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Due to various reasons the solutions in real-world optimization problems cannot always be exactly evaluated but are sometimes
represented with approximated values and confidence intervals. In order to address this issue, the comparison of solutions has to be
done differently than for exactly evaluated solutions. In this paper, we define new relations under uncertainty between solutions in
multiobjective optimization that are represented with approximated values and confidence intervals. The new relations extend the
Pareto dominance relations, can handle constraints, and can be used to compare solutions, both with and without the confidence
interval. We also show that by including confidence intervals into the comparisons, the possibility of incorrect comparisons, due
to inaccurate approximations, is reduced. Without considering confidence intervals, the comparison of inaccurately approximated
solutions can result in the promising solutions being rejected and the worse ones preserved. The effect of new relations in the
comparison of solutions in a multiobjective optimization algorithm is also demonstrated.

1. Introduction

Multiobjective optimization is the process of simultaneously
optimizing two or more conflicting objectives. Problems
with multiple objectives can be found in various fields,
from product design and process optimization to financial
applications. Their specificity is that the result is not just
one solution, but a set of solutions representing trade-offs
between objectives.

Multiobjective evolutionary algorithms (MOEAs) are
known for efficiently solving these kind of problems [1].
However, MOEAs can also be used for solving optimization
problems with uncertain objective values. The reason for
uncertainty can be noise, robustness, fitness approximations,
or time-varying fitness functions. When solving uncertain
optimization problems, it is better if the algorithm takes
uncertainty into account.

Uncertain solutions can be represented with approxi-
mated values and variances of these approximations. From
the variance, the confidence interval of the approximation
can be calculated. This interval indicates the region in which

the exactly evaluated solution is most likely to appear. The
confidence interval width indicates the certainty of the
approximation. If the confidence interval is narrow, we can
be more certain about the approximation and vice versa.
Since the confidence intervals offer additional information on
the approximations, they can be effectively used to compare
solutions and an algorithm using confidence intervals can
perform better by exploiting this additional information
[2]. During optimization that does not consider confidence
intervals, an approximated solution may be incorrectly iden-
tified as the better of the two compared solutions. Often
the solution that is incorrectly determined as worse is then
discarded. Similarly, a promising solution can get discarded
if a worse solution is incorrectly determined as being better.
In both cases good solutions are lost due to the comparison
of solutions which only considers approximated values.

To prevent these unwanted effects, we propose new
relations for comparing solutions under uncertainty, where,
in addition to the approximated values of a solution, their
confidence intervals are considered. These relations cover
all possible combinations that can occur when comparing
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solutions represented with confidence intervals. New rela-
tions also take into consideration the feasibility of solutions
including the uncertainty of feasibility due to the uncertainty
of solutions. During the optimization process some solutions
are exactly evaluated and others approximated; therefore, the
relations under uncertainty also cover the comparison of
approximated solutions with exactly evaluated solutions.The
relations under uncertainty can be used to compare solutions
in any multiobjective optimization algorithm dealing with
solutions represented with confidence intervals.

The structure of this paper is as follows. In Section 2
we describe the existing techniques for comparing solutions
under uncertainty reported in the literature. In Section 3
we recall the Pareto dominance relations for comparing the
exactly evaluated solutions in multiobjective optimization.
In Section 4 we generalize these relations to solutions rep-
resented with approximated values and confidence intervals.
Section 5 presents the possible use of new relations under
uncertainty for comparing two solutions in any multiobjec-
tive optimization algorithm. Section 6 presents an empirical
proof of concept of comparing solutions under uncertainty
by demonstrating that the use of new relations under uncer-
tainty reduces the number of incorrect comparisons. Section
7 concludes the paper with a summary of the work done.

2. Existing Techniques for
Comparing Solutions

Comparison of solutions is an essential step of the optimiza-
tion process. Comparing solutions helps determine which
solution is better and therefore appropriate to drive the
optimization process further, and which one is worse and
should be replaced with a better solution. The comparison of
solutions in single objective optimization is straightforward.
Either both solutions have the same objective values, or one
solution is better than the other, which means that deciding
which solution is better is trivial.

In multiobjective optimization, we wish to simultane-
ously optimize several conflicting objectives. Here, one solu-
tion can be better in some objectives and worse in others.
Consequently, the comparison of solutions and therefore the
whole optimization process become more challenging.

When solving real-world optimization problems, it is
often not possible to determine the objective values with-
out uncertainties. The nature of uncertainties depends on
the problem. In [2], four types of uncertainty sources are
mentioned. The first one is the noisy fitness functions, where
the same input parameters return different objective values.
The second one is the requirement for solution robustness,
where the quality of the obtained optimal solutions should
be robust against environmental changes or deviations from
the optimal point. The third type is the approximated fitness,
where the fitness functions suffer from approximation errors.
The fourth and final type is the time-varying fitness functions,
where the optimum of the problem to be solved changes over
time and, thus, the optimizer should be able to track the
optimum continuously.

Regardless of the uncertainty origin, the techniques for
comparing solutions under uncertainty and determining

their domination status are similar. Two different approaches
are used when comparing solutions under uncertainty. The
first one is to take the approximated value and variance and
transform them into one value and then compare these single
values. The second approach is to calculate the confidence
interval and then directly compare the solutions represented
with confidence intervals.

An example of the first approach can be found in [3],
where probabilistic dominance is defined and, for comparing
solutions, the probability of dominance is used rather than
outright dominance. If the probability that one solution
dominates the other is higher than the specified degree
of confidence, then this solution is said to dominate the
other. This probabilistic dominance allows the use of the
usual deterministic elitist algorithms with certain degree
of confidence in the results. The methods to calculate the
probability of dominance vary, depending on the types of
uncertainty.

Similarly, in [4] the authors define the dominance relation
between solutions based on the probabilities of one solution
objective being better than the sameobjective of another solu-
tion. For solutionswithmore objectives, the hypercuboids are
defined and, similarly, comparing their volume and the center
point can determine the probability of one solution being
better than the other. To select diverse solutions, the paper
also redefines the crowding distance defined in [5] based on
the location and the volume of the hypercuboids of these
solutions.

Another example of this approach is presented in [6],
where each solution is inherently associated with a proba-
bility distribution over the objective space. A probabilistic
model that combines quality indicators and uncertainty is
created and then used to calculate the expected value for each
solution.

In the second approach, the solutions represented with
approximated values and confidence intervals are compared
to determine the relation between them.

In [7, 8], the authors tackle a noisy optimization problem
with an algorithm that evaluates every solution multiple
times (and if necessary performs additional evaluations to
reduce the uncertainty) and calculates the mean value and
standard deviation for these evaluations. A modified Pareto
dominance relation is defined for comparing solutions in
uncertain environments. The Pareto dominance relation is
modified in a way that the solution 𝑥 dominates solution 𝑦 if
for every objective, the mean value plus standard deviation of
𝑥 dominates themean valueminus standard deviation of 𝑦. If
this is not the case, the solutions are nondominated. To avoid
having too many nondominated solutions, the promising
solutions are additionally evaluated to make the standard
deviation smaller.

In [9], a robust multiobjective evolutionary algorithm
was developed for solving optimization problems in which
solutions should be invariant to small input changes. The
uncertain parameters are represented with intervals, which
results in solution objectives also being represented with
intervals. The algorithm for comparing solutions then com-
pares worst-case scenario values of objectives, that is, the
values at the border of an interval.
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In [10], the authors tackled noisy optimization problems
with a modified NSGA-II algorithm [5] for handling solu-
tions with uncertainty. The procedure for obtaining the rank
of solutions is transformed so that it also considers the vari-
ance of solutions. Dominated solutions can also be ranked
on the Pareto frontier, if the distance to any nondominated
solution, calculated from the fitness values and variances of
solutions, is smaller than the threshold called neighborhood
restriction factor. During the optimization process, this factor
becomes smaller and the number of evaluations taken for
nondominated solutions increases, resulting in a smaller
variance and a more precise set of nondominated solutions.

A concept of comparing solutions with uncertain objec-
tives represented with intervals is presented in [11]. The
authors define the extension of Pareto dominance based on a
theory of probabilistic dominance.They present a case where
objective values are continuously and uniformly distributed
inside the interval and by comparing the distributions the
probability of dominance is calculated. The approach is then
implemented in the modified SPEA [12] algorithm.

Another concept of comparing solutions under uncer-
tainty is presented in [13], where using a possibilistic frame-
work the new Pareto relations are defined. The solutions
characterized by a particular possibility distribution are rep-
resented with triangular possibility distributions-triplet of
values, most plausible value and lower and upper borders of
distribution that represent the least plausible values. Based
on this representation, the strong Pareto dominance, weak
Pareto dominance, and indifference are defined and used on
a vehicle routing problem with uncertain demands.

A more theoretical approach to the solution comparison
under uncertainty is presented in [14] for optimization
problems where the uncertainty of the solutions cannot
be reduced by the sampling methods. The solutions are
represented with intervals, and new relations are defined for
comparing those intervals. The authors define certain and
uncertain domination criteria for comparing intervals. On
this basis, they suggest a strong Pareto dominance relation
in cases when the dominance relation can be determined
and weak Pareto dominance relation when the domination
relation cannot be determined because of uncertainty. In this
case, the expected values for every solution are assumed and
these values are then compared.

In [15], a partial order approach is suggested to enable
the comparison of solutions represented with confidence
intervals. This approach does not differentiate between the
cases in which the upper border of one interval dominates the
lower border of another interval and the cases in which some
part of intervals overlap. A very similar approach to handle
solutions represented with intervals, called imprecise Pareto
relations, is presented in [16].

Bounding boxes representing multiobjective solutions
with confidence intervals are defined in [17] (they are
described in greater detail in Section 4). The authors pre-
sented various comparison strategies, but in all strategies
the comparison of bounding boxes is simplified to the
comparison of bounding box bounds. The individuals are
compared to all solutions in the population and individuals
with a small probability of being competitive are rejected,

while individuals with a high probability of being better are
exactly evaluated.

To our knowledge, none of these methods systematically
covers all cases that can occur when comparing (constrained)
multiobjective solutions with confidence intervals, which is
the main contribution of this paper.

Because the comparison of solutions under uncertainty
is based on the comparison of solutions without uncertainty,
the latter concept is described first.

3. Relations without Uncertainty

A constrainedmultiobjective optimization problem (CMOP)
consists of finding the minimum of the function:

𝑓 : 𝑋 → 𝑍

𝑓 : (𝑥
1
, . . . , 𝑥

𝑛
) → (𝑓
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, . . . , 𝑥

𝑛
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subject to
(i) boundary constraints:

𝑥
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𝑖

≤ 𝑥
𝑖
≤ 𝑥

max
𝑖

; (𝑖 = 1, . . . , 𝑛) , (2)

(ii) constraints on decision values:

𝑔
𝑗
(𝑥) ≤ 0; (𝑗 = 1, 2, . . . , 𝑘) , (3)

(iii) constraints on objectives:

ℎ
𝑗
(𝑓 (𝑥)) ≤ 0; (𝑗 = 1, 2, . . . , 𝑙) , (4)

where 𝑛 is the number of variables, 𝑚 is the number
of objectives, 𝑘 is the number of constraints on decision
variables, and 𝑙 is the number of constraints on objectives.
Each solution 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) ∈ 𝑋 is called a decision vector,

while the corresponding element 𝑧 = 𝑓(𝑥) ∈ 𝑍 is an objective
vector.

The boundary constraints define the search region of an
optimization problem by setting lower bounds 𝑥

min and the
upper bounds 𝑥max for the variables. Inside the search region,
the constraints on decision values further define the feasi-
bility of solutions. An example of such constraint would be
that the sum of two variables should not exceed a predefined
value. Since these constraints can be complex, the region they
define can also be complex. As a result, the red contour in
Figure 1 that represents this region is drawn as a complex
shape. The constraints on objectives limit the feasibility of
the objective values. An example of constraint on objectives
would be to set amaximumbudget and aminimum top speed
in the optimization problem of finding a fast and cheap car.
The constraints on objectives are typically not very complex;
hence the region defined by these constraints is fairly simple.
We call this region feasible objective value region; in Figure 1
it is surrounded by the blue and green lines.

If all constraints are satisfied, we say that the solution is
feasible; otherwise it is infeasible. All feasible solutions in the
decision space constitute the feasible region. The mapping of
this region in the objective space is called feasible region image
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Figure 1: The objective space of a constrained multiobjective
optimization problem.

and this region is marked with black hatching in Figure 1.The
feasible solutions of an optimization problem that are the best
with regard to all objectives create a front of solutions called
the Pareto optimal front, which is indicated by the green line
in Figure 1.

This problem formulation is used to describe the relations
between the solutions without and with uncertainty. In this
sectionwe consider the case in which all solutions of a CMOP
are exactly evaluated; that is, they are without uncertainty.

Definition 1 (Pareto dominance). The objective vector 𝑧

dominates the objective vector 𝑤, 𝑧 ≺ 𝑤, if and only if
𝑧
𝑗
≤ 𝑤
𝑗
for all 𝑗 ∈ {1, . . . , 𝑚} and 𝑧

𝑘
< 𝑤
𝑘
for at least one

𝑘 ∈ {1, . . . , 𝑚}.

Definition 2 (weak Pareto dominance). The objective vector
𝑧weakly dominates the objective vector𝑤, 𝑧 ⪯ 𝑤, if and only
if 𝑧
𝑗
≤ 𝑤
𝑗
for all 𝑗 ∈ {1, . . . , 𝑚}.

Definition 3 (strict Pareto dominance). The objective vector
𝑧 strictly dominates the objective vector 𝑤, 𝑧 ≺≺ 𝑤, if and
only if 𝑧

𝑗
< 𝑤
𝑗
for all 𝑗 ∈ {1, . . . , 𝑚}.

When 𝑧 = 𝑓(𝑥), 𝑤 = 𝑓(𝑦), and 𝑧 (weakly or strictly)
dominates 𝑤, we say that solution 𝑥 (weakly or strictly)
dominates solution 𝑦. In other words, solution 𝑥 is equal to
or better than solution 𝑦. The weak Pareto dominance is a
natural generalization of the ≤ relation, and the strict Pareto
dominance is the natural generalization of the < relation.

Definition 4 (incomparability). The objective vectors 𝑧 and𝑤

are incomparable, 𝑧 ‖ 𝑤, if and only if 𝑧  𝑤 and 𝑤  𝑧.

Again, if 𝑧 and𝑤 are incomparable, solutions 𝑥 and 𝑦 are
incomparable.

The abovedefined relations are usually used only when
solving problems without constraints where all solutions
are feasible. For cases where the feasibility of solutions is
unknown, the Pareto dominance relation is slightlymodified,
as suggested in [5].

Definition 5 (constrained dominance). The objective vector 𝑧
constrained-dominates the objective vector𝑤, 𝑧≺

𝑐
𝑤, if any of

the following conditions are true.

(1) Solution 𝑧 is feasible and solution 𝑤 is not.
(2) Solutions 𝑧 and 𝑤 are both infeasible, but solution 𝑧

has a smaller overall constraint violation.
(3) Solutions 𝑧 and 𝑤 are feasible and solution 𝑧 Pareto

dominates solution 𝑤.

When 𝑧 = 𝑓(𝑥), 𝑤 = 𝑓(𝑦), and 𝑧 constrained-dominates
𝑤, we say that solution 𝑥 constrained-dominates solution 𝑦.

The effect of using the constrained dominance principle is
that any feasible solution is better than any infeasible solution
and that of the two infeasible solutions the one closer to the
feasibility region is better.

4. Relations under Uncertainty

In this section we consider the case where the objective
values of the solutions are represented with the approximated
values and confidence intervals for each approximation. In
such a case, the standard relations described previously
are not suitable and must be adapted to accommodate the
uncertainty. Every solution 𝑥 is represented with a vector of
approximated objective values 𝑧 = 𝑓(𝑥) = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑚
)

and a confidence vector 𝜀 = (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑚
). For the objective

𝑧
𝑖
the confidence interval is equal to [𝑧

𝑖
− 𝜀
𝑖
, 𝑧
𝑖
+ 𝜀
𝑖
]. In

order to be able to compare the solutions represented in this
way, the relations between the solutions under uncertainty
are defined on the bounding boxes (BBs) of their objective
values. From the vectors of the approximated values and the
confidence intervals, the bounding box of an objective vector
𝑧 is designed as (Figure 2)

BB (𝑧, 𝜀) = [𝑧
1
− 𝜀
1
, 𝑧
1
+ 𝜀
1
] × [𝑧

2
− 𝜀
2
, 𝑧
2
− 𝜀
2
]

× ⋅ ⋅ ⋅ × [𝑧
𝑚

− 𝜀
𝑚
, 𝑧
𝑚

− 𝜀
𝑚
] .

(5)

This definition of BB presumes that the confidence
intervals are symmetric. This is not always the case, for
example, because of nonsymmetric form of noise. Instead of
considering just confidence vector 𝜀, we could define lower-
bound confidence vector 𝜀 = (𝜀

1
, 𝜀
2
, . . . , 𝜀

𝑚
) and upper-

bound confidence vector 𝜀 = (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑚
). For the objective

𝑧
𝑖
the confidence interval would then be equal to [𝑧

𝑖
− 𝜀
𝑖
, 𝑧
𝑖
+

𝜀
𝑖
], and the definition of the bounding box that considers the

nonsymmetric uncertainty intervals would then be

BB (𝑧, 𝜀, 𝜀) = [𝑧
1
− 𝜀
1
, 𝑧
1
+ 𝜀
1
] × [𝑧

2
− 𝜀
2
, 𝑧
2
+ 𝜀
2
]

× ⋅ ⋅ ⋅ × [𝑧
𝑚

− 𝜀
𝑚
, 𝑧
𝑚

+ 𝜀
𝑚
] .

(6)
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Figure 2: The bounding box of an objective vector.

However, since the relations under uncertainty are indifferent
to the shape and size of the bounding boxes, we can for the
sake of simplicity presume that the confidence interval is
always symmetric.

In addition to bounding boxes, where every objective
has its own confidence interval, multiobjective solutions
with uncertainty can also be represented with ellipsoids.
Representation with ellipsoids restricts all objectives from
obtaining their worst-case values simultaneously. But since
comparing multiobjective solutions is performed by compar-
ing pairs of objectives, where the confidence of each objective
is inspected, we adopt the approach with bounding boxes.

We handle relations under uncertainty without con-
straints and with constraints separately.

4.1. Relations under Uncertainty without Constraints

Definition 6 (probable Pareto dominance). The bounding
box BB(𝑧, 𝜀) probably dominates the bounding box BB(𝑤, 𝛿),
BB(𝑧, 𝜀)≺

𝑢
BB(𝑤, 𝛿), if and only if for every 𝑧


∈ BB(𝑧, 𝜀) and

every 𝑤

∈ BB(𝑤, 𝛿): 𝑧 ≺ 𝑤

.

If 𝑧 = 𝑓(𝑥) with confidence vector 𝜀, 𝑤 = 𝑓(𝑦) with
confidence vector 𝛿, and BB(𝑧, 𝜀)≺

𝑢
BB(𝑤, 𝛿), then solution

𝑥 probably dominates solution 𝑦 (𝑥≺
𝑢
𝑦). In other words, 𝑥

dominates 𝑦 with (high) confidence (depending on 𝜀 and 𝛿).
To test whether BB(𝑧, 𝜀) probably dominates BB(𝑤, 𝛿) it is

enough to check if the corner point (𝑧
1
+𝜀
1
, 𝑧
2
+𝜀
2
, . . . , 𝑧

𝑚
+𝜀
𝑚
)

dominates the corner point (𝑤
1
− 𝛿
1
, 𝑤
2
− 𝛿
2
, . . . , 𝑤

𝑚
− 𝛿
𝑚
).

If it does, then BB(𝑧, 𝜀)≺
𝑢
BB(𝑤, 𝛿).

Figure 3 shows the objective values 𝑧
1
, . . . , 𝑧

5 and their
bounding boxes.We can see that 𝑧1 probably dominates solu-
tion 𝑧

4 (𝑧1≺
𝑢
𝑧
4).

Analogously, other relations under uncertainty can be
defined.

Definition 7 (probable Pareto nondominance). Thebounding
box BB(𝑧, 𝜀) is probably nondominated by the bounding box
BB(𝑤, 𝛿), BB(𝑧, 𝜀) ̸≻

𝑢
BB(𝑤, 𝛿), if and only if for every 𝑧


∈

BB(𝑧, 𝜀) and 𝑤

∈ BB(𝑤, 𝛿), 𝑧 ≺ 𝑤

 or 𝑧 ‖ 𝑤
.

z2
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z3

z4
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f1

f2

Figure 3: Approximated solutions presented in the objective space
using bounding boxes.

Several examples of probable Pareto nondominance can
be seen in Figure 3: 𝑧1 ̸≻

𝑢
𝑧
2, 𝑧1 ̸≻

𝑢
𝑧
3, 𝑧1 ̸≻

𝑢
𝑧
4, 𝑧1 ̸≻

𝑢
𝑧
5, 𝑧2 ̸≻

𝑢
𝑧
4,

and 𝑧
3

̸≻
𝑢
𝑧
4.

If 𝑧 = 𝑓(𝑥) with confidence vector 𝜀, 𝑤 = 𝑓(𝑦) with con-
fidence vector 𝛿, and BB(𝑧, 𝜀) ̸≻

𝑢
BB(𝑤, 𝛿), we say that solu-

tion 𝑥 is probably nondominated by solution 𝑦 (𝑥 ̸≻
𝑢
𝑦). This

means that we expect that either 𝑥 dominates 𝑦 or that the
solutions are incomparable.

Definition 8 (probable incomparability). The bounding box
BB(𝑧, 𝜀) is probably incomparable with the bounding box
BB(𝑤, 𝛿), BB(𝑧, 𝜀) ‖

𝑢
BB(𝑤, 𝛿), if and only if for every 𝑧


∈

BB(𝑧, 𝜀) and 𝑤

∈ BB(𝑤, 𝛿), 𝑧 ‖ 𝑤

.

Again, two solutions 𝑥 and 𝑦 are probably incomparable
when their corresponding bounding boxes are probably
incomparable (𝑥‖

𝑢
𝑦). In Figure 3, 𝑧2 is probably incompara-

ble with 𝑧
3.

Finally, when none of the presented relations under
uncertainty apply, two solutions are in an undetermined
relation.

Definition 9 (undetermined relation). The bounding box
BB(𝑧, 𝜀) is in an undetermined relation with the bounding
box BB(𝑤, 𝛿), BB(𝑧, 𝜀)∼

𝑢
BB(𝑤, 𝛿), if and only if BB(𝑧, 𝜀) ∩

BB(𝑤, 𝛿) ̸= 0.

If 𝑧 = 𝑓(𝑥) with confidence vector 𝜀, 𝑤 = 𝑓(𝑦) with
confidence vector 𝛿, and BB(𝑧, 𝜀) ∼

𝑢
BB(𝑤, 𝛿), we say that

solution 𝑥 is in an undetermined relation with solution 𝑦

(𝑥∼
𝑢
𝑦). This means it is expected that either one solution

weakly dominates the other or that the solutions are incom-
parable. In Figure 3, 𝑧5 is in an undetermined relation with
𝑧
2, 𝑧3, and 𝑧

4.
Two implications can be found between relations under

uncertainty. If solution𝑥 probably dominates solution𝑦, then
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the solution 𝑥 is also probably nondominated by the solution
𝑦:

𝑥≺
𝑢
𝑦 ⇒ 𝑥 ̸≻

𝑢
𝑦. (7)

Similarly, probable incomparability implies probable Pareto
nondominance

𝑥‖
𝑢
𝑦 ⇒ 𝑥 ̸≻

𝑢
𝑦. (8)

If all the solutions are exactly evaluated, that is, all their
corresponding confidence interval widths equal zero, the
relations presented in this section directly translate to those
described in Section 3.

4.2. Relations under Uncertainty with Constraints. Similarly
to the Pareto dominance relations (Section 3), the relations
under uncertainty without constraints (Section 4.1) are usu-
ally applied only if all solutions are feasible. To compare solu-
tions represented with BBs where the feasibility of solutions
is uncertain, we need to define a measure of feasibility for
solutions represented with BBs. Since BBs are defined on
the objective space, we only need to check the feasibility of
BBs against constraints on objectives that define the feasible
objective value region F. We assume that, before checking
these constraints, the solution has already met constraints on
decision values and boundary constraints.

Definition 10 (probable feasibility). The bounding box
BB(𝑧, 𝜀) is probably feasible if BB(𝑧, 𝜀) ∩F = BB(𝑧, 𝜀), where
F is the feasible objective value region of the problem.

Definition 11 (probable infeasibility). The bounding box
BB(𝑧, 𝜀) is probably infeasible if BB(𝑧, 𝜀) ∩F = 0, whereF is
the feasible objective value region of the problem.

Definition 12 (undetermined feasibility). The bounding box
BB(𝑧, 𝜀) has undetermined feasibility if BB(𝑧, 𝜀) ∩ F ̸=

BB(𝑧, 𝜀) andBB(𝑧, 𝜀)∩F ̸= 0, whereF is the feasible objective
value region of the problem.

In the unlikely case of very complex constraints on
objectives, it can be difficult to implement and calculate the
intersection between BB andF. However, the procedure can
be simplified by checking the feasibility only for the points on
the vertices of the BB. If all points are feasible, we can say that
the solution is probably feasible; if all points are infeasible, the
solution is probably infeasible; and if some points are feasible
and others are not, we can say the solution has undetermined
feasibility. We can assume this simplification since the widths
of the confidence intervals are relatively small and we can
presume that the vertices represent the whole BB sufficiently
well.

To compare feasible and infeasible solutions represented
with BBs, we define the following four relations under
uncertainty with constraints.

Definition 13 (probable constrained dominance). The bound-
ing box BB(𝑧, 𝜀) probably constrained-dominates the bound-
ing box BB(𝑤, 𝛿), BB(𝑧, 𝜀)≺

𝑢𝑐
BB(𝑤, 𝛿), if any of the following

conditions is true.

(1) The bounding box BB(𝑧, 𝜀) is probably feasible and
the bounding box BB(𝑤, 𝛿) is probably infeasible.

(2) The bounding boxes BB(𝑧, 𝜀) and BB(𝑤, 𝛿) are both
probably infeasible, but the objective vector 𝑧 has a
smaller overall constraint violation.

(3) The bounding boxes BB(𝑧, 𝜀) and BB(𝑤, 𝛿) are both
probably feasible and BB(𝑧, 𝜀)≺

𝑢
BB(𝑤, 𝛿).

(4) The bounding box BB(𝑧, 𝜀) is probably feasible and
the bounding box BB(𝑤, 𝛿) has undetermined feasi-
bility and BB(𝑧, 𝜀)≺

𝑢
BB(𝑤, 𝛿).

If 𝑧 = 𝑓(𝑥) with confidence vector 𝜀, 𝑤 = 𝑓(𝑦) with
confidence vector 𝛿, and BB(𝑧, 𝜀)≺

𝑢𝑐
BB(𝑤, 𝛿), then the solu-

tion 𝑥 probably constrained-dominates the solution 𝑦

(𝑥≺
𝑢𝑐
𝑦).

Definition 14 (probable constrained nondominance). The
bounding box BB(𝑧, 𝜀) is probably constrained-non-domi-
nated by the bounding box BB(𝑤, 𝛿), BB(𝑧, 𝜀) ̸≻

𝑢𝑐
BB(𝑤, 𝛿), if

any of the following conditions is true.

(1) The bounding boxes BB(𝑧, 𝜀) and BB(𝑤, 𝛿) are prob-
ably feasible and BB(𝑧, 𝜀) ̸≻

𝑢
BB(𝑤, 𝛿).

(2) The bounding box BB(𝑧, 𝜀) is probably feasible
and the bounding box BB(𝑤, 𝛿) has undetermined
feasibility and either BB(𝑧, 𝜀) ̸≻

𝑢
BB(𝑤, 𝛿) or BB(𝑧,

𝜀)‖
𝑢
BB(𝑤, 𝛿).

If 𝑧 = 𝑓(𝑥) with confidence vector 𝜀, 𝑤 = 𝑓(𝑦)

with confidence vector 𝛿, and BB(𝑧, 𝜀) ̸≻
𝑢𝑐
BB(𝑤, 𝛿), then the

solution 𝑥 is probably constrained-non-dominated by the
solution 𝑦 (𝑥 ̸≻

𝑢𝑐
𝑦).

Definition 15 (probable constrained incomparability). The
bounding box BB(𝑧, 𝜀) is probably constrained-incomparable
with the bounding box BB(𝑤, 𝛿), BB(𝑧, 𝜀)‖

𝑢𝑐
BB(𝑤, 𝛿), if any

of the following conditions is true.

(1) The bounding boxes BB(𝑧, 𝜀) and BB(𝑤, 𝛿) are prob-
ably feasible and BB(𝑧, 𝜀)‖

𝑢
BB(𝑤, 𝛿).

(2) The bounding boxes BB(𝑧, 𝜀) and BB(𝑤, 𝛿) are both
probably infeasible, and both objective vectors 𝑧 and
𝑤 have the same overall constraint violation.

Two solutions 𝑥 and 𝑦 are probably constrained-incom-
parable when the corresponding bounding boxes are proba-
bly constrained-incomparable (𝑥‖

𝑢𝑐
𝑦).

Definition 16 (undetermined constrained relation). The
bounding box BB(𝑧, 𝜀) is in an undetermined constrained
relation with the bounding box BB(𝑤, 𝛿), BB(𝑧, 𝜀)∼

𝑢𝑐
BB(𝑤,

𝛿), if the two bounding boxes are not in any other constrained
relation under uncertainty.

Again, two solutions𝑥 and𝑦 are in an undetermined con-
strained relationwhen the corresponding bounding boxes are
in an undetermined constrained relation (𝑥 ∼

𝑢𝑐
𝑦).

When two solutions are in an undetermined constrained
relation, the three following outcomes are possible: (1) the
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Table 1: Relations without uncertainty.

Relation name Relation
symbol Comparison

Pareto dominance 𝑧 ≺ 𝑤 𝑧 dominates 𝑤
Weak Pareto dominance 𝑧 ≼ 𝑤 𝑧 weakly dominates 𝑤
Strict Pareto dominance 𝑧 ≺≺ 𝑤 𝑧 strictly dominates 𝑤
Incompatibility 𝑧‖𝑤 𝑧 is incomparable with 𝑤

Constrained dominance 𝑧 ≺
𝑐
𝑤 𝑧 constrained-dominates 𝑤

first solution dominates the second one, (2) the second solu-
tion dominates the first one, or (3) the solutions are incom-
parable. We present a possible scenario to clarify why the
solutions can be in an undetermined constrained relation due
to their feasibility.We compare solution𝑥with undetermined
feasibility and solution 𝑦 with probable feasibility and 𝑥 is
probably nondominated by 𝑦. This means that if we were
to exactly evaluate solution 𝑥 and it would be infeasible, the
solution 𝑦 would dominate the solution 𝑥. This implies that
the solutions can be in any relation; hence, by definition, they
are in an undetermined constrained relation. Similarly, there
are also other cases inwhich solutions are in an undetermined
constrained relation and we need to exactly evaluate at least
one of the solutions.

All relations for comparing solutions mentioned in this
paper are summarized in Tables 1, 2, and 3.

5. Comparing Solutions under Uncertainty

In iterative optimization algorithms, the process of gradual
solution improvement is based on solution comparisons. By
comparing solutions, the algorithm finds which solutions are
better and promotes them further, while those that are found
worse are discarded.

In this section, we show the use of constrained relations
under uncertainty for comparing two solutions represented
with BBs. This comparison can be implemented in any
multiobjective optimization algorithm. However, since every
algorithm applies a specific search strategy, we present how
the relations under uncertainty can be used instead of Pareto
dominance relations.

Nevertheless, it is to be noted that straightforward use of
relations under uncertainty instead of Pareto dominance rela-
tions is not always possible. When the confidence intervals
(at least one) are overlapping, confidence interval reduction
procedures have to be applied in order to be able to determine
the result of comparison. These additional procedures can,
for example, be exact evaluations, in the case of surrogate-
based optimization and in the case of optimizationwith noisy
objectives additional evaluations that result in reducing the
width of the confidence interval. In cases where the width of
the confidence interval cannot be changed and the relations
between solutions are unknown, another approach needs to
be taken, for example, comparison of the approximated values
instead of comparing BBs.

When comparing solution𝑝with confidence vector 𝜀 and
solution 𝑞 with confidence vector 𝛿, we consecutively check
the four possibilities listed below.

(1) If 𝑝≺
𝑢𝑐
𝑞, we can consider 𝑝 and 𝑞 to be in the

Pareto dominance relation (𝑝 ≺ 𝑞).
Here the solution 𝑝 is probably better than the
solution 𝑞; therefore, no confidence interval reduction
is necessary as it would probably not change the
dominance relation.
(2) If 𝑝‖

𝑢𝑐
𝑞, we can consider 𝑝 and 𝑞 to be incompa-

rable (𝑝 ‖ 𝑞).
In this case, solutions 𝑝 and 𝑞 are probably con-
strained-incomparable. Even if both solutions were
exactly evaluated, they would probably still be incom-
parable and the algorithm would probably still keep
both solutions. Hence, no confidence interval reduc-
tion is needed in this case.
(3) If 𝑝 ̸≻

𝑢𝑐
𝑞, the algorithm checks 𝜀. If 𝜀 ̸= 0, the

algorithm performs confidence interval reduction on
𝑝 and compares the solutions again. If 𝜀 = 0, the algo-
rithm performs confidence interval reduction on sol-
ution 𝑞 and compares the solutions again.
In this case, the solution 𝑝 is probably better in at
least one objective and probably not worse in the
others. In order to determine whether either solution
𝑝 dominates solution 𝑞 or they are incomparable, (at
least) for one solution the confidence interval reduc-
tion needs to be performed. Because 𝑝 is more pro-
mising, its confidence intervals are checked. If their
widths are different from zero, which means that
the solution is approximated, the algorithm performs
confidence interval reduction on 𝑝 and then com-
pares the solutions again. If the confidence interval
widths are equal to zero, which means that solution
𝑝 is exactly evaluated, then, in order to be able to
compare the solutions, the algorithm performs con-
fidence interval reduction on 𝑞 and compares the sol-
utions again.
(4) If 𝑝∼

𝑢𝑐
𝑞, the algorithm checks the feasibility of

solutions. If both solutions have undetermined feasi-
bility, the algorithm randomly chooses one solution
and performs confidence interval reduction on it. If
one solution has undetermined feasibility, the algo-
rithm performs confidence interval reduction on that
solution and compares the solutions again. If both
solutions are probably feasible, the algorithm checks
the confidence vector of a randomly picked solution.
If it is not equal to zero, the algorithm performs con-
fidence interval reduction on this solution and com-
pares the solutions again. If the confidence vector
is equal to zero, the algorithm performs confidence
interval reduction on the other solution and compares
the solutions again.
In this case, the only way to find out which solution
is better is to perform confidence interval reduction
on (at least) one solution. Because solutions near the
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Table 2: Relations under uncertainty without constraints.

Relation name Relation symbol Comparison
Probable Pareto dominance BB(𝑧, 𝜀) ≺

𝑢
BB(𝑤, 𝛿) BB(𝑧, 𝜀) probably dominates BB(𝑤, 𝛿)

Probable Pareto nondominance BB(𝑧, 𝜀) ̸≻
𝑢
BB(𝑤, 𝛿) BB(𝑧, 𝜀) is probably nondominated by BB(𝑤, 𝛿)

Probable incomparability BB (𝑧, 𝜀)‖
𝑢
BB(𝑤, 𝛿) BB(𝑧, 𝜀) is probably incomparable with BB(𝑤, 𝛿)

Undetermined relation BB(𝑧, 𝜀) ∼
𝑢
BB(𝑤, 𝛿) BB(𝑧, 𝜀) is in an undetermined relation with BB(𝑤, 𝛿)

Table 3: Relations under uncertainty with constraints.

Relation name Relation symbol Comparison
Probable constrained dominance BB(𝑧, 𝜀) ≺

𝑢𝑐
BB(𝑤, 𝛿) BB(𝑧, 𝜀) probably constrained-dominates BB(𝑤, 𝛿)

Probable constrained nondominance BB(𝑧, 𝜀) ̸≻
𝑢𝑐

BB(𝑤, 𝛿) BB(𝑧, 𝜀) is probably constrained-non-dominated by BB(𝑤, 𝛿)

Probable constrained incomparability BB (𝑧, 𝜀)‖
𝑢𝑐
BB(𝑤, 𝛿) BB(𝑧, 𝜀) is probably constrained-incomparable with BB(𝑤, 𝛿)

Undetermined constrained relation BB(𝑧, 𝜀) ∼
𝑢𝑐

BB(𝑤, 𝛿) BB(𝑧, 𝜀) is in an undetermined constrained relation with BB(𝑤, 𝛿)

borders of the feasibility region are usually better, the
algorithm first checks and performs confidence inter-
val reduction on these solutions. If both solutions are
probably feasible, the algorithm checks whether the
first solution is exactly evaluated. If it is not, the algo-
rithm performs confidence interval reduction on it.
If it is, the algorithm performs additional confidence
interval reduction on the other solution and then
compares the solutions again.

6. Empirical Proof of Concept

In this section we test the hypothesis that by using the new
relations under uncertainty the number of incorrect compari-
sons is reduced. In the following experiment we compared
multiobjective solutions with uncertainty where the uncer-
tainty comes from solution approximations gained with sur-
rogatemodels. To be able to compare the number of incorrect
comparisons, every solution comparisonwas performedwith
relations under uncertainty and with Pareto dominance rela-
tions. In addition to comparing approximated solution val-
ues, we also compared the exact solution values.This allowed
us to monitor the accuracy of comparison of uncertain solu-
tions.

Since we did not want to use random solutions for
comparisons, we decided to perform solution comparisons as
executed by the NSGA-II algorithm [5]. In every generation
the NSGA-II algorithm creates a new set of solutions, adds
them to the current ones, and then performs selection on the
union to select the most promising solutions. The selection
procedure includes comparing every solution with all other
solutions to determine its dominance status. On these com-
parisons we compared the relations under uncertainty with
the Pareto dominance relations.

The comparison was performed on three benchmark
problems. One is Poloni optimization problem [18] and two
are from [1], called OSY and SRN. All of them are two-
objective problems.

Gaussian process (GP) modeling [19] was used to build
surrogate models for solution approximations. For the confi-
dence interval width of the approximation we used the two
standard deviations (2𝜎), which corresponds to about 95%

of the normal distribution of the approximations. To test
the correlation between the surrogate model accuracy and
the incorrect comparisons, five different models of increasing
accuracy were built—each on larger number of solutions.

The algorithm parameter values used for testing were the
same for all three problems. They were set as follows:

(i) population size: 100,
(ii) number of generations: 100,
(iii) number of runs: 30.

For every problem and for every model we calculated
the number of incorrect comparisons for each comparison
technique. In addition, we calculated the average confidence
interval width and for relations under uncertainty also the
number of cases where, in order to be able to compare the sol-
utions, confidence interval reduction procedures (in our
case exact evaluations of approximated solutions) were per-
formed.

The results averaged over 30 runs are presented in Tables
4, 5, and 6. These results show that by increasing the number
of solutions used for building the surrogate model the accu-
racy of themodel increases and the number of incorrect com-
parisons decreases. The reason for the high number of incor-
rect comparisons using the models built on smaller number
of solutions is in the fact that the solutions used for building
the surrogate models do not cover the decision space well
enough. Due to the lack of information, the solution approx-
imations can be incorrect by a large margin. This can also
result in the exact solution values falling out of the bound-
ing boxes. This reflects in some incorrect comparisons also
encountered with the relations under uncertainty.

With the increasing number of solutions used for building
the surrogate model the average confidence interval width
also gets narrower. The narrower the confidence intervals,
the smaller the bounding boxes and the number of required
additional confidence interval reductions.

Examining the number of incorrect comparisons for the
two relation types, we can see that by using the Pareto domi-
nance relations the number of incorrect comparisons is from
3 to 243 times higher than by using relations under uncer-
tainty. Regardless of the accuracy of the surrogate model, we
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Table 4: Comparison of newly defined relations with Pareto dominance relations on the Poloni problem (average values over 30 runs).

Relation type Solutions used for
surrogate model

Number of
comparisons

Incorrect
comparisons

Number of comparisons with
confidence interval reductions

Proportion of confidence
interval reductions

Confidence
interval width

Relations
under
uncertainty

20

3,940,200

1,515 3,635,805 92% 26.25
30 682 3,152,124 80% 15.41
50 138 1,218,337 31% 1.29
100 65 672,384 17% 0.012
200 13 549,380 14% 0.002

Pareto
dominance
relations

20

3,940,200

367,684 / / 26.25
30 159,945 / / 15.41
50 22,032 / / 1.29
100 2,309 / / 0.012
200 1,219 / / 0.002

Table 5: Comparison of newly defined relations with Pareto dominance relations on the OSY problem (average values over 30 runs).

Relation type Solutions used for
surrogate model

Number of
comparisons

Incorrect
comparisons

Number of comparisons with
confidence interval reductions

Proportion of confidence
interval reductions

Confidence
interval width

Relations
under
uncertainty

20

3,940,200

74,181 2,289,682 58% 42.81
30 21,861 1,934,212 49% 25.98
50 19,342 1,426,775 36% 25.05
100 144 712,298 18% 0.07
200 152 271,821 7% 0.03

Pareto
dominance
relations

20

3,940,200

336,049 / / 42.81
30 136,357 / / 25.98
50 49,790 / / 25.05
100 1,736 / / 0.07
200 1,453 / / 0.03

Table 6: Comparison of newly defined relations with Pareto dominance relations on the SRN problem (average values over 30 runs).

Relation type Solutions used for
surrogate model

Number of
comparisons

Incorrect
comparisons

Number of comparisons with
confidence interval reductions

Proportion of confidence
interval reductions

Confidence
interval width

Relations
under
uncertainty

20

3,940,200

7407 2,703,783 69% 50.03
30 16 2,338,535 59% 0.074
50 2 749,258 19% 0.099
100 3 359,952 9% 0.022
200 11 183,625 5% 0.009

Pareto
dominance
relations

20

3,940,200

188,401 / / 50.03
30 161 / / 0.074
50 543 / / 0.099
100 645 / / 0.022
200 648 / / 0.009

can conclude that by using relations under uncertainty the
number of incorrect comparisons is reduced.

As we can see, in order to reduce the number of incorrect
comparisons, we have to performadditional confidence inter-
val reductions. This in turn increases the total optimization
time; hence a balance between the number of incorrect
comparisons and the time spent performing additional con-
fidence interval reductions needs to be found.

7. Conclusion

In this paper we have presented new relations for comparing
solutions under uncertainty.The uncertainty can derive from
noisy fitness functions, requirement for robust solutions,
surrogate approximations, or time-varying fitness functions.
The relations under uncertainty are defined on bounding
boxes that are based on approximated values and confidence
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intervals. These relations extend the Pareto dominance rela-
tions and, in addition to the confidence intervals, also con-
sider the feasibility of solutions. Comparing solutions using
the proposed relations reduces the likelihood of incorrect
comparisons and prevents the inaccurate approximations
from spoiling the results. We have also shown how the new
relations under uncertainty can be used for solution compar-
ison in an arbitrary multiobjective optimization algorithm.
In addition, the relations under uncertainty also offer the
possibility of determining the dominance status of solutions
without necessarily knowing their exact values first.
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