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There are five equivalence relations known as Green’s relations definable on any semigroup or
monoid, that is, on any algebra with a binary operation which is associative. In this paper,
we examine whether Green’s relations can be defined on algebras of any type τ . Some sort of
(super-)associativity is needed for such definitions to work, and we consider algebras which are
clones of terms of type τ , where the clone axioms including superassociativity hold. This allows us
to define for any variety V of type τ two Green’s-like relations LV and RV on the term clone of type
τ . We prove a number of properties of these two relations, and describe their behaviour when V is
a variety of semigroups.
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1. Introduction

A semigroup is an algebra of type (2) for which the single binary operation satisfies the associa-
tivity identity. A monoid is a semigroup with an additional nullary operation which acts as an
identity element for the binary operation. On any semigroup or monoid, the five equivalence
relations known as Green’s relations provide information about the structure of the semigroup.

To define Green’s relations on a semigroupA, we follow the convention of denoting the
binary operation of the semigroup by juxtaposition. For any elements a and b ofA, we say that
aLAb if and only if a = b or there exist some c and d in A such that ca = b and db = a. When
the semigroup A is clear from the context, we usually omit the superscript A on the name of
the relation LA and just write aLb. Dual to this “left” relation is the “right” relation R defined
by aRb if and only if a = b or there exist c and d inA such that ac = b and bd = a. BothL andR
are equivalence relations on any semigroupA. The remaining Green’s relations areH = R∩L,
D = R o L = L o R, and J, defined by aJb if and only if a = b or there exist elements c, d,
p and q in A such that a = cbd and b = paq. For more information about Green’s relations in
general, we refer the reader to [1].
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In this paper, we consider how one might extend the definitions of the five Green’s rela-
tions to algebras of any arbitrary type. In Section 2, we propose some definitions for L and R,
and show what properties are needed to make our relations into equivalence relations. Then
we consider a variation which extends our definition of two relations L and R to relations LV

and RV on the term clone of any variety V . In Section 3, we deduce a number of properties of
these two relations, and then in Section 4 we examine their behaviour when V is a variety of
semigroups.

2. Green’s relations for any type

We begin with some notation. Throughout this paper, wewill assume a type τ = (ni)i∈I , with an
ni-ary operation symbol fi for each index i in some set I. For each n ≥ 1,we letXn = {x1, . . . , xn}
be an n-element alphabet of variables, and let Wτ(Xn) be the set of all n-ary terms of type τ .
Then we set X = {x1, x2, x3, . . . }, and let Wτ(X) denote the set of all (finitary) terms of type τ .
Terms can be represented by tree diagrams called semantic trees. We will use the well-known
Galois connection Id-Mod between classes of algebras and sets of identities. For any classK of
algebras of type τ and any set Σ of identities of type τ , Mod Σ is the class of all algebras A of
type τ which satisfy all the identities in Σ, while IdK is the set of all identities s ≈ t of type τ
which are satisfied by all algebras in K.

As a preliminary step in defining Green’s relations on any algebra of arbitrary type, let
us consider first the case of type τ = (n), where we have a single operation symbol f of arity
n ≥ 1. In analogy with the two left and right Green’s relations L and R for type (2), we can
define n different Green’s-like relations here. Let A be an algebra of type (n) and let a and b
be elements of A. For each 1 ≤ j ≤ n, set aGj b if and only if a = b or there exist elements
b1, . . . , bj−1, bj+1, . . . , bn and a1, . . . , aj−1, aj+1, . . . , an in A such that

a = fA(b1, . . . , bj−1, b, bj+1, . . . , bn
)
, b = fA(a1, . . . , aj−1, a, aj+1, . . . , an

)
. (2.1)

Each Gj for 1 ≤ j ≤ n is clearly a reflexive and symmetric relation onA, but as we will see is not
necessarily transitive for n ≥ 2. Of particular interest are the two relations G1 and Gn, which we
will denote by R and L, respectively.

Example 2.1. Let τ = (1) be a type with one unary operation symbol f . In this case L = R, and
we see that for any algebra A = (A; fA) and any elements a, b ∈ A, we have aLb if and only if
a = b, or a = fA(b) and b = fA(a). Thus two distinct elements are related if and only if there is
a cycle between them in the algebra A. The relation L is transitive and hence an equivalence
relation: if aLb and bLc, and a /= b and b /= c, then we have a = fA(b), b = fA(a), b = fA(c),
and c = fA(b). This forces a = c = fA(b), and so aLc. This also tells us that each element b ∈ A
can be L-related to at most one element other than itself.

If the type (1) algebra A has no cycles in it, we get simply L = ΔA, the diagonal relation
onA. IfA = {a, b}with fA(a) = b and fA(b) = a, then L = A×A. An algebraA in which there
are some cycles but not every element that has a cycle will result in L strictly between ΔA and
A ×A.

Now consider an algebraA of an arbitrary type τ . Since there can be different operation
symbols of different arities in our type, we cannot define our relations Gj using the jth position
as before. But we can use the first and last position entries to define left and right relations.
This motivates the following definition.
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Definition 2.2. LetA be any algebra of type τ . We define relations R and L onA as follows. For
any a, b ∈ A, we set

(i) aRb if and only if a = b or a = fA
i (b, b2, . . . , bni

) and b = fA
k
(a, a2, . . . , ank

), for some i, k ∈ I
and some elements b2, . . . , bni

and a2, . . . , ank
in A.

(ii) aLb if and only if a = b or a = fA
i (b1, . . . , bni−1, b) and b = fA

k
(a1, . . . , ank−1, a), for some

i, k ∈ I and some elements b1, . . . , bni−1 and a1, . . . , ank−1 in A.

Again these two relations are clearly seen to be reflexive and symmetric on the base set
A of any algebra A. It is the requirement of transitivity that causes problems, and forces us to
impose some restrictions on our algebra. For transitivity of R on an algebraA, suppose that a,
b, and c are inA, aRb, and bRc. In the special cases that a = b or b = c, we certainly have aRc, so
let us assume that a /= b and b /= c. Thenwe have a = fA

i (b, b2, . . . , bni
) and b = fA

k
(a, a2, . . . , ank

),
and also b = fA

p (c, c2, . . . , cnp
) and c = fA

q (b, d1, . . . , dnq
), for some operation symbols fi, fk, fp,

and fq of our type and some elements b2, . . . , bni
, a2, . . . , ank

, c2, . . . cnp
, d2, . . . , dnq

of set A. By
substitution, we get

a = fA
i

(
fA
p

(
c, c2, . . . , cnp

)
, b2, . . . , bni

)
, c = fA

q

(
fA
k

(
a, a2, . . . , ank

)
, d1, . . . , dnq

)
. (2.2)

But we need to be able to express a as fA
m(c, e2, . . . , enm

) for some operation symbol fm and some
elements e2, . . . , enm

. For type (2), this is dealt with by the requirement that fA(fA(c, c2), b2) can
be changed to fA(c, fA(c2, b2)), that is, we have associativity in our algebra A. For arbitrary
types, it would suffice here to have a superassociative algebra, satisfying the superassociative
law:

fi
(
fj
(
x1, x2, . . . , xnj

)
, y2, . . . , yni

) ≈ fj
(
x1, fi

(
x2, y2, . . . , yni

)
, . . . , fi

(
xnj

, y2, . . . , yni

))
. (2.3)

This identity would allow us to express a as an element with c in the left-most position and
similarly to express c in terms of a. Another way to handle this would be to define aRb when
a = b or a = tA1 (b, b2, . . . , bn) and b = tA2 (a, a2, . . . , am) for some term operations tA1 , t

A
2 on A and

some elements a2, . . . , am, b2, . . . , bn of A. In either approach, we are led to consider clones of
terms.

A clone is an important kind of algebra which satisfies a superassociative law that we
need here. Although clones may be defined more generally (see [2]) we define here only the
term clone of type τ . This term clone is a heterogeneous or multi-based algebra, having as uni-
verses or base sets the sets Wτ(Xn) of n-ary terms of type τ , for n ≥ 1. For each n ≥ 1, the n
variable terms x1, . . . , xn are selected as nullary operations en1 , . . . , e

n
n. And for each pair n,m of

natural numbers, there is a superposition operation Sn
m, fromWτ(Xn) × (Wτ(Xm))

n toWτ(Xm),
defined by Sn

m(s, t1, . . . , tn) = s(t1, . . . , tn).
This gives us the algebra

clone τ :=
(
Wτ

(
Xn

)
; Sn

m, e
n
i

)
n,m≥1,1≤i≤n (2.4)

called the term clone of type τ . It satisfies the following three axioms called the clone axioms:

(C1) Sp
m(z, Sn

m(y1, x1, . . . , xn), . . . , Sn
m(yp, x1, . . . , xn)) ≈ Sn

m(S
p
n(z, y1, . . . , yp), x1, . . . , xn), for m,

n, p ≥ 1;

(C2) Sn
m(e

n
i (x1, . . . , xn)) ≈ xi, for m,n ≥ 1 and 1 ≤ i ≤ n;

(C3) Sn
n(y, e

n
1 , . . . , e

n
n) ≈ y, for n ≥ 1.
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Definition 2.3. Let τ = (ni)i∈Ibe any type, and let (Sn
m)n,m≥1be the superposition operations on

the term clone, clone τ . One defines two relations R and L on clone τ as follows. For any terms
s and t in clone τ , of arities m and n, respectively,

(i) sRt if and only if s = t, or s = Sm
n (t, t1, . . . , tm) and t = Sn

m(s, s1, . . . , sn) for some terms
t1, . . . , tm and s1, . . . , sn in clone τ ;

(ii) sLt if and only if s = t, or m = n and s = Sm
m(t1, . . . , tm, t) and t = Sm

m(s1, . . . , sm, s) for
some terms t1, . . . tm and s1, . . . sm in clone τ .

Lemma 2.4. For any type τ , the relation R defined on clone τ is an equivalence relation on clone τ .

Proof. As noted above, both relations R and L are reflexive and symmetric by definition. Tran-
sitivity for R follows from the clone axiom (C1) as above.

Transitivity of L does not follow directly from the clone axioms. We will show later that
this relation is transitive, once we have deduced more information about it.

A similar definition of a Green’s-like relation Rwas defined by Denecke and Jampachon
in [3], but in the restricted special case of a Menger algebra of rank n. These are algebras
of type (n, 0, . . . , 0), having one n-ary operation and n-nullary ones. Menger algebras can be
formed using terms as the following: the base set Wτ(Xn) of all n-ary terms of type τ , along
with the superposition operation Sn

n and the n-variable terms x1, . . . , xn, form aMenger algebra
of rank n called the n-clone of type τ . Such algebras also satisfy the clone axioms (C1), (C2),
and (C3) (restricted to Sn

n). Denecke and Jampachon also defined a left Green’s-like relation as
well, again on the Menger algebra of rank n. Their left relation is a subset of our relationL, and
we will use the name L in the next definition for the analogous relation in the term clone case.

Now, we extend our definition of Green’s relations L and R on clone τ , to relations with
respect to varieties of type τ .

Definition 2.5. Let V be any variety of type τ . One defines relations RV , LV , and LV on clone τ
as follows. Let s and t be terms of type τ , of arities m and n, respectively. Then

(i) sRV t if and only if s = t, or

s ≈ Sm
n

(
t, t1, . . . , tn

) ∈ IdV, t ≈ Sn
m

(
s, s1, . . . sm

) ∈ IdV (2.5)

for some terms t1, . . . , tn and s1, . . . , sm in clone τ ;

(ii) sLV t if and only if n = m, and s = t or

s ≈ Sm
m

(
t1, t2, . . . , tm, t

) ∈ IdV, t ≈ Sm
m

(
s1, s2, . . . sm, s

) ∈ IdV (2.6)

for some terms t1, . . . , tm and s1, . . . , sm in clone τ ;

(iii) sLV t if and only if n = m, and s = t or

s ≈ Sm
m

(
t1, t, . . . , t

) ∈ IdV, t ≈ Sm
m

(
s1, s, . . . , s

) ∈ IdV (2.7)

for some terms t1 and s1 in clone τ .
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This definition actually includes Definition 2.3 as a special case: when V equals the va-
riety Alg (τ) of all algebras of type τ , the relation IdV is simply equality on clone τ and we
obtain the relations of Definition 2.3. We remark that similar definitions could be made for RA
and LA for any algebra A, using identities of A. Another possible variation is to restrict the
existence of the terms t1, . . . , tn and s1, . . . , sm to terms from some subclone C of clone τ ; in this
case we could define subrelations RC

V and LC
V .

The proof of the following lemma is similar to that of Lemma 2.4.

Lemma 2.6. For any type τ and any variety V of type τ , the relation RV defined on clone τ is an
equivalence relation on clone τ .

3. The relations RV and LV

In this section, we describe some properties of the relations RV , LV , and LV , for any variety V .
We begin with the relation LV .

Proposition 3.1. Let V be any variety of type τ . Then

(i) two terms of type τ of arity, at least two, are LV -related if and only if they have the same arity;
(ii) the relation LV is an equivalence relation on the setWτ(X) of all terms of type τ .

Proof. (i) It follows from the definition of superposition of terms that the term Sn
m(t1, t2,

. . . , tm, t) has the same arity as t. Thus it is built into the definition of LV that any two
terms which are LV -related must have the same arity. Conversely, let both s and t be terms
of arity n ≥ 2. Then we can write s = Sn

n(x1, s, . . . , s, t) and t = Sn
n(x1, t, . . . , t, s), making

s ≈ Sn
n(x1, s, . . . , s, t) ∈ IdV and t ≈ Sn

n(x1, t, . . . , t, s) ∈ IdV for any variety V , and so sLV t.
(ii) For any variety V , LV is by definition reflexive and symmetric, and we need only

verify transitivity. Since only elements of the same arity can be related, we see that LV makes
a partition of Wτ(X) in which all elements of Wτ(Xn) are related to each other for n ≥ 2. This
means that it suffices to verify transitivity for unary terms only. Let s, t, and u be unary terms
with sLV t and tLV u. Then there exist unary terms a, b, c, and d such that s ≈ S1

1(a, t), t ≈
S1
1(b, s), t ≈ S1

1(c, u), and u ≈ S1
1(d, t) all hold in IdV . Then by substitution and the clone axiom

(C1), we have s ≈ S1
1(a, S

1
1(c, u)) ≈ S1

1(S
1
1(a, c), u) in IdV , and similarly u ≈ S1

1(S
1
1(d, b), s) in

IdV . This makes sLV u as required.

We have shown that any two terms of the same arity n ≥ 2 are LV -related, for any
variety V . Which unary terms are related, however, depends on the variety V . For instance,
if the operation fi is idempotent in V , we can express the unary terms x1 and fi(x1, . . . , x1) in
terms of each other:

x1 ≈ S1
1

(
x1, fi

(
x1, . . . , x1

)) ∈ IdV, fi
(
x1, . . . , x1

) ≈ S1
1

(
f
(
x1, . . . , x1

)
, x1

) ∈ IdV. (3.1)

Thus x1 and fi(x1, . . . , x1) are LV -related when fi is idempotent; but these terms need not be
related if fi is not idempotent. This question will be investigated in more detail in Section 4.

Proposition 3.2. Let Alg (τ) be the class of all algebras of type τ . The relation LAlg (τ) is equal to the
identity relation ΔWτ (X) onWτ(X).

Proof. This was proved in [3] for the analogous relation LAlg (τ) defined on the rank n Menger
algebra, the n-clone of type τ . Since terms are LV -related only if they have the same arity, the
same proof covers the general term-clone case as well.
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Example 3.3. Let V be an idempotent variety of type τ . Then it is easy to show that for any
terms s and t of the same arity n, we have Sn

n(s, t, . . . , t) ≈ t ∈ IdV . It follows from this that
s ≈ Sn

n(p, t, . . . , t) ∈ IdV for some term p if and only if s ≈ t ∈ IdV . This means that for any
terms s and t, we have sLV t if and only if s and t have the same arity and s ≈ t ∈ IdV . In
particular, any two unary terms of type τ are LV -related in this case. Combining this with
Proposition 3.1 and the fact that LV ⊆ LV shows that when V is idempotent, two terms are
LV -related if and only if they have the same arity. We see also that LV is a proper subset of LV

when V is an idempotent variety.

Next we consider the right relation RV . Denoting by L(τ) the lattice of all varieties of
type τ , ordered by inclusion, we show first that RV is order-reversing as an operator on L(τ).

Lemma 3.4. (i) For any varietiesU,W ∈ L(τ), if U ⊆ W , then RW ⊆ RU.
(ii) If RV is equal toWτ(X)2 for some variety V , then RW = Wτ(X)2 for all varietiesW ⊆ V .

Proof. (i) follows immediately from the fact that IdW ⊆ IdU when U ⊆ W , and (ii) follows
immediately from (i).

Now we want to prove some facts about which pairs of terms can be RV -related. Recall
that X = {x1, x2, x3, . . . } is the set of all variables used in forming terms. Our first observation
is that for any two variables xj and xk of arities n and m, respectively, we can write xj =
Sn
m(xk, xj , . . . , xj). This shows that any two variables areRV -related, for any variety V ; we write

this as X × X ⊆ RV . Next suppose that s ≈ t is an identity of V , with s of arity n and t of arity
m. Then s ≈ Sm

n (t, x1, . . . , xm) ∈ IdV and t ≈ Sn
m(s, x1, . . . , xn) ∈ IdV , making sRV t. Identifying

the set IdV of all identities of V with the subset {(s, t) | s ≈ t ∈ IdV } of Wτ(X)2, we see that
IdV ⊆ RV .

Example 3.5. Let V be the trivial variety TRτ of type τ , defined by the identity x1 ≈ x2. Then
IdV = Wτ(X)2, since any identity is satisfied in V . From this and the previous comments, it
follows that RV also equals Wτ(X)2 for this choice of V .

To further describe RV , we need more notation. For any m ≥ 1, let Symm be the sym-
metric group of permutations of the set {1, 2, . . . , m}. Let s = s(x1, . . . , xn) be an n-ary term.
For any m ≥ n and any permutation π ∈ Symm, we will denote by π(s) the m-ary term
Sn
m(s, xπ(1), . . . , xπ(n)). That is, π(s) is the term formed from s by relabelling the variables in s

according to the permutation π .

Proposition 3.6. Let V be any variety of type τ . For any term s of type τ of arity n, and any permuta-
tion π ∈ Symm, wherem ≥ n, one gets sRV π(s).

Proof. By definition π(s) = Sn
m(s, xπ(1), . . . , xπ(n)), so that π(s) ≈ Sn

m(s, xπ(1), . . . , xπ(n)) ∈ IdV .
For the other direction, to express s using π(s), we use the inverse permutation π−1 ∈ Symm:

Sm
n

(
π(s), xπ−1(1), . . . , xπ−1(m)

)

= Sm
n

(
Sn
m

(
s, xπ(1), . . . , xπ(n)

)
, xπ−1(1), . . . , xπ−1(m)

)

= Sn
n

(
s, Sm

n

(
xπ(1), xπ−1(1), . . . , xπ−1(m)

)
, . . . , Sm

n

(
xπ(n), xπ−1(1), . . . , xπ−1(m)

))
by (C1)

= Sn
n

(
s, x1, . . . , xn

)
= s.

(3.2)

This gives an identity in IdV and shows that π(s)RV s.
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Definition 3.7. Let Σ be any set of identities. For any identity s ≈ t in Σ, with s of arity n and t
of arity m, let π ∈ Sym k and ρ ∈ Sym r for k ≥ n and r ≥ m. Denote by Perm (Σ) the set of all
pairs (π(s), ρ(t)) inWτ(X)2 formed in this way from identities s ≈ t in Σ.

Proposition 3.8. Let V be any variety of type τ . Then (X ×X) ∪ IdV ⊆ Perm (IdV ) ⊆ RV .

Proof. First note that any identity xj ≈ xk in X ×X can be produced by applying two permuta-
tions π and ρ to the identity x1 ≈ x1 from IdV , so we have X ×X ⊆ Perm (IdV ). The existence
of identity permutations also gives us IdV ⊆ Perm (IdV ).

Now let s ≈ t be an identity of V , with π and ρ permutations on the appropriate sets.
We saw above that sRV t, and by Proposition 3.6 also sRVπ(s) and tRV ρ(t). By the symmetry
and transitivity of RV we get π(s)RV ρ(t). This shows that Perm (IdV ) ⊆ RV .

We note that as a consequence of Proposition 3.8, the equivalence relation RV is not in
general an equational theory onWτ(X). The only equational theory in which any two variables
are related is IdV for V equal to the trivial variety.

Example 3.9. In this example we consider V = Alg (τ), the variety of all algebras of type τ . It
is well-known that for this variety V , IdV = ΔWτ (X), the identity relation on Wτ(X); that is, an
identity s ≈ t holds in V if and only if s = t. From Proposition, we know that Perm (ΔWτ (X))
is a subset of RV , and we will show that we have equality in this case. Let s and t be terms of
arities n and m, respectively, and suppose that sRV t. Without loss of generality, let us assume
that n ≥ m. Then there exist terms t1, . . . , tm and s1, . . . , sn in Wτ(X) such that

s ≈ Sm
n

(
t, t1, . . . , tm

) ∈ IdV, t ≈ Sn
m

(
s, s1, . . . sn

) ∈ IdV. (3.3)

The property that IdV = ΔWτ (X) means that

s = Sm
n

(
t, t1, . . . , tm

)
, t = Sn

m

(
s, s1, . . . sn

)
. (3.4)

Then we have

s = s
(
x1, . . . , xn

)
= Sm

n

(
t, t1, . . . , tm

)

= Sm
n

(
Sn
m(s, s1, . . . , sn

)
, t1, . . . , tm

)

= Sn
n

(
s, Sm

n

(
s1, t1, . . . , tm

)
, . . . , Sm

n

(
sn, t1, . . . , tm

))
, by (C1)

(3.5)

This equality forces a strong condition on the entries in the last line. Suppose that the variables
occurring in term s are xi1 , . . . , xik , with k ≤ n. Then we must have Sm

n (sij , t1, . . . , tm) = xij for
each j = 1, 2, . . . , k. Then for each index ij there must exist an index lj such that sij = xlj and
tij = xij . Moreover the indices lj , for 1 ≤ j ≤ k must be distinct. This means that there is a
permutation π on the set {1, 2, . . . , n}, such that π(ij) = lj , for q ≤ j ≤ k. Then we have

t = t
(
x1, . . . , xm

)
= Sn

m

(
s, s1, . . . , sn

)

= Sn
m

(
s, s1, xl1 , . . . , xl2 , . . . , xlk , . . . , sn

)

= π(s),

(3.6)

showing that we can obtain t by variable permutation from s.
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Example 3.10. A nontrivial variety V of type τ is said to be normal if it does not satisfy any
identity of the form xj ≈ t, where xj is a variable and t is a nonvariable term. For each type τ ,
there is a smallest normal variety Nτ , which is defined by the set of identities {s ≈ t | s, t ∈
Wτ(X) \ X}. That is, any two nonvariable terms are related by IdNτ , while each variable is
related only to itself. Using the fact that (X × X) ∪ IdV is always contained in RV , we see that
RNτ

= (X × X) ∪Wτ(X)2 = Perm (IdNτ). This gives another example of a variety V for which
RV = Perm (IdV ).

We can use the relation RV to characterize when a variety V is normal.

Proposition 3.11. A variety V of type τ is normal if and only if no variable is RV -related to a nonva-
riable term.

Proof. When V is a normal variety, we have Nτ ⊆ V and so by Lemma 3.4 RV ⊆ RNτ
. By the

characterization of RNτ
from Example 3.10 this means that no variable can be RV -related to a

nonvariable term. Conversely, suppose that RV has the property that a variable can only be
related to another variable. Since IdV ⊆ RV , this means that IdV cannot contain any identity of
the form xj ≈ t for xj a variable and t a nonvariable term; in other words, V must be normal.

4. The relation RV for varieties of semigroups

In this section we describe the relations RV and LV when V is a variety of semigroups,
that is, a variety of type (2) satisfying the associative identity. We denote by Sem the vari-
ety Mod{x(yz) ≈ (xy)z} of all semigroups. For any variety V , we use L(V ) for the lattice of
subvarieties of V ; in particular L(Sem) is the lattice of all semigroup varieties.

We will follow the convention for semigroup varieties of denoting the binary operation
by juxtaposition, and of omitting brackets from terms. In this way, any term can be represented
by a semigroup “word” consisting of a string of variable symbols as letters; for instance, the
term f(x1, f(x2, f(x2, x1))) becomes the word x1x2x2x1. We use this idea to define several prop-
erties of terms and identities. The length of a term is its length as a word, the total number of
occurrences of variables in the term. An identity s ≈ t is called regular if the two terms s and
t contain exactly the same variable symbols. A set of identities is said to be regular if all the
identities in the set are regular, and a variety V is called regular if the set IdV of all its identities
is regular. A semigroup identity s ≈ t is called periodic if s = xa and t = xb for some variable x
and some natural numbers a /= b. A variety of semigroups is called uniformly periodic if it satis-
fies a periodic identity. A variety is not uniformly periodic if and only if all its identities s ≈ t
have the property that s and t have equal lengths. For more information on uniformly periodic
varieties, see [4].

Let s = s(x1, . . . , xn) be a term of some arity n ≥ 1, and let π be a permutation from Symm

for some m ≥ n. In Section 3 we defined π(s) to be the term s(xπ(x1), . . . , xπ(xn)) formed from
s by permutation of the variables in s according to π . An important feature of this process is
that the term π(s) has the same structure as the term s, in the sense that the semantic tree of
the term π(s) is isomorphic as a graph to the semantic tree for s. In particular, the term π(s)
has the same length and the same number of distinct variables occurring in it as s does. Which
variables occur need not be the same; for instance, s = x1x2 can be permuted into π(s) = x3x4,
changing the arity of the term and which variables occur. As a result, a regular identity such as
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x1x2 ≈ x2x1 can be permuted by two different permutations π and ρ into a nonregular identity
such as x3x4 ≈ x5x6. Thus the set Perm (IdV ) from Section 3 need not be regular evenwhen IdV
is regular. This motivates a new definition. We will call an identity s ≈ t permutation-regular
if the number of distinct variables occurring in s and t is the same. As usual, a set of identities
will be called permutation-regular if all the identities in the set are permutation-regular. We
will make use of the following basic fact.

Lemma 4.1. Let V be a variety of semigroups. If V is regular, then Perm (IdV ) is permutation-regular.

We saw in Section 3 that any two terms of the same arity n ≥ 2 are LV -related, for any
variety V , and that only terms of the same arity can be LV -related. Thus the only thing of
interest for LV when V is a variety of semigroups is which unary terms are related to each
other. Let T1 denote the set of unary semigroup terms, so that T1 = {xi | i ≥ 1}.

Proposition 4.2. For any variety V of semigroups, LV ∩ T2
1 = RV ∩ T2

1 . That is, two unary terms are
LV -related if and only if they are RV -related.

Proof. Let xi and xj be two unary terms, for i, j ≥ 1, with i /= j. Then xiRV xj if and only if
xi ≈ S1

1(x
j, xp) and xj ≈ S1

1(x
i, xq) both hold in IdV , for some unary terms xp and xq. These

identities hold if and only if xi ≈ xjp and xj ≈ xiq hold in V . Similarly, xiLV x
j if and only if

xi ≈ S1
1(x

p, xj) and xj ≈ S1
1(x

q, xi) both hold in IdV , for some unary terms xp and xq, which is
also equivalent to having both xi ≈ xjp and xj ≈ xiq in IdV .

This result allows us to completely characterize the relation LV for V a variety of semi-
groups, and begins our description of RV . Moreover, we have proved the following useful
characterization of when two unary terms are RV -related.

Corollary 4.3. Let V be a variety of semigroups and let xi and xj be unary terms with i /= j.Then
xiRV xj if and only if the identities xi ≈ xpj and xj ≈ xqi hold in V for some natural numbers p, q ≥ 1.

Now we describe how the relations RV behave, starting with unary terms.

Proposition 4.4. Let V be a variety of semigroups which is not uniformly periodic. Then LV ∩ T2
1 =

RV ∩ T2
1 = ΔT1 ; that is, two unary terms are related by RV if and only if they are equal.

Proof. Let xi and xj be two unary terms which are LV - or RV -related. By Corollary 4.3, this
forces identities of the form xi ≈ xpj and xj ≈ xqi to hold in V , for some natural numbers p and
q. But when V is not uniformly periodic, an identity of the form xa ≈ xb can hold in V if and
only if a = b. Thus we must have i = pj and j = qi. This can only happen if i = j, and the terms
xi and xj are in fact equal.

What happens with unary terms for uniformly periodic varieties depends on the par-
ticular variety. We recall from Section 3 that Perm (IdV ) ⊆ RV . We will show that if V is both
regular and uniformly periodic, then IdV ∩ T2

1 = Perm (IdV ) ∩ T2
1 , but RV ∩ T2

1 can be larger.

Lemma 4.5. If V is a variety of semigroups which is both regular and uniformly periodic, then IdV ∩
T2
1 = Perm (IdV ) ∩ T2

1 .

Proof. Since IdV ⊆ Perm (IdV ) by definition, we know that IdV ∩T2
1 ⊆ Perm (IdV )∩T2

1 . For the
opposite inclusion, suppose that xi ≈ xj is in Perm (IdV ) for some unary terms xi and xj . Then
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there exist some identity s ≈ t in IdV and some permutations π and ρ such that xi = π(s) and
xj = ρ(t). Since permutations do not change the number of variables occurring or the length of
a term, both s and tmust look like xi

k
and x

j
m, respectively, for some variables xk and xm. Since

V is regular and s ≈ t is in IdV, the variables xk and xm must in fact be the same. Therefore
xi ≈ xj is actually in IdV.

Any uniformly periodic variety V must satisfy an identity of the form xa ≈ xa+b for some
natural numbers a and b. We denote by Ba,b the varietyMod{x(yz) ≈ (xy)z, xa ≈ xa+b}, known
as a Burnside variety. Thus any uniformly periodic variety of semigroups is a subvariety of Ba,b

for some a, b ≥ 1. An important fact about the identities of the variety Ba,b is the following: an
identity of the form xu ≈ xv holds in this variety if and only if either u = v or both u, v ≥ a
and u ≡ v modulo b. Combining this fact with Corollary 4.3 allows us to describe which unary
terms are RV -related for the variety V = Ba,b.

Corollary 4.6. Let V = Ba,b , for a, b ≥ 1 . Then xiRV xj if and only if both i, j ≥ a and the congruences
ip ≡ j modulo b and jq ≡ i modulo b have solutions p, q ≥ 1.

Some basic number theory now provides us with some examples. Let us note that in V =
Ba,b, the unary terms are (up to equivalence modulo IdV and hence equivalence in RV as well)
x,x2, . . . , xa+b−1. In the case a = b = 1, we have all unary terms equivalent, and RV ∩ T2

1 = T2
1 .

For V = Ba,1 or V = Ba,2, for any a ≥ 1, it is easy to see that RV ∩ T2
1 is just IdV ∩ T2

1 . But for
V = B1,a when a is a prime number, the terms x,x2, . . . , xa−1 are all RV -related to each other, but
not to xa; in this case more terms are related by RV than those related by IdV . For V = B2.5, we
can show that there are 3 distinct classes of terms under RV : {x}, {x2, x3, x4, x6} and {x5}. This
shows that for this choice of V , we have Perm (IdV ) ⊂ RV ⊂ ∇Wτ (X).

Finally, we consider the relation RV for terms of arbitrary arity. Here too, uniformly pe-
riodic varieties behave differently from those which are not uniformly periodic.

Proposition 4.7. If V is a variety of semigroups which is not uniformly periodic, then RV =
Perm (IdV ).

Proof. This proof is a modification of the argument from Example 3.9. First, by
Proposition 3.8 we have Perm (IdV ) ⊆ RV , so we need to show the opposite inclusion. Let
s and t be terms of arities n and m, respectively, with n ≥ m, and suppose that sRV t. Then
there exist terms t1, . . . , tm and s1, . . . , sn in Wτ(X) such that

s ≈ Sm
n

(
t, t1, . . . , tm

) ∈ IdV, t ≈ Sn
m

(
s, s1, . . . sn

) ∈ IdV. (4.1)

Then we have

s ≈ Sm
n

(
t, t1, . . . , tm

)

≈ Sm
n

(
Sn
m(s, s1, . . . , sn

)
, t1, . . . , tm

)

≈ Sn
n

(
s, Sm

n

(
s1, t1, . . . , tm

)
, . . . , Sm

n

(
sn, t1, . . . , tm

))
, by (C1)

(4.2)

Where in Example 3.9 we have equality of terms, we now have only equivalence mod-
ulo IdV . However, the condition that V is not uniformly periodic means that the term
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Sn
n(s, S

m
n (s1, t1, . . . , tm), . . . , S

m
n (sn, t1, . . . , tm)) must have the same length as s. This is suffi-

cient to force the same requirement for variable entries as before to produce our permuta-
tion π . Let the variables occurring in term s be xi1 , . . . , xik , with k ≤ n. Then we must have
Sm
n (sij , t1, . . . , tm) = xij for each j = 1, 2, . . . , k. Then for each index ij there must exist an index

lj such that sij = xlj and tij = xij . Moreover the indices lj , for 1 ≤ j ≤ k must be distinct. This
means that there is a permutation π on the set {1, 2, . . . , n}, such that π(ij) = lj , for q ≤ j ≤ k.
Then we have

t = t
(
x1, . . . , xm

)
= Sn

m

(
s, s1, . . . , sn

)

= Sn
m

(
s, s1, xl1 , . . . , xl2 , . . . , xlk , . . . , sn

)

= π(s).

(4.3)

This shows that t = π(s) for some permutation π , and hence that RV ⊆ Perm (IdV ).

The converse of this proposition is not however true. As an example we consider the
smallest normal variety of type (2), the variety Zero of zero semigroups defined by xy ≈ zw.
This is a uniformly periodic but not regular variety, but the relation RV for this variety V is
equal to Perm (IdV ), from Example 3.10.

At the other extreme is the variety B1,1 of idempotent semigroups or bands. The lattice
L(B1,1) of band varieties is known to be countably infinite and its structure has been completely
described by Birjukov [5], Fennemore [6, 7], Gerhard [8], and Gerhard and Petrich [9]. Our
next result shows that varieties of bands are the only semigroup varieties for which RV is the
total relation ∇Wτ (X) onWτ(X).

Theorem 4.8. Let V be a variety of semigroups. Then RV = ∇Wτ (X) if and only if V is a subvariety of
the variety B1,1 of bands.

Proof. First let V be a variety of bands, so V ⊆ B1,1. Then it is easy to show by induction on
the complexity of terms that for any two terms s and t, of any arities n andm, respectively, we
have s(t, t, . . . , t) ≈ t ∈ IdV . This means that we can always write t ≈ Sn

m(s, t, . . . , t) ∈ IdV and
s ≈ Sm

n (t, s, . . . , s) ∈ IdV , making sRV t.
Conversely, suppose that V has the property that any two terms (of any arities) are

related by RV . Then the term x is related to the term x2, so we must be able to express
x ≈ S1

1(x
2, p) ∈ IdV for some unary term p = xc, for some c ≥ 1. In particular, our variety

V must satisfy an identity of the form x ≈ xa for some a ≥ 1. If a = 1, we have x ≈ x2 ∈ IdV ,
and we have shown that V is a variety of bands. If a > 1, then we can deduce the following
identities from x ≈ xa :

x ≈ xa ≈ x2a−1 ≈ x3a−2 ≈ · · · ∈ IdV

x2 ≈ xa+1 ≈ x2a ≈ x3a−1 ≈ · · · ∈ IdV

x3 ≈ xa+2 ≈ x2a+1 ≈ x3a ≈ · · · ∈ IdV
...

...

xa−1 ≈ x2(a−1) ≈ x3(a−1) ≈ x4(a−1) ≈ · · · ∈ IdV.

(4.4)

Nowwe also know that x isRV -related to xa−1, whichmeans that we canwrite x ≈ S1
1(x

a−1, q) ∈
IdV for some unary term q = xk, for some k. Therefore, we get x ≈ xk(a−1) ∈ IdV . A similar
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argument applied to x2RV x
a−1 then gives x2 ≈ xm(a−1) ∈ IdV for somem. Since xk(a−1) ≈ xm(k−1)

is in IdV from above, we see that by transitivity we have x ≈ x2 in IdV , and V is a variety of
bands.

Theorem 4.9. Let V = Ba,b for some a, b ≥ 1. Let t be any term of arity n ≥ 2 which has at least one
variable xk occurring in it a number of times which is congruent to 1 modulo b . Then xaRV ta.

Proof. We can always write ta = S1
n(a

a, p) for some n-ary term p, by taking p = t. But we
also need to be able to write xa ≈ Sn

1(t
a, q1, . . . , qn) ∈ IdV for some unary terms q1, . . . , qn. Let

xk be a variable which occurs in t exactly v times, where v is congruent to 1 modulo b. For
the term qk, we use x, and for all the other terms q1, . . . , qn, we use xb. Then Sn

1(t
a, q1, . . . , qn) =

ta(xb, . . . , xb, x, xb, . . . , xb) = (xqb+1)a for some natural number q. Then in Ba,b we have (xqb+1)a ≈
xaqb+a ≈ xa, as required.

Corollary 4.10. Let V = Ba,b for some a, b ≥ 1 with a + b ≥ 3. Then Perm (IdV ) is a proper subset of
RV , which is a proper subset of ∇Wτ (X) onWτ(X).

Proof. By the previous theorem, we have xaRV (xy)a. Since the terms xa and (xy)a contain dif-
ferent numbers of variables, and V is regular, the identity xa ≈ (xy)a cannot be in Perm (IdV ).
Thus Perm (IdV ) is a proper subset of RV . The remaining claim follows from Theorem 4.8.
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