⋅
+ 𝑎𝑘 (󵄨󵄨󵄨󵄨𝜉1,𝑘󵄨󵄨󵄨󵄨(𝑛−1)𝜏𝑘/𝑟𝑖,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑖,𝑘󵄨󵄨󵄨󵄨(𝑛−1)𝜏𝑘/𝑟𝑖,𝑘) ,

(13)

where 𝜉𝑖,𝑘 will be defined later.

Assumption 8. In the above formula, the variables must meet

𝜏𝑖 ≤ min {𝜏1, . . . , 𝜏𝑖−1} . (14)

Remark 9. When 𝑀 = {1} and 𝑔𝑖,𝑘(𝑥) = 0, Assumption 6
is reduced to that in [12, 14]. In presence of 𝑔𝑖,𝑘(𝑥), system
(1) is more general compared with previous lower-triangular
or upper-triangular system. If 𝜏𝑘 = 0, Assumptions 6 and
7 become linear growth conditions. Assumption 8 plays an
important role in the later control design. For simplicity, in
this paper we assume 𝜏𝑖 = 𝑞𝑖/𝑝𝑖 with 𝑞𝑖 an even integer and 𝑝𝑖
an odd integer. Based on this, 𝑟𝑖,𝑗 = 1+(𝑗−1)𝜏𝑖, 𝑗 = 1, . . . , 𝑛+1
will be odd in both denominator and numerator.

Theorem 10. Under Assumptions 6–8, there are constants𝛿𝑖, 𝑖 = 1, . . . , 𝑛 and continuous functions 𝜒𝑘,𝑙(𝑥) > 0, 𝑘, 𝑙 ∈𝑀, such that for ∀𝑥 ̸= 0, 𝑘 ∈ 𝑀
𝑎 𝑛∑
𝑖=1

𝛿𝑖𝜉2𝑟𝑛,𝑘/𝑟𝑖,𝑘𝑖,𝑘
+ 𝑚∑
𝑙=1

𝜒𝑘,𝑙 (𝑥) (𝑉𝑙 (𝜉𝑛,𝑙) − 𝑉𝑘 (𝜉𝑛,𝑘)) < 0. (15)

Then, there exist homogeneous state feedback controllers
and a switching law solving the global stabilization problem
of system (1).

Proof. The proof is carried out by using an inductive argu-
ment, which enables us to simultaneously construct a Lya-
punov function which is positive definite and proper, as well
as homogeneous stabilizers. First construct a set of Lyapunov
functions for all subsystems of system (10) using adding a
power integrator technique for each 𝑘.
Step 1. Choose a Lyapunov function 𝑉1,𝑘 = (𝑟1,𝑘/(2𝑟𝑛,𝑘 −𝜏𝑘))𝑥(2𝑟𝑛,𝑘−𝜏𝑘)/𝑟1,𝑘1 . For each subsystem 𝑘 of switched system
(10), the time derivative of 𝑉1,𝑘 along the trajectory of (10) is
𝑉̇1,𝑘 = 𝑥((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟1,𝑘)−11 (𝑥2 + 𝑓1,𝑘 (𝑥1))

≤ 𝑥((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟1,𝑘)−11 (𝑥2 − 𝑥∗2,𝑘 + 𝑥∗2,𝑘 + 𝑥𝑟2,𝑘/𝑟1,𝑘1 𝜌𝑘) ; (16)

the last inequality is deduced by Assumption 6. Then choos-
ing the virtual controller 𝑥∗2,𝑘 as

𝑥∗2,𝑘 = −𝑥𝑟2,𝑘/𝑟1,𝑘1 (𝑛 + 𝜌𝑘) fl −𝑥𝑟2,𝑘/𝑟1,𝑘1 𝛽1,𝑘 (17)

we can obtain

𝑉̇1,𝑘 (𝑥1) ≤ 𝑥((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟1,𝑘)−11 (𝑥2 − 𝑥∗2,𝑘) − 𝑛𝑥2𝑟𝑛,𝑘/𝑟1,𝑘1 . (18)

Inductive Step. Suppose, at step 𝑖 − 1, there exists a Lyapunov
function 𝑉𝑖−1,𝑘, which is positive define and homogeneous
with respect to (12) and a set of virtual controllers𝑥∗1,𝑘, . . . , 𝑥∗𝑖,𝑘
defined by

𝑥∗1,𝑘 = 0,
𝑥∗2,𝑘 = −𝜉𝑟2,𝑘/𝑟1,𝑘1,𝑘

𝛽1,𝑘,
...

𝑥∗𝑗,𝑘 = −𝜉𝑟𝑗,𝑘/𝑟𝑗−1,𝑘𝑗−1,𝑘
𝛽𝑗−1,𝑘,

𝜉1,𝑘 = 𝑥1 − 𝑥∗1,𝑘
𝜉2,𝑘 = 𝑥2 − 𝑥∗2,𝑘

...
𝜉𝑗,𝑘 = 𝑥𝑗 − 𝑥∗𝑗,𝑘,

(19)

where 𝑗 = 2, . . . , 𝑖 and 𝛽1,𝑘 > 0, . . . , 𝛽𝑖−1,𝑘 > 0 such that

𝑉̇𝑖−1,𝑘 ≤ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖−1,𝑘)−1𝑖−1,𝑘
(𝑥𝑖 − 𝑥∗𝑖,𝑘)

− (𝑛 − 𝑖 + 2) 𝑖−1∑
𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

. (20)

Next, we claim that (20) also holds at step 𝑖. To prove this
claim, we consider the Lyapunov function

𝑉𝑖,𝑘 = 𝑉𝑖−1,𝑘 + 𝑟𝑖,𝑘2𝑟𝑛,𝑘 − 𝜏𝑘 𝜉(2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘𝑖,𝑘 (21)
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whose derivative is

𝑉̇𝑖,𝑘
≤ − (𝑛 − 𝑖 + 2) 𝑖−1∑

𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖−1,𝑘)−1
𝑖−1,𝑘

𝜉𝑖,𝑘
+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

(𝑥𝑖+1 + 𝑓𝑖,𝑘 (⋅) − 𝑖−1∑
𝑙=1

𝜕𝑥∗𝑖,𝑘𝜕𝑥𝑙 𝑥̇𝑙) .
(22)

Next, we estimate the last term on the right-hand side of
(22). By Lemma 4, there are constants 𝑐𝑖,𝑘 > 0 and 𝑑𝑖,𝑘 > 0
such that

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖−1,𝑘)−1
𝑖−1,𝑘

𝜉𝑖,𝑘 = 𝜉(2𝑟𝑛,𝑘−𝜏𝑘−𝑟𝑖−1,𝑘)/𝑟𝑖−1,𝑘𝑖−1,𝑘
𝜉(1/𝑟𝑖,𝑘)𝑟𝑖,𝑘
𝑖,𝑘

≤ 𝑐𝑖,𝑘𝜉2𝑟𝑛,𝑘/𝑟𝑖−1,𝑘𝑖−1,𝑘
+ 𝑑𝑖,𝑘𝜉2𝑟𝑛,𝑘/𝑟𝑖,𝑘𝑖,𝑘

. (23)

ByLemma3, there is a constant𝜌𝑘 such thatAssumption 6
can be rewritten as󵄨󵄨󵄨󵄨𝑓𝑖,𝑘 (𝑥𝑖)󵄨󵄨󵄨󵄨

≤ 𝜌𝑘 [󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑟𝑖+1,𝑘/𝑟1,𝑘 + 󵄨󵄨󵄨󵄨𝑥2󵄨󵄨󵄨󵄨𝑟𝑖+1,𝑘/𝑟2,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨𝑟𝑖+1,𝑘/𝑟𝑖,𝑘]
= 𝜌𝑘 𝑖∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝜉𝑗,𝑘 − 𝜉𝑟𝑗,𝑘/𝑟𝑗−1,𝑘𝑗−1,𝑘
𝛽𝑗−1,𝑘󵄨󵄨󵄨󵄨󵄨󵄨(𝑟𝑖,𝑘+𝜏𝑘)/𝑟𝑗,𝑘

≤ 𝜌𝑘 𝑖∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜉𝑗,𝑘󵄨󵄨󵄨󵄨󵄨(𝑟𝑖,𝑘+𝜏𝑘)/𝑟𝑗,𝑘 .

(24)

On the other hand, one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖−1∑
𝑙=1

𝜕𝑥∗𝑖,𝑘𝜕𝑥𝑙 𝑥̇𝑙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
𝑖−1∑
𝑙=1

𝜕 (−𝜉𝜏𝑘/𝑟𝑖−1,𝑘
𝑖−1,𝑘

𝛽𝑖−1,𝑘)𝜕𝑥𝑙 (𝑥𝑙+1 + 𝑓𝑙,𝑘 (⋅)) . (25)

According to definition (19), one obtains

𝜕𝑥∗𝑖,𝑘𝜕𝑥𝑙 =
𝜕 (−𝜉𝜏𝑘/𝑟𝑖−1,𝑘
𝑖−1,𝑘

𝛽𝑖−1,𝑘)𝜕𝑥𝑙 ≤ 𝑚𝜉𝜏𝑘/𝑟𝑖−1,𝑘
𝑖−1,𝑘

⋅ ⋅ ⋅ 𝜉𝜏𝑘/𝑟𝑙,𝑘
𝑙,𝑘

. (26)

Combining (26) and (24) into (25), we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖−1∑
𝑙=1

𝜕𝑥∗𝑖,𝑘𝜕𝑥𝑙 𝑥̇𝑙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
𝑖−1∑
𝑙=1

𝑚 󵄨󵄨󵄨󵄨󵄨󵄨𝜉𝜏𝑘/𝑟𝑖−1,𝑘𝑖−1,𝑘
⋅ ⋅ ⋅ 𝜉𝜏𝑘/𝑟𝑙,𝑘
𝑙,𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
⋅ (𝜉𝑙+1,𝑘 − 𝜉𝑟𝑙+1,𝑘/𝑟𝑙,𝑘𝑙,𝑘

𝛽𝑙,𝑘 + 𝜌𝑘 𝑖∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜉𝑗,𝑘󵄨󵄨󵄨󵄨󵄨(𝑟𝑖,𝑘+𝜏𝑘)/𝑟𝑗,𝑘) .
(27)

By Lemma 5 and the fact that (𝑖 − 𝑙)𝜏𝑘 + 𝑟𝑙,𝑘 = 𝑟𝑖,𝑘, (27)
becomes󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑖−1∑
𝑙=1

𝜕𝑥∗𝑖,𝑘𝜕𝑥𝑙 𝑥̇𝑙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
𝑖−1∑
𝑙=1

𝑚̃𝑙+1∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜉𝑗,𝑘󵄨󵄨󵄨󵄨󵄨(𝜏𝑘+𝑟𝑖,𝑘)/𝑟𝑗,𝑘
≤ 𝑚(󵄨󵄨󵄨󵄨𝜉1,𝑘󵄨󵄨󵄨󵄨(𝜏𝑘+𝑟𝑖,𝑘)/𝑟1,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑖,𝑘󵄨󵄨󵄨󵄨(𝜏𝑘+𝑟𝑖,𝑘)/𝑟𝑖,𝑘) ,

(28)

where 𝑚̃ and𝑚 are positive constants.

Combining (23), (24), and (28) into (22) yields

𝑉̇𝑖,𝑘 ≤ (𝑛 − 𝑖 + 2) 𝑖−1∑
𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

+ 𝑐𝑖,𝑘𝜉2𝑟𝑛,𝑘/𝑟𝑖−1,𝑘𝑖−1,𝑘

+ 𝑑𝑖,𝑘𝜉2𝑟𝑛,𝑘/𝑟𝑖,𝑘𝑖,𝑘
+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

𝑥𝑖+1
+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

(𝑓𝑖,𝑘 (⋅) − 𝑖−1∑
𝑙=1

𝜕𝑥∗𝑖,𝑘𝜕𝑥𝑙 𝑥̇𝑙)
≤ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

(𝜌𝑘 𝑖∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜉𝑗,𝑘󵄨󵄨󵄨󵄨󵄨(𝑟𝑖,𝑘+𝜏𝑘)/𝑟𝑗,𝑘

− 𝑚(󵄨󵄨󵄨󵄨𝜉1,𝑘󵄨󵄨󵄨󵄨(𝜏𝑘+𝑟𝑖,𝑘)/𝑟1,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑖,𝑘󵄨󵄨󵄨󵄨(𝜏𝑘+𝑟𝑖,𝑘)/𝑟𝑖,𝑘)) − (𝑛
− 𝑖 + 2) 𝑖−1∑

𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

+ 𝑐𝑖,𝑘𝜉2𝑟𝑛,𝑘/𝑟𝑖−1,𝑘𝑖−1,𝑘
+ 𝑑𝑖,𝑘𝜉2𝑟𝑛,𝑘/𝑟𝑖,𝑘𝑖,𝑘

+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

𝑥𝑖+1 ≤ − (𝑛 − 𝑖 + 2) 𝑖−1∑
𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

+ 𝑐𝑖,𝑘𝜉2𝑟𝑛,𝑘/𝑟𝑖−1,𝑘𝑖−1,𝑘
+ 𝑑𝑖,𝑘𝜉2𝑟𝑛,𝑘/𝑟𝑖,𝑘𝑖,𝑘

+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

(𝜌𝑘
+ 𝑚) 𝑖∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜉𝑗,𝑘󵄨󵄨󵄨󵄨󵄨(𝑟𝑖,𝑘+𝜏)/𝑟𝑗,𝑘 + 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1𝑖,𝑘
𝑥𝑖+1.

(29)

Choosing appropriate constants 𝑐𝑖,𝑘, 𝑑𝑖,𝑘, 𝑚𝑖,𝑘, and 𝑛𝑖,𝑘,
(29) becomes

𝑉̇𝑖,𝑘 ≤ − (𝑛 − 𝑖 + 1) 𝑖∑
𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

× (𝑥𝑖+1 + (𝑑𝑖,𝑘 + 𝑛𝑖,𝑘) 𝜉𝑟𝑖+1,𝑘/𝑟𝑖,𝑘𝑖,𝑘
) .

(30)

Next, we construct controllers for each subsystem and
a switching law which meet the requirements of the MLFs
framework for system (1). We can choose the Lyapunov
function 𝑉𝑘 = (1/2)𝜉21,𝑘 + ∑𝑛𝑖=2(𝑟𝑖,𝑘/(2𝑟𝑛,𝑘 − 𝜏𝑘))𝜉(2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘𝑖,𝑘

.
From (16)–(30), it is not hard to arrive at

𝑉̇𝑘 = 𝑥1 (𝑥2 + 𝑓1,𝑘 (𝑥1) + 𝑔1,𝑘 (𝑥)) + 𝑛−1∑
𝑖=2

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

× (𝑥𝑖+1 + 𝑓𝑖,𝑘 (𝑥𝑖) + 𝑔𝑖,𝑘 (𝑥) − 𝑖−1∑
𝑙=1

𝜕𝑥∗𝑖,𝑘𝜕𝑥𝑙 𝑥̇𝑙)
+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑛,𝑘

(𝑢𝑘 + 𝑓𝑛,𝑘 (𝑥) − 𝑛−1∑
𝑙=1

𝜕𝑥∗𝑛,𝑘𝜕𝑥𝑙 𝑥̇𝑙) .
(31)

Using inequalities (26), (27), (28), and (30), one has

𝑉̇𝑘 ≤ −2𝑛−1∑
𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛−1,𝑘)−1
𝑛−1,𝑘

(𝑥𝑛
+ 𝑝𝜉𝑟𝑛,𝑘/𝑟𝑛−1,𝑘
𝑛−1,𝑘

) + 𝑥1𝑔1,𝑘 (𝑥)
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+ 𝑛−1∑
𝑖=2

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

(𝑔𝑖,𝑘 (𝑥) − 𝑖−1∑
𝑙=1

𝜕𝑥∗𝑖,𝑘𝜕𝑥𝑙 𝑔𝑙,𝑘 (𝑥))

+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛,𝑘)−1
𝑛,𝑘

(𝑢𝑘 + 𝑓𝑛,𝑘 (𝑥) − 𝑛−1∑
𝑙=1

𝑚1𝜉𝜏𝑘/𝑟𝑛−1,𝑘𝑛−1,𝑘

⋅ ⋅ ⋅ 𝜉𝜏𝑘/𝑟𝑙,𝑘
𝑙,𝑘

(𝜉𝑙+1,𝑘 − 𝜉𝑟𝑙+1,𝑘/𝑟𝑙,𝑘𝑙,𝑘
𝛽𝑙,𝑘

+ 𝜌𝑘 𝑙∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜉𝑗,𝑘󵄨󵄨󵄨󵄨󵄨(𝑟𝑙,𝑘+𝜏𝑘)/𝑟𝑗,𝑘 + 𝑔𝑙,𝑘 (𝑥))) ,
(32)

where 𝑝,𝑚1, and 𝜌𝑘 are positive constants.
According to Lemma 4 and (19), there exist positive

constants 𝑝, 𝑝1, and 𝑝2 such that

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛−1,𝑘)−1
𝑛−1,𝑘

(𝑥𝑛 + 𝑝𝜉𝑟𝑛,𝑘/𝑟𝑛−1,𝑘𝑛−1,𝑘
)

≤ 𝑝𝜉2𝑟𝑛,𝑘/𝑟𝑛−1,𝑘
𝑛−1,𝑘

+ 𝜉𝑟𝑛,𝑘/𝑟𝑛−1,𝑘
𝑛−1,𝑘

(𝜉𝑛,𝑘 − 𝛽𝑛−1,𝑘𝜉𝑟𝑛,𝑘/𝑟𝑛−1,𝑘𝑛−1,𝑘
)

≤ 𝑝1𝜉2𝑟𝑛,𝑘/𝑟𝑛−1,𝑘𝑛−1,𝑘
+ 𝑝2𝜉2𝑟𝑛,𝑘/𝑟𝑛,𝑘𝑛,𝑘

.
(33)

By Lemma 4 and (24) and (28), there exists a constant 𝛼𝑖
such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉
((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛,𝑘)−1

𝑛,𝑘
(𝑓𝑛,𝑘 (𝑥) − 𝑛−1∑

𝑙=1

𝑚1𝜉𝜏𝑘/𝑟𝑛−1,𝑘𝑛−1,𝑘

⋅ ⋅ ⋅ 𝜉𝜏𝑘/𝑟𝑙,𝑘
𝑙,𝑘

(𝜉𝑙+1,𝑘 − 𝜉𝑟𝑙+1,𝑘/𝑟𝑙,𝑘𝑙,𝑘
𝛽𝑙,𝑘

+ 𝜌𝑘 𝑙∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜉𝑗,𝑘󵄨󵄨󵄨󵄨󵄨(𝑟𝑛,𝑘+𝜏)/𝑟𝑗,𝑘))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉
((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛,𝑘)−1

𝑛,𝑘
(𝜌𝑛 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜉𝑗,𝑘󵄨󵄨󵄨󵄨󵄨(𝑟𝑛,𝑘+𝜏)/𝑟𝑗,𝑘

− 𝑚2 (󵄨󵄨󵄨󵄨𝜉1,𝑘󵄨󵄨󵄨󵄨(𝜏𝑘+𝑟𝑛,𝑘)/𝑟1,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑛,𝑘󵄨󵄨󵄨󵄨(𝜏𝑘+𝑟𝑛,𝑘)/𝑟𝑛,𝑘))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛼𝑖 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑖,𝑘󵄨󵄨󵄨󵄨2𝑟𝑛,𝑘/𝑟𝑖,𝑘 .
(34)

Combining (33) and (34) into (32), we obtain

𝑉̇𝑘
≤ −2𝑛−1∑
𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

+ 𝑝1𝜉2𝑟𝑛,𝑘/𝑟𝑛−1,𝑘𝑛−1,𝑘
+ 𝑝2𝜉2𝑟𝑛,𝑘/𝑟𝑛,𝑘𝑛,𝑘

+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛−1,𝑘)−1
𝑛−1,𝑘

𝑥1𝑔1,𝑘 (𝑥)
+ 𝑛−1∑
𝑖=2

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

(𝑔𝑖,𝑘 (𝑥) − 𝑖−1∑
𝑙=1

𝜕𝑥∗𝑖,𝑘𝜕𝑥𝑙 𝑔𝑙,𝑘 (𝑥))
+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛,𝑘)−1
𝑛,𝑘

𝑢𝑘 + 𝑛∑
𝑖=1

𝛼𝑖 󵄨󵄨󵄨󵄨𝜉𝑖,𝑘󵄨󵄨󵄨󵄨2𝑟𝑛,𝑘/𝑟𝑖,𝑘

− 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛,𝑘)−1
𝑛,𝑘

𝑛−1∑
𝑙=1

𝑚1𝜉𝜏𝑘/𝑟𝑛−1,𝑘𝑛−1,𝑘
⋅ ⋅ ⋅ 𝜉𝜏𝑘/𝑟𝑙,𝑘
𝑙,𝑘

𝑔𝑙,𝑘 (𝑥) .

(35)

After the merger, we have

𝑉̇𝑘
≤ −2𝑛−1∑
𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

+ 𝑝1𝜉2𝑟𝑛,𝑘/𝑟𝑛−1,𝑘𝑛−1,𝑘
+ 𝑝2𝜉2𝑟𝑛,𝑘/𝑟𝑛,𝑘𝑛,𝑘

+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛,𝑘)−1
𝑛,𝑘

𝑢𝑘 + 𝛼𝑖 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑖,𝑘󵄨󵄨󵄨󵄨2𝑟𝑛,𝑘/𝑟𝑖,𝑘
+ 𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛−1,𝑘)−1
𝑛−1,𝑘

𝑛−1∑
𝑖=2

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

𝑔𝑖,𝑘 (𝑥)
+ 𝑚2 𝑛∑
𝑖=2

𝑖−1∑
𝑙=1

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

𝜉𝜏𝑘/𝑟𝑖−1,𝑘
𝑖−1,𝑘

⋅ ⋅ ⋅ 𝜉𝜏𝑘/𝑟𝑙,𝑘
𝑙,𝑘

𝑔𝑙,𝑘 (𝑥) .

(36)

According to Assumptions 7 and 8, one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉
((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛−1,𝑘)−1

𝑛−1,𝑘

𝑛−1∑
𝑖=2

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

𝑔𝑖,𝑘 (𝑥) + 𝑚2 𝑛∑
𝑖=2

𝑖−1∑
𝑙=1

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

𝜉𝜏𝑘/𝑟𝑖−1,𝑘
𝑖−1,𝑘

⋅ ⋅ ⋅ 𝜉𝜏𝑘/𝑟𝑙,𝑘
𝑙,𝑘

𝑔𝑙,𝑘 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉
((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑛−1,𝑘)−1

𝑛−1,𝑘

𝑛−1∑
𝑖=2

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

(𝑎1 (󵄨󵄨󵄨󵄨𝜉1,1󵄨󵄨󵄨󵄨(𝑛−1)𝜏1/𝑟1,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑖,1󵄨󵄨󵄨󵄨(𝑛−1)𝜏1/𝑟1,𝑘) + ⋅ ⋅ ⋅
+ 𝑎𝑘 (󵄨󵄨󵄨󵄨𝜉1,𝑘󵄨󵄨󵄨󵄨(𝑛−1)𝜏𝑘/𝑟𝑖,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑖,𝑘󵄨󵄨󵄨󵄨(𝑛−1)𝜏𝑘/𝑟𝑖,𝑘))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑚2
𝑛∑
𝑖=2

𝑖−1∑
𝑙=1

𝜉((2𝑟𝑛,𝑘−𝜏𝑘)/𝑟𝑖,𝑘)−1
𝑖,𝑘

𝜉𝜏𝑘/𝑟𝑖−1,𝑘
𝑖−1,𝑘

⋅ ⋅ ⋅ 𝜉𝜏𝑘/𝑟𝑙,𝑘
𝑙,𝑘

(𝑎1 (󵄨󵄨󵄨󵄨𝜉1,1󵄨󵄨󵄨󵄨(𝑛−1)𝜏1/𝑟1,𝑘 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨𝜉𝑙,1󵄨󵄨󵄨󵄨(𝑛−1)𝜏1/𝑟1,𝑘) + ⋅ ⋅ ⋅ + 𝑎𝑘 (󵄨󵄨󵄨󵄨𝜉1,𝑘󵄨󵄨󵄨󵄨(𝑛−1)𝜏𝑘/𝑟𝑖,𝑘 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑙,𝑘󵄨󵄨󵄨󵄨(𝑛−1)𝜏𝑘/𝑟𝑖,𝑘)) ≤ 𝑑𝑖 𝑛∑

𝑗=1

𝜉2𝑟𝑛,𝑘/𝑟𝑗,𝑘
𝑗,𝑘

.

(37)
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Choose the state feedback controllers 𝑢𝑘, 𝑘 ∈ 𝑀 and a
reasonable function 𝑞𝑘(𝑥) as

𝑢𝑘 = −𝜉(𝑟𝑛,𝑘+𝜏𝑘)/𝑟𝑛,𝑘𝑛,𝑘
𝑞𝑘 (𝑥) . (38)

By appropriate choice, we have

𝑉̇𝑘 ≤ 𝑛∑
𝑖=1

𝛿𝑖𝜉2𝑟𝑛,𝑘/𝑟𝑖,𝑘𝑖,𝑘
≤ − 𝑚∑
𝑙=1

𝜒𝑘𝑙 (𝑥) (𝑉𝑙 (𝜉𝑛𝑙) − 𝑉𝑘 (𝜉𝑛𝑘)) ,
∀𝑥 ̸= 0,

(39)

where𝑉𝑘 is a positive definite and proper Lyapunov function.
Now we design the switching law as follows:

𝜎 (𝑡) = argmin
𝑘∈𝑀

{𝑉𝑘 (𝜉1,𝑘, . . . , 𝜉𝑛,𝑘)} . (40)

By inequalities (15), (39), and (40), when𝜎(𝑡) = 𝑘, one has𝑉̇𝑘 < 0, ∀𝑥 ̸= 0. As a result, according to the MLFs method,
the closed-loop system (1) and (38) under the switching law
(40) is globally asymptotically stable.

4. An Illustrative Example

In this section, we give an example to demonstrate the validity
of the proposed method. Consider the switched nonlinear
system as shown in [13]

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑥3 + 𝑔𝜎(𝑡) (𝑥)
𝑥̇3 = 𝑥4
𝑥̇4 = 𝑢𝜎(𝑡) + (𝑚2𝑔𝑟𝐽2 − 𝑘𝑟24𝐽2 ) sin 𝑥3 + 𝑘𝑟24𝐽2 sin𝑥2,

(41)

where 𝜎(𝑡) = {1, 2},𝑚2 = 2.5 kg, 𝑔 = 9.81m/s2, 𝑟 = 0.5m, and𝐽2 = 0.625 kg. 𝑔1(𝑥) = −(1/32)𝑥4 − (1/64)𝑥23 − (1/16)𝑥2𝑥23 −(5/64)𝑥1𝑥23 − (1/4)𝑥3 − (13/16)𝑥2 − (27/32)𝑥1 and 𝑔2(𝑥) =−(1/36)𝑥4 − (1/36)𝑥23 − (1/9)𝑥2𝑥23 − (5/36)𝑥1𝑥23 − (7/36)𝑥3 −(11/18)𝑥2 − (11/18)𝑥1. Following the design in Section 3,
choosing the MLFs functions 𝑉𝑘 = (1/2)𝜉21 + (1/2)𝜉22 +(1/2)𝜉23 + (1/2)𝜉24𝑘, where 𝜉1 = 𝑥1, 𝜉2 = 𝑥2 + 2𝑥1, 𝜉3 =𝑥3 + 4𝑥2 + 5𝑥1, 𝜉4,1 = 𝑥4 + 5𝑥3 + 14𝑥2 + 12𝑥1 + (2 + 𝑥23)𝜉3,
and 𝜉4,1 = 𝑥4 + 5𝑥3 + 14𝑥2 + 12𝑥1 + (3 + 0.5𝑥23)𝜉3, we design
the controllers 𝑢1 = −𝜉3 − 2𝜉41 − 9.6 sin𝑥3 − 10 sin𝑥2 − 5𝑥4 −14(𝑥3+𝑔1(𝑥))−12𝑥2−2𝑥3𝑥4𝜉3(2+𝑥23)(𝑥4+4𝑥3+5𝑥2+4𝑔1(𝑥))
and 𝑢2 = −𝜉3 − 2𝜉42 − 9.6 sin𝑥3 − 10 sin 𝑥2 − 5𝑥4 − 14(𝑥3 +𝑔2(𝑥)) − 12𝑥2 − 2𝑥3𝑥4𝜉3(3 + 0.5𝑥23)(𝑥4 + 4𝑥3 + 5𝑥2 + 4𝑔2(𝑥)).

In the simulation, Figures 1–3 illustrate the effective-
ness of control design under the switching signal 𝜎(𝑡) =
argmin𝑘=1,2{𝑉𝑘} with the initial condition (𝑥1(0), 𝑥2(0),𝑥3(0), 𝑥4(0))𝑇 = (−2, 2, 0.3, −1)𝑇.
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Figure 1: The curves of states 𝑥1, 𝑥2, 𝑥3, and 𝑥4.
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Figure 2: The curve of the control input 𝑢.

5. Conclusion

This paper has discussed the problem of global state feedback
stabilization for a class of switched nonlinear systems. We
design homogeneous controllers based on adding a power
integrator technique and a switching law to guarantee asymp-
totical stability of the closed-loop switched nonlinear system.
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