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We consider a scheduling problem for a two-hop queueing network where the queues have randomly varying connectivity.
Customers arrive at the source queue and are later routed to multiple relay queues. A relay queue can be served only if it is in
connected state, and the state changes randomly over time.The source queue and relay queues are served in a time-sharingmanner;
that is, only one customer can be served at any instant. We propose Join the Shortest Queue-Longest Connected Queue (JSQ-LCQ)
policy as follows: (1) if there exist nonempty relay queues in connected state, serve the longest queue among them; (2) if there are
no relay queues to serve, route a customer from the source queue to the shortest relay queue. For symmetric systems in which the
connectivity has symmetric statistics across the relay queues, we show that JSQ-LCQ is strongly optimal, that is, minimizes the delay
in the stochastic ordering sense. We use stochastic coupling and show that the systems under coupling exist in two distinct phases,
due to dynamic interactions among source and relay queues. By careful construction of coupling in both phases, we establish the
stochastic dominance in delay between JSQ-LCQ and any arbitrary policy.

1. Introduction

We consider a scheduling problem in queueing systems with
random connectivity of servers. For example, in wireless
communication systems, the communication channel may
randomly become unavailable for data transmissions due
to fluctuation of channel quality over time. To cover areas
with poor channel quality, relay networks have been widely
adopted [1–3] in which there exist relay nodes responsible for
relaying data packets in a hop-by-hopmanner to destination.
In this paper, we investigate the minimum delay scheduling
in two-hop relay networks with random connectivity. Delay-
optimal scheduling in multihop networks with random
connectivity is an open problem and has eluded researchers
even for very simple models. Low-latency communications
have recently attracted much attention in upcoming 5G (5th-
generation) communication networks [4]. There exist many
5G applications which require extremely low latency, for

example, autonomous vehicles, remote surgery, and auto-
mated factories.

We consider a queueing model depicted in Figure 1. The
system consists of one source queue (SQ) and 𝑛 relay queues
(RQs). We consider a time-slotted system, where a customer
arrives at the SQ with probability 𝜆 at each time slot. The
customers at the SQ are routed to one of the RQs selected
by the scheduler. Each RQ is associated with a service state
called connectivity: the scheduler can serve a RQ only if the
RQ is in connected state.The connectivity of the RQs changes
randomly over time. Customers are routed or served in a
time-sharing manner; at a given time slot, either a customer
is routed from the SQ to a RQ, or a customer is served from a
RQ in connected state and exits the system.This is a common
model for relay networks in half-duplex operation; that is, the
queues in adjacent hops cannot be served simultaneously.

Potential engineering applications of our queueing mod-
el include wireless relay networks. In 5G communication
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Figure 1: Two-hop queueing network model. The system consists
of one source queue (SQ) and 𝑛 relay queues (RQs). Only one
customer can be served at any instant (half duplex). Binary variable𝐶𝑖 represents the connectivity of the 𝑖th RQ, 𝑖 = 1, . . . , 𝑛.

systems, wireless relays are expected to be widely used to
enhance capacity and coverage of the network [5]. In such
networks, data packets can be delivered to a mobile user
through multiple relay devices, for example, as in device-to-
device (D2D) communications [6, 7]. Ourmodel is applicable
to downlink packet transmissions in such next-generation
cellular networks as follows. In the downlink scenario, we
regard the SQ as the queue located at the base station (BS).
Also a RQ is a queue located at a relay node (RN), and
the customers correspond to data packets. Suppose the BS
intends to send a stream of packets to amobile user, say user 𝑖,
which is located at cell edgewith poor channel quality. Instead
of transmitting packets directly to user 𝑖, which is likely to fail
most of the time, the BS chooses to transmit packets to one
of the multiple RNs. The RNs typically have better channels
to user 𝑖 and later transmit the temporarily stored packets
to user 𝑖. Each channel from a RN to user 𝑖 may undergo
fading due to, for example, the mobility of user 𝑖. As a result,
the channel between a RQ and user 𝑖 may randomly switch
between “on” and “off” state; in ourmodel, this can be viewed
as the RQs being randomly “connected” to user 𝑖 over time.
A related technique of utilizing multiple relays over time-
varying channels, called cooperative relaying or opportunis-
tic relaying, has been studied extensively [8–13]. Meanwhile,
ourmodel is applicable to the uplink transmission for cellular
networks as well. In the uplink scenario, a user node becomes
the source queue and utilizes multiple relay nodes equipped
with queues. The packets are eventually relayed to the base
station, which is the destination node, by the relay nodes.

The time-sharing service of customers between SQ and
RQs is analogous to half-duplex transmissions of packets in
wireless relay networks, that is, only either BS or RN can
transmit at a time slot. While full-duplex relays are recently
under investigation [14, 15], half-duplex relays are still widely
used [14] since they are simple to design and cost-effective.
In addition, the connectivity from the SQ to RQs is assumed
to be always in connected state in our model. A common
architecture for cellular networks with relays proposes using

nodes dedicated for relaying called Relay Stations (RSs). The
RSs are typically installed in fixed locations which are in line-
of-sight (LOS) to the BS [16]. Therefore, the channel quality
between the BS and a RS is typically very high. Also, in D2D
networks in which mobile nodes are selected to act as RNs,
it makes sense to select mobiles which have good channels to
the BS in the first place. Such a high quality channel between
the BS and RSs can be modelled as being always in “on” state,
which is assumed in our model.

We introduce a policy called Join the Shortest Queue-
Longest Connected Queue (JSQ-LCQ).

Definition 1. The JSQ-LCQ policy is defined as follows:

(1) If there exist RQswhich are nonempty and connected,
serve a customer from the longest queue among the
connected RQs.

(2) If there is no RQ to serve, route a customer from the
SQ to the shortest queue among the RQs.

It is observed that the JSQ-LCQ is a simple and greedy policy
with tehe following properties:

(i) JSQ-LCQ prioritizes serving the RQs over serving the
SQ. If there is any chance to serve a RQ, it will do so.

(ii) Among the connected RQs, it will serve the longest
one.This is an attempt to make the RQs as “balanced”
as possible.

(iii) When JSQ-LCQ routes a customer to RQ, it chooses
the shortest RQ. Again the policy attempts to balance
the RQs.

JSQ-LCQ focuses on balancing queues during the service and
routing so as to maximize the “opportunism” of time-varying
connectivity, that is, so that as many nonempty queues as
possible can observe the connected state. LCQ is inspired
by the policy in [17] with the same name. In the single-
hop case where the queues are served in parallel, the LCQ
policy is delay-optimal for the symmetric system; that is,
connectivity and arrival processes have identical statistics
across the queues [17]. Meanwhile, in a two-hop network, if
all the queues are in connected state and are served in parallel
without time-sharing constraints, it is well-known that the
JSQ policy is delay-optimal [18]. However, two-hop networks
with the time-sharing constraint and random connectivity
are considered in our problem. Two-hop networks are very
different from one-hop networks, since the customers served
in the first hop do not leave but stay in the system, waiting
to be served; moreover, the service availability randomly
changes over time.The question is as follows: does there exist
a delay-optimal policy for such two-hop networks? If so, can
we find the optimal policy? In this paper, we answer these
questions in the affirmative as follows. Assume a symmetric
system; that is, the connectivity has a symmetric distribution
across the RQs. Our claim is that JSQ-LCQ is optimal in a
strong sense, that is, in the stochastic ordering sense.

In this paper, we establish the delay optimality of a two-
hop networkmodel with time-varying connectivity.We show
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that JSQ-LCQ policy is strongly optimal, such that it mini-
mizes the number of customers in the system in the stochastic
ordering sense. We use the coupling argument to show that
the queue length processes under JSQ-LCQ is stochastically
dominated by any other feasible policy. However, unlike
typical coupling, we show that the coupled systems can exist
in two distinct phases. Such a system behaviour is attributable
to dynamic interactions among random connectivity, queue
states, and the time-sharing constraint of service. The system
phases are characterized in terms of certain relations between
the queue states of JSQ-LCQ and another arbitrary policy
in comparison. Specifically, the phases are defined based
on (i) the difference in the source queue lengths and (ii)
the weak majorization relations between the vectors of relay
queue lengths, of the compared policies.We carefully develop
the coupling argument for these phases, which leads to the
stochastic dominance of the total number of customers in
the system. To our knowledge, delay optimality for two-hop
relay networks, even for simple channel models, has not been
well-known yet. Considering that there exist few works on
delay-optimal scheduling, we believe that our work opens
a new possibility for deeper understanding of the problem.
In summary, the key contributions of our work are listed as
follows: this paper

(i) proposes JSQ-LCQ and proves the delay optimality of
the algorithm for two-hop relay networks with time-
varying connectivity, which is of theoretical signifi-
cance;

(ii) introduces a novel coupling technique associatedwith
the transition of system phases defined in terms of
the majorization relations among source and relay
queues.

This paper is organized as follows. We present related
works in Section 2. In Section 3, we describe the system
model. The optimality of JSQ-LCQ is proved in Section 4.
Simulation results are reported in Section 5. Section 6 con-
cludes the paper.

2. Related Work

Delay-optimal scheduling is not only important from an
engineering perspective but also of theoretical and math-
ematical interest. Delay optimality is notoriously hard to
achieve with time-varying service capacity, and there exist
only a few results which we review below. In their seminal
work [17], Tassiulas and Ephremides considered a single-hop
scheduling of parallel queues with time-varying connectivity,
that is, with “on-off” channels. They proposed LCQ and
showed that, under the symmetry assumptions, LCQ is delay-
optimal in the stochastic ordering sense. Yeh and Cohen [19]
considered single-hop scheduling over multiaccess fading
channels when the capacity region of the users’ service has
a polymatroid structure [20]. They proposed Longest Queue
Highest Possible Rate (LQHPR) policy which successively
allocates higher rates to longer queues. LQHPR is shown to be
delay-optimal when the arrival statistics and capacity region
are symmetric across users. Formultihop case, authors of [21]

consider scheduling tandem queues with interference con-
straints; that is, the adjacent queues cannot be served simul-
taneously. In their model, queues are always in connected
state. The delay-optimal policy is obtained by serving the
nonempty queue closest to the destination and then serving
the next nonempty and noninterfering queue closest to the
destination, which is iteratively done over the entire network.
Interestingly, we observe that JSQ-LCQ policy has a similar
principle to the policy in [21]: JSQ-LCQ prioritizes serving
the RQs (“closer” to the destination) whenever possible,
and the SQ has the lower priority. However, it is highly
nontrivial to extend the optimality result to networks with
time-varying connectivity like our model. Recently, Cui et
al. [22] studied a two-hop network with “on-off” channels.
However, there exists only one relay queue in theirmodel, and
the authors propose a policy which is asymptotically optimal
using a dynamic programming (DP) approach. We observe
that delay-optimal scheduling has been found only for simple
models, for example, single-hop network with symmetric
service capacity. To our knowledge, even with symmetric
connectivity, there is no known delay-optimal scheduling
for two-hop relay networks involving multiple relay queues
under the time-sharing (half-duplex) constraint.

Our scheme can be regarded as a relay selection and
scheduling scheme for two-hop cooperative relay networks,
that is, a cooperative transmission utilizing multiple RNs, for
example, [8–10, 23, 24]. Bletsas et al. [8] consider a relay selec-
tion algorithm for two-hop cooperative relay networks where
there exist multiple RNs for a source-destination pair. The
“best” relay is chosen based on either the minimum or har-
monic mean of the instantaneous channel gains of source-
relay (S-R) and relay-destination (R-D) links. A time slot is
divided by half, and S-R transmission occurs at the first half
of the time slot, and R-D transmission occurs at the second
half. Cui et al. [9] considered two-hop relay networks with
multiple source, relay, and destination nodes. Their scheme
selects RNs in an opportunistic manner, that is, based on
favorable Signal-to-Noise-Ratio (SNR) among multiple S-R
and R-D pairs. In [23], the authors considered a model in
which the RNs have buffers where the transmission occurs
over two phases (time slots) as follows. In the first time
slot, a S-R pair with the best channel is scheduled, and the
transmitted packet is stored in the selected relay for later
transmission. In the second time slot, the best R-D pair is
scheduled in which the RN transmits previously stored data.
Note these works focus on maximizing transmission rates or
throughput; however they do not consider the delay issue. For
example, the queues are assumed to be infinitely backlogged
in the aforementioned works. Also the links are scheduled in
a fixed manner; for example, the selected S-R and R-D pairs
are scheduled to transmit over two consecutive time slots. In
contrast, our work not only considers relay selection but also
link scheduling. For example, when our scheme selects the
shortest RQ to route (JSQ), it can be regarded as selecting
“best” relay. In other words, by balancing the RQs, the policy
will enhance opportunism by making as many nonempty
RQs as possible observe the connected state. In a general
approach to ensure delay optimality formultihop cooperative
networks, one needs a problem formulation via Markov
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Decision Process (MDP), for example, [25, 26]. To achieve
delay optimality, one requires solving infinite time horizon
MDP. However, it is difficult to apply MDP-based policies to
large systems due to “curse of dimensionality.” Wang et al.
[11] considered queue-based cooperative relaying by approx-
imately solving MDP using a stochastic learning approach.
The authors proposed a distributed online algorithm which
is shown to be asymptotically optimal under the heavy-traffic
limit.

In contrast to delay optimality, throughput optimal poli-
cies are relatively well-known; a policy is said to be through-
put optimal if the policy makes a queueing system stable
whenever stability is feasible. Tassiulas and Ephremides [27]
showed that the routing and scheduling under backpressure
algorithm based on backlog differentials are throughput opti-
mal for multihop networks with link constraints. However,
backpressure algorithm only ensures throughput optimality
but does not provide any guarantee on achievable delay. A
number of enhancements to backpressure algorithm have
been proposed to address the issue of delay performance [28–
34]. Backpressure algorithm often suffers from long delays
in large multihop networks. This is because the algorithm
explores all possible paths from source to destination. The
routing based solely on backpressure may create a long path
resulting in large delays. To alleviate this problem, in [31, 32]
an algorithm is proposed which adaptively exploits short
paths, whilemaintaining the stabilizing property of backpres-
sure algorithm. Specifically, the algorithm uses shortest paths
under the light traffic but utilizes longer paths with increas-
ing traffic to ensure stability. Practical implementations of
backpressure algorithm are proposed in [35–37]. Note that
the aforementioned works considered throughput optimal
schemes; however, throughput optimality is a relatively weak
form of performance as compared to delay optimality.

3. System Model

Consider a time-slotted system consisting of one SQ and 𝑛
RQs. Only one customer can be served at a time slot: either
a customer is routed from the SQ to one of the RQs, or
a customer is served at one of the RQs. A customer can
be served from a RQ only if the RQ is in connected state.
The service at the RQs has randomly varying connectivity.
A RQ is connected with probability 𝑝, and the connectivity
is independent over time slots and across the RQs (similar
to [17], we do not need the independence of connectivity
across the RQs. We only need the assumption that the joint
distribution of connectivity is symmetric across the RQs,
under which our optimality result will hold as well. However,
the independence assumptionwill simplify the arguments on,
e.g., stability and stochastic coupling, which we discuss later).
The arrival of a customer at the SQ is i.i.d. over time slots with
probability 𝜆.

The number of customers at SQ (resp., RQs) at time 𝑡 is
denoted by 𝑋(𝑡) ∈ Z+ (resp., Y(𝑡) = (𝑌1(𝑡), . . . , 𝑌𝑛(𝑡)) ∈
Z𝑛+). Let C(𝑡) = (𝐶1(𝑡), . . . , 𝐶𝑛(𝑡)) ∈ {0, 1}𝑛 be a random
process indicating the connectivity at the RQs. Specifi-
cally, 𝐶1(𝑡), . . . , 𝐶𝑛(𝑡) are i.i.d. Bernoulli random variables
with parameter 𝑝. Denote the arrival process by 𝐴(𝑡) ∈

{0, 1}. The state of the system at time 𝑡 is denoted by
S(𝑡) fl (𝐴(𝑡),C(𝑡), 𝑋(𝑡),Y(𝑡)). We define the set of actions
which a policy can take at a given timeslot. An action
takes a value from the set of symbols defined by A fl{𝐼, 𝑅1, 𝑅2, . . . , 𝑅𝑛, 𝑆1, 𝑆2, . . . , 𝑆𝑛}. Symbol 𝐼 stands for the pol-
icy being idle, 𝑅𝑖 stands for routing a customer from the SQ
to the 𝑖th RQ, and 𝑆𝑖 represents serving a customer from the𝑖th RQ. Policy 𝜋(𝑡) is defined as a scheduling decision at time𝑡 which takes a value from A. Note that 𝜋(𝑡) is based on the
entire history of scheduling actions ({𝜋(𝑡), 𝑠 < 𝑡}) and system
states ({S(𝑡), 𝑠 ≤ 𝑡}). The SQ and RQs evolve as follows:

𝑋(𝑡 + 1) = [𝑋 (𝑡) − 1 (𝜋 (𝑡) ∈ {𝑅1, . . . , 𝑅𝑛})]+ + 𝐴 (𝑡) ,
𝑌𝑖 (𝑡 + 1) = [𝑌𝑖 (𝑡) − 1 (𝜋 (𝑡) = 𝑆𝑖) ⋅ 𝐶𝑖 (𝑡)]+

+ 1 (𝜋 (𝑡) = 𝑅𝑖)
(1)

for 𝑖 = 1, . . . , 𝑛, where 1(⋅) is the indicator function and[𝑥]+ fl max(𝑥, 0).
Next we consider the condition for stability. The arrival

rate to the system is 𝜆. The service rate from the SQ to RQs is
one per time slot, whereas the overall service rate at the RQs
is 1−(1−𝑝)𝑛 on average. Hence the utilization at the first and
second hops is given by 𝜆 and 𝜆/{1 − (1 − 𝑝)𝑛}, respectively.
Due to the time-sharing constraint, the combined utilization
must be less than 1; that is,

1 > 𝜆 + 𝜆
1 − (1 − 𝑝)𝑛 󳨐⇒

𝜆 < 1 − (1 − 𝑝)𝑛
2 − (1 − 𝑝)𝑛 .

(2)

It is known that throughput optimal policies such as back-
pressure algorithm [27] can stabilize the system under condi-
tion (2). Later, we will show that JSQ-LCQ is delay optimal;
that is, the average number of customers in the system
under JSQ-LCQ is no more than that under any other policy
including backpressure algorithm.Thus, JSQ-LCQ is a stable
policy under condition (2); note that delay optimality implies
throughput optimality. Due to the memoryless property of
connectivity, it suffices to consider 𝜋(𝑡)which is a static state-
feedback policy; that is, there exists optimal 𝜋(𝑡) which bases
its decision only on the present state of the system. Under
such 𝜋(𝑡), queue state process (𝑋(𝑡),Y(𝑡)), 𝑡 = 0, 1, 2, . . .,
forms a Markov chain; if 𝜋(𝑡) is throughput optimal, the
Markov chain is stationary and ergodic under stability con-
dition (2).

4. Delay Optimality of JSQ-LCQ

In this section, we will prove the delay optimality of JSQ-
LCQ.We will show that JSQ-LCQ is optimal in the stochastic
ordering sense which we define as follows. For two random
variables 𝐴 and 𝐵 in R, let 𝐴 ∼ 𝐵 denote that they have the
identical distribution.

Definition 2 (see [38]). Let 𝑈 and 𝑉 be random variables in
R. 𝑈 is said to be stochastically smaller than 𝑉, denoted by𝑈≤st 𝑉, if there exist random variables 𝑈󸀠 and 𝑉󸀠 such that
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(1) 𝑈 ∼ 𝑈󸀠;
(2) 𝑉 ∼ 𝑉󸀠;
(3) 𝑈󸀠 ≤ 𝑉󸀠 a.s.

Note that 𝑈≤st 𝑉 is equivalent to stating that, for any
increasing function 𝑓 : R→ R,

P (𝑓 (𝑈) > 𝑧) ≤ P (𝑓 (𝑉) > 𝑧) , ∀𝑡 ≥ 0. (3)

For vector x ∈ R𝑛, let ‖x‖ fl ∑𝑛𝑖=1 |𝑥𝑖|. We state the main
theorem as follows.

Theorem 3. Let 𝑋(𝑡) and Y(𝑡) denote the queue length
processes of the SQ and RQs under JSQ-LCQ. Also let𝑋(𝑡) and
Ỹ(𝑡) denote the length of the SQ and RQs under an arbitrary
policy. Suppose (𝑋(𝑡),Y(𝑡)) and (𝑋(𝑡), Ỹ(𝑡)) are in an arbitrary
initial state (𝑥0, y0) at time 𝑡 = 0. Then, for 𝑡 ≥ 0,

𝑋 (𝑡) + ‖Y (𝑡)‖ ≤st𝑋 (𝑡) + 󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 . (4)

Theorem 3 states that the number of customers in the
system under JSQ-LCQ is stochastically smaller than that
under any other policy. By Little’s law, the theorem implies
that JSQ-LCQ will minimize the delay in the stochastic
ordering sense.Theorem 3 is amuch stronger statement than,
for example, achieving the minimum average delay, as we
can see from (3). To prove Theorem 3, we will use stochastic
coupling arguments leveraging the forward induction tech-
nique [18]. Specifically, we show that one can construct the
sample paths of queue length processes under JSQ-LCQ and
another arbitrary policy by properly coupling the arrival and
connectivity processes so that (4) holds.

4.1. Coupling. Let 𝜋(𝑡) denote the JSQ-LCQ policy. Let𝜋̃(𝑡) denote another arbitrary policy. (𝑋(𝑡),Y(𝑡)) (resp.,(𝑋(𝑡), Ỹ(𝑡)) in Theorem 3 denote the queue length processes
under 𝜋(𝑡) (resp., 𝜋̃(𝑡)). In the following we use forward
induction [18, Section 8.3] by coupling the connectivity of the
RQs under 𝜋(𝑡) and 𝜋̃(𝑡) as follows. Suppose the process of
RQs under 𝜋(𝑡), or Y(𝑡), has the connectivity given by C(𝑡) =(𝑐1, . . . , 𝑐𝑛) at time 𝑡.Wewill coupleC(𝑡)with the connectivity
variables for Ỹ(𝑡) as follows: if the 𝑖th longest queue of Y(𝑡)
has the connectivity 𝑐 ∈ {0, 1}, then let the 𝑖th longest queue
of Ỹ(𝑡) have the same connectivity 𝑐, for 𝑖 = 1, . . . , 𝑛. In other
words,𝑌[𝑖](𝑡) and 𝑌̃[𝑖](𝑡) see the same connectivity variable by
the coupling for 𝑖 = 1, . . . , 𝑛. This coupling will not change
the marginal distributions of the connectivity seen by Y(𝑡)
and Ỹ(𝑡) as is required in (1) and (2) of Definition 2 (see
also [18, Proposition 8.3.2]), because this coupling involves
simply permuting the connectivity variables across the RQs.
Specifically, the connectivity variables are i.i.d. across the RQs
and thus their joint distribution is symmetric or invariant to
permutation; that is,

P (𝐶1 (𝑡) = 𝑐1, . . . , 𝐶𝑛 (𝑡) = 𝑐𝑛)
= P (𝐶1 (𝑡) = 𝑐P(1), . . . , 𝐶𝑛 (𝑡) = 𝑐P(𝑛)) , (5)

where P is an arbitrary permutation of the index set{1, 2, . . . , 𝑛}. Next, the arrivals to the system are coupled as
follows: if an arrival occurs at the SQunder𝜋(𝑡), then let there
be an arrival at the SQ under 𝜋̃(𝑡). In the rest of the proof, we
will assume that the queue length processes under 𝜋 and 𝜋̃
are coupled in the above fashion.

Unlike previousworks on single-hop scheduling, the cou-
pling argument in our problem must consider dynamic
interactions among queues, connectivity, and the half-duplex
constraint, as follows. JSQ-LCQ prioritizes serving the RQs;
that is, it will serve the RQs whenever possible, in a balanced
manner. Thus, the RQs will tend to be short under JSQ-LCQ.
This means that, due to half-duplex operation, the SQwill get
relatively long. However, if many RQs become empty due to
prioritized service, the number of nonempty and connected
RQs will become small. Hence JSQ-LCQ may be forced to
frequently route customers to the RQs, in a balancedmanner,
in which case the RQs will build up. However, as the number
of nonempty RQs grows, there will be many nonempty and
connected RQs, and JSQ-LCQ will again begin to actively
serve the RQs.Thus, we observe that the system exhibits some
cyclic patterns in the services and evolution of the queue
states.

Based on this observation, we identify that there exist two
distinct phases in our coupling process. In the first phase, the
RQs tend to be short and the SQ tends to be long under JSQ-
LCQ. In the second phase, the SQ tends to be short and RQs
tend to be long. The first phase is called weak majorization
(WM) phase, and the second phase is called water-filling
majorization (WFM) phase. We will explain the phases in
more detail in the subsequent sections. We show that, by
introducing the concept of phases, we are able to handle the
aforementioned patterns in system behaviour. Specifically,
under proper coupling, we show that the system remains in
either of the two phases or makes the transition to the other
phase. Later we will show that this construction implies the
desired stochastic majorization given by (4).

4.2. Weak Majorization (WM) Phase. For vector x ∈ R𝑛, let𝑥[𝑘] denote the 𝑘th longest entry of 𝑥; that is, 𝑥[1] ≥ ⋅ ⋅ ⋅ ≥ 𝑥[𝑛].
Definition 4. For two vectors x, y ∈ R𝑛, if

𝑗∑
𝑘=1

𝑥[𝑘] ≤
𝑗∑
𝑘=1

𝑦[𝑘], 𝑗 = 1, . . . , 𝑛, (6)

x is said to be weakly majorized by y, which is denoted as
x ≺𝑤 y.

Recall that (𝑋(𝑡),Y(𝑡)) (resp., (𝑋(𝑡), Ỹ(𝑡))) is the queue
length processes under JSQ-LCQ or 𝜋 (resp., an arbitrary
policy or 𝜋̃).
Definition 5. We say the system is in weak majorization
(WM) phase if

(1) the following relation holds:

0 ≤ 𝑋 (𝑡) − 𝑋 (𝑡) ≤ 12 {󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 − ‖Y (𝑡)‖} ; (7)
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equivalently, there exists integer 𝛿 ≥ 0 such that

𝑋(𝑡) − 𝑋 (𝑡) = 𝛿,
󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 − ‖Y (𝑡)‖ ≥ 2𝛿;

(8)

(2) Y(𝑡) is weakly majorized by Ỹ(𝑡); that is,
Y (𝑡) ≺𝑤 Ỹ (𝑡) . (9)

We discuss the implication of theWMphase. Firstly, JSQ-
LCQ will greedily serve the RQs whenever possible, making
the overall length of RQs small. By contrast, the customers
that arrived at the SQ will have to wait relatively long due
to the half-duplex constraint. Condition (8) represents these
properties; that is, the SQ under JSQ-LCQ is relatively long,
and the sum-length of the RQs is relatively small. In addition,
if we rearrange the inequality on the right of condition (8),

‖Y (𝑡)‖ + 𝛿 ≤ 󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 − 𝛿, (10)

which is interpreted as follows. There are an excess of 𝛿
customers backlogged at the SQ under JSQ-LCQ.Thus, if we
compare only the SQs, JSQ-LCQ appears to be 𝛿 customers
“behind” 𝜋̃. Now suppose JSQ-LCQ adds these 𝛿 customers
to ‖Y(𝑡)‖ by serving the SQ for 𝛿 times to “catch up” 𝜋̃, which
takes 𝛿 time slots. During this time interval, 𝜋̃ can serve 𝛿
customers from the RQs to push the customers out of the
system asmuch as possible, inwhich case ‖Ỹ(𝑡)‖ is reduced by𝛿. However, (10) shows that, even after such actions by 𝜋̃, the
number of customers under JSQ-LCQ still is no more than
that under 𝜋̃.Thus, condition (8) indicates that JSQ-LCQ is in
fact sufficiently “ahead” of 𝜋̃ inWMphase. Secondly, not only
will the RQs be short, but also they are well “balanced” due to
JSQ-routing and LCQ-scheduling principles. Condition (9)
represents this property. An example of the system in WM
phase is depicted in Figure 2.

However, the systemmay get out of WM phase if most of
the RQs are emptied out, after which JSQ-LCQ will mainly
serve the SQ. Consequently, the RQs will become relatively
long but the SQ will become relatively short, in contrast to
WM phase. In that case, the system makes the transition to
WFM phase, which we will define and discuss in detail in
Section 4.3.

To use forward induction we will show that if the system
is in WM phase at time 𝑡, under a proper coupling of
connectivity and arrivals, the system will either remain in
WM phase or make the transition to WFM phase at time𝑡 + 1. Later, we will make a similar coupling argument for
the system in WFM phase: a system in WFM phase at time𝑡 either stays in WFM phase or makes the transition to WM
phase at time 𝑡+1.This implies that the same argument holds
for all time 𝑠 such that 𝑠 ≥ 𝑡 due to forward induction; that
is, the aforementioned relation between the queue states will
propagate over time through coupling [18, 21].

Lemma 6. Consider the queue length processes defined in
Theorem 3. There exists coupling between (𝑋(𝑡),Y(𝑡)) and(𝑋(𝑡), Ỹ(𝑡)) such that if the system is in WM phase at time

Source queue 

Relay queues 

Source queue 

Relay queues 

 (JSQ-LCQ)

X(t) Y(t)



X(t) Y(t)

Y(t) ≺w Y(t)

Figure 2: Example of the system in weakmajorization (WM) phase.
The figure in the above (resp., below) shows the queues under policy
JSQ-LCQor𝜋 (resp., 𝜋̃).The SQunder𝜋 is longer than that under 𝜋̃;
that is,𝑋(𝑡) = 2 and𝑋(𝑡) = 1. In addition, the number of customers
in the RQs satisfies the following: we have ‖Ỹ(𝑡)‖ − ‖Y(𝑡)‖ = 5 − 3 =2 ≥ 2{𝑋(𝑡) − 𝑋(𝑡)}, which satisfies (8). Next, we have Y(𝑡)≺𝑤Ỹ(𝑡)
satisfying (9); that is, the RQs under JSQ-LCQ are “better balanced”
than those under 𝜋̃.

𝑡 ≥ 0, either the system remains in WM phase or it makes the
transition to WFM phase at time 𝑡 + 1.
Proof. Initially, at 𝑡 = 0, the queue states are identical to initial
condition (𝑥0, y0). By definition, the system is in WM phase
at time 0 because (8)-(9) are satisfied when the queue states
are identical.

Now consider the system at time 𝑡 where we make the
induction hypothesis; that is, the system is in WM phase at
time 𝑡. Once the connectivity and queue states are coupled,𝜋(𝑡) and 𝜋̃(𝑡)may take different actions fromA. For the sake
of simplicity, we will define new symbols for actions denoted
by 𝑆, 𝑅, and 𝐼 with some abuse of notation:

(i) 𝜋(𝑡) = 𝑆 denotes that a service has occurred at one of
the RQs (a precise notation will be 𝜋(𝑡) ∈ {𝑆1, . . . , 𝑆𝑛})
under 𝜋 at time 𝑡.

(ii) 𝜋(𝑡) = 𝑅 denotes that a routing from the SQ to
one of the RQs (a precise notation will be 𝜋(𝑡) ∈{𝑅1, . . . , 𝑅𝑛}) has occurred under 𝜋 at time 𝑡.

(iii) 𝜋(𝑡) = 𝐼 denotes that the policy idles at time 𝑡.
For instance, (𝜋(𝑡), 𝜋̃(𝑡)) = (𝑆, 𝑅) denotes the event that 𝜋
served aRQand 𝜋̃ routed a customer from the SQ to aRQ.We
will consider a total of 9 cases, since (𝜋(𝑡), 𝜋̃(𝑡)) can possibly
take 9 action pairs. Recall that, in all cases, we will use the
coupling introduced in Section 4.1; that is, 𝑌[𝑖](𝑡) and 𝑌̃[𝑖](𝑡)
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see the same connectivity variable for 𝑖 = 1, . . . , 𝑛. Also 𝑋(𝑡)
and𝑋(𝑡) see the same arrival variable.

Case 1 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑆, 𝑆)). In this case, a service
has occurred under both policies. Suppose the service has
occurred at 𝑗th longest RQunder𝜋. Also suppose that the 𝑘th
longest RQ was served under 𝜋̃. Since 𝜋 uses LCQ, the served
RQwas the longest among the connected queues.This implies
that the connectivity variables for𝑌[𝑖](𝑡), 𝑖 = 1, . . . , 𝑗−1, must
be 0. From the construction of coupling, this implies that the
connectivity of 𝑌̃[𝑖](𝑡) is also 0 for 𝑖 = 1, . . . , 𝑗 − 1. Thus, 𝑘 ≥ 𝑗
must hold. We have that, for any 𝑙 = 1, . . . , 𝑛,

[ 𝑙∑
𝑖=1

𝑌̃[𝑖] (𝑡 + 1)] − [ 𝑙∑
𝑖=1

𝑌[𝑖] (𝑡 + 1)]

= [−1 (𝑙 ≥ 𝑘) + 𝑙∑
𝑖=1

𝑌̃[𝑖] (𝑡)]

− [−1 (𝑙 ≥ 𝑗) + 𝑙∑
𝑖=1

𝑌[𝑖] (𝑡)]

= 1 (𝑙 ≥ 𝑗) − 1 (𝑙 ≥ 𝑘) + [ 𝑙∑
𝑖=1

𝑌̃[𝑖] (𝑡)]

− [ 𝑙∑
𝑖=1

𝑌[𝑖] (𝑡)] ≥ 0

(11)

due to 𝑘 ≥ 𝑗 and induction hypothesis Y(𝑡) ≺𝑤 Ỹ(𝑡). Thus,
we have Y(𝑡 + 1) ≺𝑤 Ỹ(𝑡 + 1); that is, (9) holds at time 𝑡 + 1.
In addition, (8) is satisfied at time 𝑡 + 1, because 𝑋(𝑡) and𝑋(𝑡) did not change, and ‖Ỹ(𝑡)‖ − ‖Y(𝑡)‖ remains unchanged
since ‖Y(𝑡 + 1)‖ = ‖Y(𝑡)‖ − 1 and ‖Ỹ(𝑡 + 1)‖ = ‖Ỹ(𝑡)‖ − 1.
Consequently, the system is in WM phase at time 𝑡 + 1.
Case 2 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑅, 𝑅)). Both policies routed a customer
to a RQ; thus (8) clearly holds at time 𝑡 + 1. Next, suppose 𝜋̃
has routed a customer to the 𝑘th longest RQ, whereas 𝜋 has
routed a customer to the shortest RQ. We have that, for any𝑙 = 1, . . . , 𝑛,

[ 𝑙∑
𝑖=1

𝑌̃[𝑖] (𝑡 + 1)] − [ 𝑙∑
𝑖=1

𝑌[𝑖] (𝑡 + 1)]

= [1 (𝑙 ≥ 𝑘) + 𝑙∑
𝑖=1

𝑌̃[𝑖] (𝑡)]

− [1 (𝑙 = 𝑛) + 𝑙∑
𝑖=1

𝑌[𝑖] (𝑡)]

= 1 (𝑙 ≥ 𝑘) − 1 (𝑙 = 𝑛) + [ 𝑙∑
𝑖=1

𝑌̃[𝑖] (𝑡)]

− [ 𝑙∑
𝑖=1

𝑌[𝑖] (𝑡)] ≥ 0,

(12)

which holds due to 𝑘 ≤ 𝑛 and the induction hypothesis.Thus,
we have thatY(𝑡+1) ≺𝑤 Ỹ(𝑡+1); that is, (9) holds at time 𝑡+1.
Thus the system is in WM phase at time 𝑡 + 1.
Case 3 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝐼, 𝐼)). Since there is no change in the
queue states under both policies, WM phase is maintained at
time 𝑡 + 1.
Case 4 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑆, 𝑅)). In this case, 𝜋 serves a RQ,
and 𝜋̃ routes a customer to a RQ. Since 𝜋 serves a RQ, we
have that Y(𝑡 + 1) ≺𝑤 Y(𝑡). Since 𝜋̃ routes a customer to a
RQ, Ỹ(𝑡) ≺𝑤 Ỹ(𝑡 + 1) holds. By induction hypothesis (9), this
implies thatY(𝑡+1) ≺𝑤 Ỹ(𝑡+1); that is, (9) holds at time 𝑡+1.

Suppose the service occurred at queue 𝑗 under 𝜋, and the
routing occurred at queue 𝑘 under 𝜋̃. Also it is implied that𝑋(𝑡) > 0 in this case. We have that

𝑋(𝑡 + 1) = 𝑋 (𝑡) ,
𝑋 (𝑡 + 1) = 𝑋 (𝑡) − 1, (13)

𝑌𝑗 (𝑡 + 1) = 𝑌𝑗 (𝑡) − 1,
𝑌̃𝑘 (𝑡 + 1) = 𝑌̃𝑘 (𝑡) + 1. (14)

Let 𝛿 = 𝑋(𝑡) − 𝑋(𝑡) ≥ 0. From (13), we have that

𝑋(𝑡 + 1) − 𝑋 (𝑡 + 1) = 𝑋 (𝑡) − 𝑋 (𝑡) + 1 = 𝛿 + 1. (15)

Also ‖Ỹ(𝑡)‖ − ‖Y(𝑡)‖ ≥ 2𝛿 implies that, from (14),
󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡 + 1)󵄩󵄩󵄩󵄩󵄩 − ‖Y (𝑡 + 1)‖ = 󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 − ‖Y (𝑡)‖ + 2
≥ 2 (𝛿 + 1) . (16)

Thus, (8) is satisfied at time 𝑡 + 1. Consequently, the system is
in WM phase at time 𝑡 + 1.
Case 5 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑅, 𝐼)). This is the case where 𝜋 serves
the SQ and 𝜋̃ idles. We consider two cases.

Case 5.1 (𝑋(𝑡) > 𝑋(𝑡)). In this case, at time 𝑡 + 1 we have that
𝑋(𝑡 + 1) = 𝑋 (𝑡) − 1,
𝑋 (𝑡 + 1) = 𝑋 (𝑡) ,

‖Y (𝑡 + 1)‖ = ‖Y (𝑡)‖ + 1,
󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡 + 1)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 .

(17)

Let 𝛿 fl 𝑋(𝑡) − 𝑋(𝑡) > 0. Then
󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡 + 1)󵄩󵄩󵄩󵄩󵄩 − ‖Y (𝑡 + 1)‖ = 2𝛿 − 1 ≥ 2 (𝛿 − 1) (18)

holds, and𝑋(𝑡 + 1) − 𝑋(𝑡 + 1) = 𝛿 − 1. Thus (8) is satisfied at
time 𝑡 + 1.

Next we check if weakmajorization (9) holds at time 𝑡+1.
Let us define 𝑦 fl 𝑌[𝑛](𝑡). Suppose that there were 𝑘 more
queues which have had length 𝑦 at time 𝑡.
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Firstly consider the case where 𝑘 = 0. This implies that
the RQ to which the customer is routed is still the shortest
queue at time 𝑡 + 1 under 𝜋. Since 𝜋 performs JSQ, 𝑌[𝑛](𝑡) is
incremented by 1. Thus we have that

𝑌[𝑛] (𝑡 + 1) = 𝑌[𝑛] (𝑡) + 1,
𝑌[𝑖] (𝑡 + 1) = 𝑌[𝑖] (𝑡) , 𝑖 = 1, . . . , 𝑛 − 1. (19)

We will show that

𝑙∑
𝑖=1

𝑌[𝑖] (𝑡 + 1) ≤ 𝑙∑
𝑖=1

𝑌̃[𝑖] (𝑡 + 1) (20)

holds for 𝑙 = 1, . . . , 𝑛. Clearly, (20) holds for 1 ≤ 𝑙 ≤ 𝑛− 1. For𝑙 = 𝑛, consider the following. Since 𝑋(𝑡) and 𝑋(𝑡) differ by
at least one customer, ‖Y(𝑡)‖ and ‖Ỹ(𝑡)‖ differ by at least two
customers by induction hypothesis (8). This implies that

𝑛∑
𝑖=1

𝑌[𝑖] (𝑡 + 1) = 1 + 𝑛∑
𝑖=1

𝑌[𝑖] (𝑡) ≤ −1 + 󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 . (21)

Since ‖Ỹ(𝑡 + 1)‖ = ‖Ỹ(𝑡)‖, we conclude that (20) holds for𝑙 = 𝑛. Consequently, Y(𝑡 + 1) ≺𝑤 Ỹ(𝑡 + 1); that is, the weak
majorization is maintained at time 𝑡 + 1.

Secondly, consider the case where 𝑘 > 0. At time 𝑡 + 1,
the RQwhich received a customer under 𝜋 becomes (𝑛−𝑘)th
longest queue, or, equivalently, we are incrementing (𝑛 − 𝑘)th
longest queue at time 𝑡 (which was of length 𝑦) by one. Thus,
we have that 𝑌[𝑛−𝑘](𝑡 + 1) = 𝑦 + 1 and 𝑌[𝑖](𝑡 + 1) = 𝑌[𝑖](𝑡) = 𝑦
for 𝑖 ≥ 𝑛 − 𝑘 + 1. We will show that

𝑙∑
𝑖=1

𝑌[𝑖] (𝑡 + 1) ≤ 𝑙∑
𝑖=1

𝑌̃[𝑖] (𝑡 + 1) , (22)

for 𝑙 = 𝑛−𝑘, which impliesY(𝑡+1) ≺𝑤 Ỹ(𝑡+1); this is because
(22) already holds for 𝑙 < 𝑛 − 𝑘 due to induction hypothesis
of weak majorization at time 𝑡; and if (22) holds for 𝑙 = 𝑛 − 𝑘,
it will do so for 𝑙 > 𝑛 − 𝑘 by construction. Define

𝑘∗ = max{𝑗 | 𝑗∑
𝑖=1

𝑌[𝑖] (𝑡) =
𝑗∑
𝑖=1

𝑌̃[𝑖] (𝑡)} . (23)

Here we implicitly assume the set in the RHS of (23) is
nonempty; otherwise Y(𝑡 + 1) ≺𝑤 Ỹ(𝑡 + 1) holds and we are
done. We have that 𝑘∗ ̸= 𝑛, because 𝑘 > 0.

We will show that 𝑘∗ < 𝑛 − 𝑘 holds by contradiction.
Suppose 𝑘∗ ≥ 𝑛 − 𝑘. Then we must have that 𝑌[𝑘∗](𝑡) =𝑌̃[𝑘∗](𝑡) = 𝑦. Since there are at least 2𝛿 > 0more customers in
Ỹ(𝑡), we have that

𝑛∑
𝑖=𝑘∗+1

{𝑌̃[𝑖] (𝑡) − 𝑌[𝑖] (𝑡)} ≥ 2𝛿. (24)

However, since 𝑌[𝑖](𝑡) = 𝑦 for 𝑦 > 𝑘∗, we have that
𝑛∑
𝑖=𝑘∗+1

{𝑌̃[𝑖] (𝑡)} ≥ 2𝛿 + (𝑛 − 𝑘∗) 𝑦 > (𝑛 − 𝑘∗) 𝑦. (25)

However since 𝑌̃[𝑘∗](𝑡) = 𝑦, we must have that 𝑌̃[𝑖](𝑡) ≤ 𝑦, for𝑖 > 𝑘∗, and thus (25) cannot hold, yielding a contradiction.
Thus, we have that 𝑘∗ < 𝑛 − 𝑘, which implies that

𝑛−𝑘∑
𝑖=1

𝑌[𝑖] (𝑡) < 𝑛−𝑘∑
𝑖=1

𝑌̃[𝑖] (𝑡) . (26)

Since 𝜋 routes a customer to the (𝑛 − 𝑘)th longest RQ,
(26) implies that (22) holds for 𝑙 = 𝑛 − 𝑘. Thus, the weak
majorization hypothesis continues to hold for time 𝑡 + 1.
Case 5.2. (𝑋(𝑡) = 𝑋(𝑡)). In this case, we have𝑋(𝑡+1) < 𝑋(𝑡+1). Thus, condition (8) ceases to hold, and the system makes
the transition to WFM phase.We will discuss WFM phase in
detail and prove the transition of phases in the next section.

Case 6 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝐼, 𝑆)).This is the case where𝜋 idles and𝜋̃ serves a RQ. Since 𝜋 is idle, we must have 𝑋(𝑡) = 0, which
in turn implies 𝑋(𝑡) = 0 due to induction hypothesis (8).
Suppose the service has occurred on 𝑗th longest RQ under𝜋̃. We must have 𝑌[𝑗](𝑡) = 0; otherwise 𝜋 would have served
the 𝑗th longest RQ instead of idling, because the 𝑗th longest
RQ is in connected state due to coupling. Given 𝑌[𝑗](𝑡) = 0,
we cannot have ∑𝑗𝑖=1 𝑌[𝑖](𝑡) = ∑𝑗𝑖=1 𝑌̃[𝑖](𝑡), because

𝑗−1∑
𝑖=1

𝑌[𝑖] (𝑡) =
𝑗∑
𝑖=1

𝑌[𝑖] (𝑡) = 𝑌̃[𝑗] (𝑡) +
𝑗−1∑
𝑖=1

𝑌̃[𝑖] (𝑡)

> 𝑗−1∑
𝑖=1

𝑌̃[𝑖] (𝑡) ,
(27)

which will violate induction hypothesis (9). Thus, we have
that

𝑗∑
𝑖=1

𝑌[𝑖] (𝑡) <
𝑗∑
𝑖=1

𝑌̃[𝑖] (𝑡) . (28)

This implies that

𝑗∑
𝑖=1

𝑌[𝑖] (𝑡 + 1) ≤
𝑗∑
𝑖=1

𝑌̃[𝑖] (𝑡 + 1) . (29)

Combining this with the induction hypothesis (9), we con-
clude that Y(𝑡 + 1) ≺𝑤 Ỹ(𝑡 + 1).
Case 7 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑆, 𝐼)). This is the case where 𝜋 serves a
RQ and 𝜋̃ idles. Clearly (8) holds at time 𝑡+1, because the SQ
remains unchanged. Since one of the RQs was served under𝜋, we clearly have that

Y (𝑡 + 1) ≺𝑤Y (𝑡) ≺𝑤Ỹ (𝑡) = Ỹ (𝑡 + 1) ; (30)

that is, (9) holds at time 𝑡 + 1.
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Case 8 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝐼, 𝑅)). This case cannot happen,
because if it were to happen, we must have 𝑋(𝑡) = 0 because𝜋 is work-conserving. This in turn would imply 𝑋(𝑡) = 0 by
the induction hypothesis.

Case 9 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑅, 𝑆)). In this case, 𝜋 serves the SQ and𝜋̃ serves a RQ. Suppose the service has occurred at the 𝑗th
longest queue of Ỹ(𝑡).𝜋will route the customer to the shortest
queue inY(𝑡), or𝑌[𝑛](𝑡). Since a departure occurred at the 𝑗th
longest queue of Ỹ(𝑡) but did not occur at Y(𝑡), we must have𝑌[𝑘](𝑡) = 0 for 𝑘 ≥ 𝑗. Thus, the customer is routed to one of
the empty RQs under 𝜋, which leads to 𝑌[𝑗](𝑡 + 1) ≤ 1. We
will consider two cases:𝑋(𝑡) = 𝑋(𝑡) and𝑋(𝑡) > 𝑋(𝑡).
Case 9.1 (𝑋(𝑡) > 𝑋(𝑡)). This case implies that 𝑋(𝑡) and 𝑋(𝑡)
differ by at least one customer. From (8), this implies that
there are at least two more customers in Ỹ(𝑡). The 𝑗th longest
RQ under 𝜋 has been incremented by one where 𝜋̃ has been
decremented.

Firstly, consider the case 𝑌̃[𝑗](𝑡) ≥ 2. Since the 𝑗th longest
RQ was served under 𝜋̃, this implies that 𝑌̃[𝑗](𝑡 + 1) ≥ 1.
However, since we have 𝑌[𝑗](𝑡 + 1) ≤ 1, weak majorization
Y(𝑡+1)≺𝑤Ỹ(𝑡+1)will clearly hold due to induction hypothesis
(9) at time 𝑡.

Secondly, consider the case 𝑌̃[𝑗](𝑡) = 1. Suppose there
were more than one queue with length 1 under 𝜋̃ at time 𝑡.
Thenwe have that 𝑌̃[𝑗](𝑡+1) = 1 ≥ 𝑌[𝑗](𝑡+1). Since𝑌[𝑘](𝑡) = 0
for 𝑘 ≥ 𝑗, this implies Y(𝑡 + 1)≺𝑤Ỹ(𝑡 + 1), and we are done.

Now suppose that the 𝑗th longest RQunder 𝜋̃was the only
RQ with length one. This implies that

‖Y (𝑡)‖ = 𝑗∑
𝑖=1

𝑌[𝑖] (𝑡) ,
󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 =

𝑗∑
𝑖=1

𝑌̃[𝑖] (𝑡) .
(31)

After the policies took the actions, we have that

𝑗∑
𝑖=1

𝑌̃[𝑖] (𝑡 + 1) = −1 +
𝑗∑
𝑖=1

𝑌̃[𝑖] (𝑡) ,
𝑗∑
𝑖=1

𝑌[𝑖] (𝑡 + 1) = 1 +
𝑗∑
𝑖=1

𝑌[𝑖] (𝑡) .
(32)

By induction hypothesis, there have been at least 2𝛿 > 0more
customers for Ỹ(𝑡) than those for Y(𝑡). Thus if we combine
(31)-(32) we have that

𝑗∑
𝑖=1

{𝑌̃[𝑖] (𝑡 + 1) − 𝑌[𝑖] (𝑡 + 1)}

= −2 + 𝑗∑
𝑖=1

{𝑌̃[𝑖] (𝑡) − 𝑌[𝑖] (𝑡)} ≥ 2𝛿 − 2 ≥ 0.
(33)

Accordingly, we claim that the following holds for all 𝑘 ≤ 𝑗:
𝑘∑
𝑖=1

𝑌[𝑖] (𝑡 + 1) ≤ 𝑘∑
𝑖=1

𝑌̃[𝑖] (𝑡 + 1) (34)

since 𝑌[𝑘](𝑡 + 1) = 𝑌[𝑘](𝑡) and 𝑌̃[𝑘](𝑡 + 1) = 𝑌̃[𝑘](𝑡) for all 𝑘 ≤ 𝑗
due to (33) and the induction hypothesis. If 𝑗 = 𝑛, it implies
that Y(𝑡 + 1)≺𝑤Ỹ(𝑡 + 1). If 𝑗 < 𝑛, since 𝑌[𝑘](𝑡) = 𝑌[𝑘](𝑡 + 1) = 0
for 𝑘 > 𝑗, we see that Y(𝑡 + 1)≺𝑤Ỹ(𝑡 + 1) holds as well.

Next we examine if (8) holds at time 𝑡 + 1. By assumption
we have 𝑋(𝑡) − 𝑋(𝑡) = 𝛿 > 0, and thus 𝑋(𝑡 + 1) − 𝑋(𝑡 + 1) =𝛿 − 1 ≥ 0. Also

󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡 + 1)󵄩󵄩󵄩󵄩󵄩 − ‖Y (𝑡 + 1)‖ = 󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 − ‖Y (𝑡)‖ − 2
≥ 2𝛿 − 2 = 2 (𝛿 − 1) . (35)

Thus, (8) holds at time 𝑡+1. In conclusion, the system remains
in WM phase at time 𝑡 + 1.
Case 9.2 (𝑋(𝑡) = 𝑋(𝑡)). In this case, the system makes the
transition to WFM phase which we introduce in the next
section.The phase transition will be proved later as well.

4.3. Water-Filling Majorization (WFM) Phase. We have the
following definition.

Definition 7. Consider 𝑥 and 𝑥 in Z+ and 𝑛-dimensional
vectors y and ỹ inZ𝑛+. We say (𝑥, y) is water-filling majorized
by (𝑥, ỹ) denoted by

(𝑥, y) ≺𝑤𝑓𝑤 (𝑥, ỹ) (36)

if the following holds:

(1) 𝑥 < 𝑥.
(2) Let 𝜉 denote the difference between 𝑥 and 𝑥; that is,𝜉 = 𝑥 − 𝑥. Let ỹ󸀠 ∈ Z𝑛+ be a vector formed by

adding 𝜉 to the entries of ỹ in a “water-filling”manner.
Specifically, let 𝑙(𝜉) be a number that satisfies

𝜉 = 𝑛∑
𝑗=1

[𝑙 (𝜉) − 𝑦[𝑗]]+ . (37)

Let us add [𝑙(𝜉) − 𝑦[𝑗]]+ to 𝑦[𝑗] for 𝑗 = 1, . . . , 𝑛, and let
ỹ󸀠 denote the resulting vector. Then we have that

y ≺𝑤 ỹ󸀠. (38)

We say that the system is in WFM phase if, at time 𝑡,
(𝑋 (𝑡) ,Y (𝑡)) ≺𝑤𝑓𝑤 (𝑋 (𝑡) , Ỹ (𝑡)) . (39)

In other words, we have

𝑋 (𝑡) < 𝑋 (𝑡) , (40)

Y (𝑡) ≺𝑤 Ỹ󸀠 (𝑡) , (41)
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Figure 3: Example of the system in water-filling majorization
(WFM) phase.The SQ under 𝜋̃ has an excess of 𝜉 fl 𝑋(𝑡) −𝑋(𝑡) = 2
customers compared to that under 𝜋, which satisfies (40). The RQs
at time 𝑡 under JSQ-LCQ are not necessarily better balanced than
those under 𝜋̃; we observe thatY(𝑡)�≺𝑤Ỹ(𝑡), if we compare the system
in the upper left and the bottom left. However, if we construct Ỹ󸀠(𝑡)
by performing a “water-filling” routing of 𝜉 = 2 customers from𝑋(𝑡) to Ỹ(𝑡), we observe that Y(𝑡) is better balanced than Ỹ󸀠(𝑡), if we
compare the queues in the upper right and the bottom right. Thus,
we have Y(𝑡)≺𝑤Ỹ󸀠(𝑡), which satisfies (41).

where Ỹ󸀠(𝑡) is constructed by routing 𝜉 = 𝑋(𝑡) − 𝑋(𝑡)
customers to Ỹ(𝑡) in the “water-filling” manner.

We discuss the implication of the WFM phase. As
mentioned earlier, JSQ-LCQ prioritizes serving the RQs and
hence will generate many empty RQs. As a result, JSQ-LCQ
may be forced to route customers, resulting in a short SQ,
for example, as in (40), and will cause the RQs to build up.
During the WFM phase, it is possible that Y(𝑡) �≺𝑤 Ỹ(𝑡); even
the number of customers in the RQs under JSQ-LCQ can
be larger than that under 𝜋̃; for example, see the example in
Figure 3. However, from a broader perspective, the queues
are still “well-balanced” under JSQ-LCQ in WFM phase as
follows. There are 𝜉 more customers in the SQ under 𝜋̃, and
if we distribute those 𝜉 customers to the RQ in the “water-
filling” manner (equivalently, route 𝜉 customers one after
another using JSQ) and denote the resulting vector of RQs
by Ỹ󸀠(𝑡), then we have Y(𝑡) ≺𝑤 Ỹ󸀠(𝑡). Put differently, a shorter
SQ means that JSQ-LCQ is still “ahead” of 𝜋̃ in pushing
customers closer to the destination. Suppose 𝜋̃ attempts to
“catch up” the difference in a balanced manner, that is, by
routing 𝜉 head-of-line customers in the SQ to the RQs in a
water-fillingmanner.The RQs under JSQ-LCQ are still better
balanced; that is, Y(𝑡) ≺𝑤 Ỹ(𝑡). In summary, if we compare
only the RQs in WFM phase, JSQ-LCQ may appear worse
than other policies; however, if we consider the SQ and RQs
in a combinedway, we find that JSQ-LCQ is better off in terms
of balancing queues, which leads to enhanced opportunism.

In the proof of Lemma 6, we argued that in cases (5.2)
and (9.2) the systemmakes the transition toWFMphase, and
hence we will check if the transition actually occurred, that is,
whether (𝑋(𝑡 + 1),Y(𝑡 + 1)) ≺𝑤𝑓𝑤 (𝑋(𝑡 + 1), Ỹ(𝑡 + 1)) holds in
those cases. Below we will continue and conclude the proof.

Proof of Lemma 6, Continued.

Case 5.2 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑅, 𝐼)).Note that𝑋(𝑡) = 𝑋(𝑡); thus we
have 𝑋(𝑡 + 1) < 𝑋(𝑡 + 1). Hence property (40) holds at time𝑡 + 1. Next we will show (41) holds at time 𝑡 + 1. Note that
Y(𝑡 + 1) is obtained by performing the JSQ routing to Y(𝑡).
Since 𝜉 fl 𝑋(𝑡+1)−𝑋(𝑡+1) = 1, Ỹ󸀠(𝑡+1) can be constructed by
performing water-filling routing of one customer to Ỹ(𝑡 + 1).
Note that water-filling routing of one customer is equivalent
to the JSQ routing of one customer. In other words, Y(𝑡 + 1)
and Ỹ󸀠(𝑡 + 1) are obtained by performing JSQ each on Y(𝑡)
and Ỹ(𝑡 + 1), respectively. Note that Y(𝑡)≺𝑤Ỹ(𝑡) = Ỹ(𝑡 + 1)
holds due to induction hypothesis (9).Thus, given the relation
Y(𝑡) ≺𝑤 Ỹ(𝑡 + 1), if we perform the JSQ routing to both Y(𝑡)
and Ỹ(𝑡+1), the weakmajorization relation will be preserved
after JSQ.Thus, we haveY(𝑡+1) ≺𝑤 Ỹ󸀠(𝑡+1), satisfying (41) at
time 𝑡+1.Thus, we conclude that (𝑋(𝑡+1),Y(𝑡+1)) ≺𝑤𝑓𝑤 (𝑋(𝑡+1), Ỹ(𝑡 + 1)) holds, and the system is in WFM phase at time𝑡 + 1.
Case 9.2 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑅, 𝑆)). We have that 𝑋(𝑡 + 1) + 1 =𝑋(𝑡) = 𝑋(𝑡) = 𝑋(𝑡 + 1); thus (40) is satisfied at time 𝑡 + 1.

Suppose there was a service from the 𝑗th longest queue
from Ỹ(𝑡). The 𝑗th longest queue of Y(𝑡) must be empty;
otherwise the queue must have been served under 𝜋. Thus,
we have that

𝑌[𝑗] = 0,
𝑌̃[𝑗] (𝑡) ≥ 1. (42)

In order to construct Ỹ󸀠(𝑡 + 1), we first need to take action(𝜋(𝑡), 𝜋̃(𝑡)) = (𝑅, 𝑆) and then perform water-filling routing of𝜉 customers to Ỹ(𝑡 + 1). Suppose these steps are taken in the
following sequence:

(1) 𝜋̃(𝑡) takes action 𝑆.
(2) 𝜋(𝑡) takes action 𝑅.
(3) Performwater-filling routing to Ỹ(𝑡+1) to yield Ỹ󸀠(𝑡+1).

Let us denote the RQs after step (1) under 𝜋̃ by Z̃(𝑡). Due
to Y(𝑡) ≺𝑤 Ỹ(𝑡) and (42), a departure from 𝑗th longest queue
does not affect the weak majorization among RQs; that is,
Y(𝑡) ≺𝑤 Z̃(𝑡) holds. Next, consider steps (2) and (3). We have𝑋(𝑡+1)−𝑋(𝑡+1) = 𝜉 = 1; clearly, (2) is the JSQ operation on
Y(𝑡) with a single customer under 𝜋, and (3) is also the JSQ
operation on Z̃(𝑡) with 𝜉 = 1 customer under 𝜋̃. Therefore,
Y(𝑡) ≺𝑤 Z̃(𝑡) implies thatY(𝑡+1) ≺𝑤 Ỹ󸀠(𝑡+1); that is, (41) holds
at time 𝑡 + 1. In conclusion, the system makes the transition
to WFM phase at time 𝑡 + 1.

Next we consider the coupling of queues under 𝜋 and 𝜋̃
in WFM phase.

Lemma 8. There exists a coupling between queue length
processes (𝑋(𝑡),Y(𝑡)) and (𝑋(𝑡), Ỹ(𝑡)) such that if the system
is in WFM phase at time 𝑡 ≥ 0, either the system remains in
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WFM phase or it makes the transition to WM phase at time𝑡 + 1.
Proof. As previously, the queue connectivity is coupled such
that 𝑌[𝑖](𝑡) and 𝑌̃[𝑖](𝑡) have the same connectivity variable for𝑖 = 1, . . . , 𝑛. The arrivals at𝑋(𝑡) and𝑋(𝑡) are coupled; that is,
they see the same arrival variable. Similar to WM phase, we
consider a total of 9 action pairs of (𝜋(𝑡), 𝜋̃(𝑡)).
Case 1 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑆, 𝑆)). Firstly, there is no change in the
SQs; thus we have 𝑋(𝑡 + 1) = 𝑋(𝑡) and 𝑋(𝑡 + 1) = 𝑋(𝑡), and
hence (40) holds at time 𝑡 + 1.

Secondly, suppose that the 𝑗th longest RQhas been served
under 𝜋 and the 𝑘th longest RQ has been served under 𝜋̃. In
the proof of Case 1 of Lemma 6, we have shown that 𝑘 ≥ 𝑗
holds due to the LCQ policy in 𝜋. We further showed that the
following holds:

Y (𝑡 + 1) ≺𝑤Ỹ (𝑡 + 1) . (43)

Since Ỹ󸀠(𝑡 + 1) is obtained by routing 𝜉 fl 𝑋(𝑡) − 𝑋(𝑡) >0 customers to Y(𝑡 + 1), thus clearly we have that Ỹ(𝑡 +1) ≺𝑤 Ỹ󸀠(𝑡+1) holds. Consequently,Y(𝑡+1) ≺𝑤 Ỹ(𝑡+1) holds,
which shows that (41) holds at time 𝑡+1.Therefore, the system
remains in WFM phase at time 𝑡 + 1.
Cases 2 and 3 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝐼, 𝐼) or (𝑅, 𝑅)). Similar to the
case for WM phase, it is straightforward to show that if 𝜋
and 𝜋̃ perform identical actions of 𝐼 and 𝑅, property (39) is
preserved at time 𝑡 + 1.
Case 4 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑅, 𝑆)). Let 𝜉 fl 𝑋(𝑡) − 𝑋(𝑡). Since 𝜋
performed routing and 𝜋̃ performed a service,𝑋(𝑡+1)−𝑋(𝑡+1) = 𝜉 + 1 > 0, satisfying (40) at time 𝑡 + 1.

Next we will show that Y(𝑡 + 1) ≺𝑤 Ỹ󸀠(𝑡 + 1). Suppose
the service has occurred at 𝑗th longest queue of Ỹ(𝑡). Let
us denote the index of this 𝑗th longest queue by 𝑗󸀠. Due to
coupling of connectivity, we must have that the 𝑗th longest
queue of Y(𝑡) is zero. In order to construct Ỹ󸀠(𝑡 + 1), we
need to take two steps on Ỹ(𝑡): (i) serve RQ 𝑗󸀠 and (ii) route𝜉 + 1 customers to the RQs in a water-filling manner. We will
rearrange these steps to compare Y(𝑡) and Ỹ󸀠(𝑡) as follows:

(1) Serve a customer from RQ 𝑗󸀠 under 𝜋̃.
(2) Route 𝜉 customers to the RQ in the water-filling

manner under 𝜋̃.
(3) Perform JSQ of a customer from 𝑋(𝑡) and 𝑋(𝑡) so as

to yield Y(𝑡 + 1) and Ỹ󸀠(𝑡 + 1), respectively.
Let Z(𝑡) denote the vector of RQs under 𝜋̃ after steps (1) and
(2) are completed. We will consider two cases.

Case 4.1. This is the case where the following is assumed:

𝑗−1∑
𝑖=1

𝑌[𝑖] (𝑡) ≤
𝑗−1∑
𝑖=1

𝑍[𝑖] (𝑡) . (44)

Since 𝑌[𝑗](𝑡) = 0, we have that 𝑌[𝑘] = 0, 𝑘 ≥ 𝑗. This implies
that𝑌[𝑘](𝑡) ≤ 𝑍[𝑘](𝑡), ∀𝑘 ≥ 𝑗.Thus, we have thatY(𝑡) ≺𝑤 Z(𝑡).

Since both Y(𝑡 + 1) and Ỹ󸀠(𝑡 + 1) are formed by performing
JSQ routing to Y(𝑡) and Z(𝑡), Y(𝑡) ≺𝑤 Z(𝑡) implies that Y(𝑡 +1) ≺𝑤 Ỹ󸀠(𝑡 + 1).
Case 4.2. This is the case where the following is assumed:

𝑗−1∑
𝑖=1

𝑌[𝑖] (𝑡) >
𝑗−1∑
𝑖=1

𝑍[𝑖] (𝑡) . (45)

In order for (45) to hold, we must have

𝑌[𝑗−1] (𝑡) = 𝑍[𝑗−1] (𝑡) + 1 (46)

from the induction hypothesis Y(𝑡) ≺𝑤 Ỹ󸀠(𝑡). That is, because
only one customer is served from the 𝑗th longest RQ in Ỹ(𝑡),𝑌[𝑗−1](𝑡) and 𝑍[𝑗−1](𝑡) cannot differ by more than one cus-
tomer; otherwise it would violate the induction hypothesis.
Next, we will show that the following holds:

𝑍[𝑗−1] (𝑡) = 𝑍[𝑗] (𝑡) = ⋅ ⋅ ⋅ = 𝑍[𝑛] (𝑡) , (47)

using contradiction. Suppose there exists 𝑗−1 ≤ 𝑘 ≤ 𝑛−1 such
that𝑍[𝑘](𝑡) > 𝑍[𝑘+1](𝑡).Theonly difference between Ỹ󸀠(𝑡) and
Z(𝑡) is that Z(𝑡) is formed by serving the 𝑗th longest queue in
step (1), before performing water-filling routing in step (2).
Therefore, we have that

𝑌̃󸀠[𝑖] (𝑡) = 𝑍[𝑖] (𝑡) , 𝑖 = 1, . . . , 𝑘. (48)

However, (48) contradicts (46), and hence (47) holds.
Next, we consider step (3). Recall that the length of the𝑗th longest RQ in Y(𝑡) is zero. After performing JSQ at step

(3), we have that

𝑌[𝑗] (𝑡 + 1) = 1,
𝑌[𝑖] (𝑡 + 1) = 0, 𝑖 = 𝑗 + 1, . . . , 𝑛. (49)

Next, we consider Z(𝑡). From (46) and (47), (𝑗 − 1)th longest
queue is the shortest queue in Z(𝑡); otherwise Y(𝑡) and Z(𝑡)
will differ by more than two customers, violating induction
hypothesis (41).Thus, in step (3), one customer from 𝑋̃(𝑡)will
be routed to the (𝑗−1)th shortest queue of Z(𝑡).Thus we have
that, from (46),

𝑌̃[𝑗−1] (𝑡 + 1) = 𝑍[𝑗−1] (𝑡) + 1 = 𝑌[𝑗−1] (𝑡)
= 𝑌[𝑗−1] (𝑡 + 1) . (50)

Also, in (47), we must have 𝑍[𝑗−1](𝑡) > 0 because it is formed
by water-filling of 𝜉 > 0 customers. Then we have that

𝑌[𝑗−1] (𝑡 + 1) = 𝑌̃󸀠[𝑗−1] (𝑡 + 1) ,
𝑌[𝑖] (𝑡 + 1) ≤ 𝑌̃󸀠[𝑖] (𝑡 + 1) , 𝑖 ≥ 𝑗. (51)
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Thus, we have that Y(𝑡 + 1) ≺𝑤 Ỹ󸀠(𝑡 + 1); that is, (41) holds
at time 𝑡 + 1. We conclude that the system remains in WFM
phase at time 𝑡 + 1.
Case 5 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝐼, 𝑆)). In this case, we can show that
the system remains in WFM phase at time 𝑡 + 1 in a similar
manner to that used for (𝑅, 𝑆), because action pair (𝐼, 𝑆) can
be regarded as a special case of (𝑅, 𝑆) with 𝑋(𝑡) = 0 (i.e., 𝜋
“routes” zero customers to the RQ).

Case 6 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑅, 𝐼)). Since a routing has occurred at
the SQ under 𝜋, clearly we have 𝑋(𝑡 + 1) < 𝑋(𝑡 + 1). Let 𝜉 =𝑋(𝑡)−𝑋(𝑡). To construct Ỹ󸀠(𝑡+1), we need to performwater-
filling routing to Ỹ(𝑡+1)with 𝜉+1 customers; however, we can
alternatively construct Y(𝑡 + 1) and Ỹ󸀠(𝑡 + 1) for comparison
purposes as follows:

(1) Perform water-filling routing of 𝜉 customers from𝑋(𝑡) to Ỹ(𝑡).
(2) Perform JSQ from both 𝑋(𝑡) and 𝑋(𝑡) so as to yield

Y(𝑡 + 1) and Ỹ󸀠(𝑡 + 1), respectively.
By induction hypothesis, Y(𝑡) is weakly majorized by the
resulting vector in step (1) which is Ỹ󸀠(𝑡). In step (2), JSQ has
been performed equally on Y(𝑡) and Ỹ󸀠(𝑡), and thus the weak
majorization relation is preserved between the RQs.Thus, we
have Y(𝑡 + 1) ≺𝑤 Ỹ󸀠(𝑡 + 1).
Case 7 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑆, 𝐼)). Since there is no change in the
SQs, 𝑋(𝑡 + 1) < 𝑋(𝑡 + 1) holds. Also, since a RQ has been
served under 𝜋, we have

Y (𝑡 + 1) ≺𝑤 Y (𝑡) ≺𝑤 Ỹ󸀠 (𝑡) = Ỹ󸀠 (𝑡 + 1) ; (52)

that is, the system is in WFM phase at time 𝑡 + 1.
Case 8 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝐼, 𝑅)). Irrespective of which RQ 𝜋̃
routes a customer to, we have

Y (𝑡 + 1) = Y (𝑡) ≺𝑤Ỹ󸀠 (𝑡) ≺𝑤Ỹ󸀠 (𝑡 + 1) (53)

by induction hypothesis and the definition of Ỹ󸀠(𝑡).Thus, (41)
holds at time 𝑡 + 1. The system may make the transition to
either WFM phase or WM phase depending on the length
of the SQs. If 𝜉 = 1, that is, 𝑋(𝑡) = 𝑋(𝑡) + 1, we have that𝑋(𝑡+ 1) = 𝑋(𝑡 + 1), and (53) implies that Y(𝑡 + 1) ≺𝑤 Ỹ(𝑡 + 1).
Thus, the system makes the transition to WM phase at time𝑡 + 1. Otherwise (𝜉 > 1), from (53), the system remains at
WFM phase.

Case 9 ((𝜋(𝑡), 𝜋̃(𝑡)) = (𝑆, 𝑅)). Using a similar argument to
Case 8, we have

Y (𝑡 + 1) ≺𝑤Y (𝑡) ≺𝑤Ỹ󸀠 (𝑡) ≺𝑤Ỹ󸀠 (𝑡 + 1) . (54)

Also, the systemmakes the transition to eitherWFMphase or
WMphase. If𝑋(𝑡)−𝑋(𝑡) = 1, (54) impliesY(𝑡+1) ≺𝑤 Ỹ(𝑡+1),
and thus the system is in WM phase at time 𝑡 + 1; otherwise,
from (54), the system remains in WFM phase.

4.4. Proof and Remarks. We are now ready to prove
Theorem 3.

Proof ofTheorem 3. Lemmas 6 and 8 imply that we can couple
the queue length processes such that the system is either in
WM phase or in WFM phase for all 𝑠 ≥ 𝑡, by using forward
induction [18]. If the system is in WM phase at time 𝑡, it is
implied that

𝑋 (𝑡) + ‖Y (𝑡)‖ ≤ 𝑋 (𝑡) + 󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 (55)

because𝑋(𝑡) ≤ 𝑋(𝑡) andY(𝑡)≺𝑤Ỹ(𝑡). If the system is inWFM
phase at time 𝑡, we have that since Y(𝑡)≺𝑤Ỹ󸀠(𝑡),

‖Y (𝑡)‖ ≤ 󵄩󵄩󵄩󵄩󵄩Ỹ󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 + 𝜉
= 󵄩󵄩󵄩󵄩󵄩Ỹ (𝑡)󵄩󵄩󵄩󵄩󵄩 + 𝑋 (𝑡) − 𝑋 (𝑡) ,

(56)

which implies (55) as well. In conclusion, using the proposed
coupling, we can construct sample paths under which (55)
is satisfied for all 𝑡 = 0, 1, 2, . . .. This completes the proof of
(3).

Remark 9. One could ask, can we construct direct coupling
between the processes of sum-queues which leads to delay
optimality? That is, if we define 𝑍(𝑡) fl 𝑋(𝑡) + ‖Y(𝑡)‖ and𝑍(𝑡) fl 𝑋(𝑡) + ‖Ỹ(𝑡)‖, can we directly couple 𝑍(𝑡) and 𝑍(𝑡)
to show optimality, instead of coupling the vectors of SQ and
RQs as in our proof? We believe it is quite unlikely, because
the information on individual queue lengths, which is lost
if we take the sum of queue lengths, is vital in proving the
optimality of JSQ-LCQ. For example, if we consider action
pair (𝜋, 𝜋̃) = (𝑅, 𝑆), the number of customers in the system
reduces by one under 𝜋̃; however it remains fixed under JSQ-
LCQ. Thus 𝜋̃ appears to get ahead of JSQ-LCQ in terms of
reducing the sum-queue length. However, this is not true in
the long term, as we have analyzed through coupling in WM
and WFM phases which were defined based on the (weak)
majorization of queue vectors. Importantly, in a half-duplex
two-hop network, we route a customer at the expense of the
opportunity to serve a RQ in that time slot and vice versa.
Thus, routing and service are inherently in a tradeoff relation,
and thus it is crucial that the scheduling and routing decisions
properly balance queues so as to maximize the time-varying
opportunity in channel connectivity. We have rigorously
showed that JSQ-LCQ is able to capture those aspects and as
a result achieves delay optimality in the stochastic ordering
sense.

5. Simulation

In this section, we evaluate the performance of JSQ-LCQ
via simulations. We used MATLAB as the discrete event
simulator. A time-slotted system is simulated with the fol-
lowing parameters: the probability of a customer arriving
at the source queue given by 𝜆; the probability that a relay
queue is in ON state given by 𝑝; the number of relay nodes
given by 𝑛. The performance metric in our simulation is the
average number of customers in the system. We compared



Mathematical Problems in Engineering 13

JSQ-LCQ
Backpressure

3 4 5 6 7 8 92
Number of relays

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Av
er

ag
e n

um
be

r o
f c

us
to

m
er

s

Figure 4: Comparison of the average number of customers in the
system versus the number of relay nodes.

JSQ-LCQwith the well-known backpressure (BP) scheduling
algorithm. Note that the BP algorithm is known to be
throughput optimal; however it does not guarantee delay
optimality.

Figure 4 shows the performance of JSQ-LCQ and BP
against 𝑛 or the number of relay nodes. We vary 𝑛 from
2 to 9, where the parameters 𝑝 and 𝜆 are given by 0.14
and 0.1, respectively. We observe that JSQ-LCQ achieves the
lower number of customers over all the values of 𝑛. We also
observe that the average number of customers decreases with
increasing 𝑛 in both cases. This is because the overall service
rate at 𝑛 relays is given by 1−(1−𝑝)𝑛 which increases in 𝑛.The
rate of decrease in the number of customers is higher at lower
values of 𝑛, which also can be explained from the dependency
of service rate 1−(1−𝑝)𝑛 on 𝑛; that is, the service rate increases
faster for smaller 𝑛.

Figure 5 shows the performance of JSQ-LCQ and BP
against 𝑝 which is the probability that a relay queue is in
ON state. The parameters 𝑛 and 𝜆 are given by 4 and 0.2,
respectively. We observe that the number of customers is
smaller with JSQ-LCQ over all the values of 𝑝. We also
observe that the average number of customers decreases as
a convex function of 𝑝 similar to Figure 4; however, the rate
of decrease is not as steep as that with respect to 𝑛, because
the service rate 1 − (1 − 𝑝)𝑛 is a polynomial function of 𝑝 in
contrast to its exponential dependence in 𝑛.

Figure 6 shows the performance of JSQ-LCQ and BP
against the arrival rate 𝜆. The parameters 𝑝 and 𝑛 are
given by 0.8 and 4, respectively. We observe that JSQ-LCQ
outperforms BP over all values of 𝜆. We also observe that
the number of customers increases with increasing 𝜆. The
number of customers will blow up as 𝜆 tightly approaches
condition (2). In conclusion, the simulation results verify that
JSQ-LCQ indeed achieves the smaller number of customers
in the system over all simulated parameters, as is expected
from our theoretical result on optimality.
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Figure 5: Comparison of the average number of customers in the
system versus the connectivity probability of relays.
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Figure 6: Comparison of the average number of customers in the
system versus the arrival rates.

6. Conclusion

In this paper, we studied a delay-optimal policy for half-
duplex two-hop relay networks with symmetric connectivity
on the service. We showed that JSQ-LCQ policy is strongly
optimal; that is, the total queue length under JSQ-LCQ is
stochastically dominated by any other policy. Our future
work includes devising simple policies for two-hop relay
networks with asymmetric connectivity and studying delay
optimality for cooperative relay networks with more than
two hops. Under certain realistic conditions for time-varying
channels, for example, fading due to the user mobility
having power-law distributions [39], the i.i.d. assumption
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of channel connectivity over time may not hold, and JSQ-
LCQ is not guaranteed to be delay-optimal. In fact, for many
realistic channel models, it is difficult to guarantee delay
optimality. The significance of our work is that, however, we
have established the delay optimality of a two-hop network
model with time-varying connectivity, albeit its simplicity,
considering that there exists a limited amount of works on
delay-optimal scheduling.
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