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The main aim of this research is to find an analytical and numerical study to investigate the projective synchronization of two
identical or nonidentical chaotic complex nonlinear systems with uncertain parameters.The secure communication between these
systems is achieved based on this study. Based on the adaptive control technique and the Lyapunov function a scheme is designed to
achieve projective synchronization of chaotic attractors of these systems. The projective synchronization of two identical complex
Chen systems and two different chaotic complex Lü and Lorenz systems is taken as two examples to verify the feasibility of the
presented scheme.These chaotic complex systems appear in several applications in physics, engineering, and other applied sciences.
Numerical simulations are calculated to demonstrate the effectiveness of the proposed synchronization scheme and verify the
theoretical results. The above results will provide theoretical foundation for the secure communication applications based on the
proposed scheme.

1. Introduction

In 1999, projective synchronization has been first reported
by Mainieri and Rehacek [1] in partially linear systems that
the drive and response systems synchronize up to a constant
scaling factor 𝛿. Later Xu and Li showed that projective
synchronization could be extended to general classes of
chaotic systems without partial linearity [2]. Complete syn-
chronization and antisynchronization are the special cases of
the projective synchronization where the scaling factor 𝛿 = 1

and 𝛿 = −1, respectively.
Many researchers had shown the possibility to achieve

projective synchronization between two chaotic systems
(with real variables) with known or unknown parame-
ters [3–6]. There also exist, however, interesting cases of
dynamical systems, where the main variables participating

in the dynamics are complex [7–25]. The projective syn-
chronization of two identical chaotic complex systems with
certain parameters is investigated in [26]. Therefore, it is
important to examine the projective synchronization when
the master and slave systems (with complex variables) are
identical or different with fully unknown parameters, which
we hope to achieve in this paper.

In applied sciences and engineering there are a lot of
problems involving complex variables which are described
by these complex systems, for example, when amplitudes of
electromagnetic fields and atomic polarization are involved.
Increasing the number of variables (or introducing complex
variables) is also crucial in chaos synchronization used in
secure communications, where one wishes to maximize the
content and security of the transmitted information. Increas-
ing the number of variables and parameters in studying
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projective synchronization of chaotic complex systems is of
course crucial in the area of secure communication where
one wishes to maximize the content and security of the
transmitted information [19, 23]. Secure communication
means that two entities are communicating with each other
in a way that does not allow anyone else to understand their
message. So, we hope to achieve the secure communication
based on the proposed scheme of projective synchronization
of chaotic complex systems.

A dynamical system is called chaotic if it is deterministic,
has a long-term periodic behavior, and exhibits sensitive
dependence on the initial conditions. If the system has one
positive Lyapunov exponent then the system is called chaotic
[27].

Consider the 𝑛-dimensional chaotic complex nonlinear
system as follows:

ẋ = F (x)A + f (x) , (1)

where x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 is a state complex vector, x =

x𝑟 + 𝑗x𝑖, x𝑟 = (𝑢
1
, 𝑢
3
, . . . , 𝑢

2𝑛−1
)
𝑇, x𝑖 = (𝑢

2
, 𝑢
4
, . . . , 𝑢

2𝑛
)
𝑇,

𝑗 = √−1, 𝑇 denotes transpose, F(x) is 𝑛 × 𝑛 complex matrix
and the elements of this matrix are state complex variables,
A is 𝑛 × 1 complex (or real) vector of system parameters, f =

(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
)
𝑇 is a vector of nonlinear complex functions,

and superscripts 𝑟 and 𝑖 stand for the real and imaginary parts
of the state complex vector x.

The purpose of this paper is to investigate the phe-
nomenon of the adaptive projective synchronization of
two identical or different systems of the form (1) with
fully unknown parameters by designing an adaptive control
scheme.

Most of chaotic complex systems can be described by
(1), such as complex Lorenz, Chen, and Lü systems [14, 19].
In order to show the results of our scheme of two identical
or nonidentical systems of the form (1) we choose, as an
example, the chaotic complex Chen, Lorenz, and Lü systems
which have been introduced and studied recently in our
works [16, 19].

The chaotic complex Chen system is

�̇� = 𝑎 (𝑦 − 𝑥) ,

̇𝑦 = (𝑐 − 𝑎) 𝑥 − 𝑥𝑧 + 𝑐𝑦,

�̇� =
1

2
(𝑥𝑦 + 𝑥𝑦) − 𝑏𝑧.

(2)

The chaotic complex Lorenz system is

�̇� = 𝛼 (𝑦 − 𝑥) ,

̇𝑦 = 𝛾𝑥 − 𝑥𝑧 − 𝑦,

�̇� =
1

2
(𝑥𝑦 + 𝑥𝑦) − 𝛽𝑧,

(3)

while the chaotic complex Lü system is written in the form

�̇� = 𝜌 (𝑦 − 𝑥) ,

̇𝑦 = ]𝑦 − 𝑥𝑧,

�̇� =
1

2
(𝑥𝑦 + 𝑥𝑦) − 𝜇𝑧,

(4)

where x = (𝑥
1
, 𝑥
2
, 𝑥
3
)
𝑇

= (𝑥, 𝑦, 𝑧)
𝑇
, 𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾, 𝜌, 𝜇,

and ] are positive parameters, 𝑥 = 𝑢
1
+ 𝑗𝑢
2
and 𝑦 = 𝑢

3
+ 𝑗𝑢
4

are complex functions, and 𝑢
𝑙
(𝑙 = 1, . . . , 4) and 𝑧 = 𝑢

5
are

real functions. Dots represent derivatives with respect to time
and an overbar denotes complex conjugate variables.

The chaotic complex Chen, Lorenz, and Lü systems are
a 5-dimensional continuous real autonomous system. System
(2) is chaotic when 𝑎 = 42, 𝑏 = 4, and 𝑐 = 26. For the case
𝛼 = 14, 𝛾 = 35, and 𝛽 = 3.7 system (3) has chaotic attractor,
while system (4) exhibits chaotic behavior when 𝜌 = 40, ] =

22, and 𝜇 = 5.
The organization of this paper is as follows. Design of

the proposed scheme for adaptive projective synchronization
of two identical or different 𝑛-dimensional chaotic complex
nonlinear systems with fully unknown parameters is stated
in Section 2. In Section 3we study projective synchronization
of two identical chaotic complex Chen systems as an example
for Section 2, while we investigate projective synchronization
between the chaotic complex Lorenz system and the chaotic
complex Lü system in Section 4. The secure communication
based on the results of projective synchronization of two
chaotic complex Chen systems is shown in Section 5. Finally,
themain conclusions of our investigations are summarized in
Section 6.

2. A Scheme for Adaptive
Projective Synchronization

We consider two different 𝑛-dimensional chaotic complex
nonlinear systems of the form (1); one is the master system
as

ẋ
𝑚

= ẋ𝑟
𝑚

+ 𝑗ẋ𝑖
𝑚

= F (x
𝑚
)A + f (x

𝑚
) , (5)

and the second is the controlled slave system as

ẏ
𝑠
= ẏ𝑟
𝑠
+ 𝑗ẏ𝑖
𝑠
= G (y

𝑠
)B + g (y

𝑠
) + L, (6)

where the additive complex controller L = (𝐿
1
, 𝐿
2
,

. . . , 𝐿
𝑛
)
𝑇
= L𝑟 + 𝑗L𝑖, L𝑟 = (V

1
, V
3
, . . . , V

2𝑛−1
)
𝑇, and L𝑖 = (V

2
, V
4
,

. . . , V
2𝑛
)
𝑇.

The adaptive synchronization problem is to design a
controller L, estimate the unknown parameters of the master
and slave systems, and make the slave system follow the
master system and become ultimately the same.
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Theorem 1. Onemay be able to achieve the adaptive projective
synchronization between systems (5) and (6) by a choice of the
controller L as

L = L𝑟 + 𝑗L𝑖

= [−G (y
𝑠
) (B̃) + 𝛿F (x

𝑚
) (Ã)]

+ [−g (y
𝑠
) + 𝛿f (x

𝑚
)] −Ψe

= −G𝑟 (y
𝑠
) (B̃) + 𝛿F𝑟 (x

𝑚
) (Ã)

+ [−g𝑟 (y
𝑠
) + 𝛿f𝑟 (x

𝑚
)] −Ψe𝑟

+ 𝑗 (−G𝑖 (y
𝑠
) (B̃) + 𝛿F𝑖 (x

𝑚
) (Ã)

+ [−g𝑖 (y
𝑠
) + 𝛿f 𝑖 (x

𝑚
)] −Ψe𝑖) ,

(7)

and the adaptive laws of parameters are selected as

̇̃A = (−𝛿F𝑟 (x
𝑚
))
𝑇e𝑟 + (−𝛿F𝑖 (x

𝑚
))
𝑇

e𝑖 + 𝜁Â,

̇̃B = (G𝑟 (y
𝑠
))
𝑇e𝑟 + (G𝑖 (y

𝑠
))
𝑇

e𝑖 + 𝜁B̂,
(8)

where e(𝑡) = y
𝑠
− 𝛿x
𝑚

= e𝑟 + 𝑗e𝑖 = (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)
𝑇 is the

vector of the complex error function e𝑟 = (𝑒
𝑢
1

, 𝑒
𝑢
3

, . . . , 𝑒
𝑢
2𝑛−1

)
𝑇,

e𝑖 = (𝑒
𝑢
2

, 𝑒
𝑢
4

, . . . , 𝑒
𝑢
2𝑛

)
𝑇 and 𝛿 is a constant scaling factor. The

elements of the vectors Ã and B̃ are the parameters estimations
of elements of the vectorsA and B, respectively; the parameters
errors are defined as Â = A − Ã and B̂ = B − B̃ and Ψ =

diag(𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛
) and 𝜁 = diag(𝜁

1
, 𝜁
2
, . . . , 𝜁

𝑛
); 𝜓
𝑙
and 𝜁
𝑙
are

positive constants; 𝑙 = 1, 2, . . . , 𝑛.

Proof. We subtract (5) from (6) to get

ė (𝑡) = ė𝑟 + 𝑗ė𝑖

= [G (y
𝑠
) (B̃ + B̂) − 𝛿F (x

𝑚
) (Ã + Â)]

+ [g (y
𝑠
) − 𝛿f (x

𝑚
)] + L

= G𝑟 (y
𝑠
) (B̃ + B̂) − 𝛿F𝑟 (x

𝑚
) (Ã + Â)

+ [g𝑟 (y
𝑠
) − 𝛿f𝑟 (x

𝑚
)] + L𝑟

+ 𝑗 (G𝑖 (y
𝑠
) (B̃ + B̂) − 𝛿F𝑖 (x

𝑚
) (Ã + Â)

+ [g𝑖 (y
𝑠
) − 𝛿f 𝑖 (x

𝑚
)] + L𝑖) .

(9)

Therefore, we will use Lyapunov function as

V (𝑡) =
1

2
[(e𝑟)𝑇e𝑟 + (e𝑖)

𝑇

e𝑖 + (A − Ã)
𝑇

(A − Ã)

+ (B − B̃)
𝑇

(B − B̃)]

=
1

2
(

𝑛

∑

𝑙=1

𝑒
2

𝑢
2𝑙−1

+

𝑛

∑

𝑙=1

𝑒
2

𝑢
2𝑙

+ Â𝑇Â + B̂𝑇B̂) .

(10)

The total time derivative of 𝑉(𝑡) along the trajectory of the
error system (9) is as follows:

�̇� (𝑡) = (ė𝑟)𝑇e𝑟 + (ė𝑖)𝑇e𝑖 + Â𝑇 ̇̂A + B̂𝑇 ̇̂B

= (G𝑟 (y
𝑠
) (B̃ + B̂) − 𝛿F𝑟 (x

𝑚
) (Ã + Â)

+ [g𝑟 (y
𝑠
) − 𝛿f𝑟 (x

𝑚
)] + L𝑟)

𝑇

e𝑟

+ (G𝑖 (y
𝑠
) (B̃ + B̂) − 𝛿F𝑖 (x

𝑚
) (Ã + Â)

+ [g𝑖 (y
𝑠
) − 𝛿f 𝑖 (x

𝑚
)] + L𝑖)

𝑇

e𝑖

+ Â𝑇 (− ̇̃A) + B̂𝑇 (− ̇̃B) ,

(11)

where ̇̂A = −
̇̃A and ̇̂B = −

̇̃B.
By substituting from (7) and (8) into (11) we obtain

�̇� (𝑡) = (e𝑟)𝑇e𝑟 + (e𝑖)𝑇e𝑖 + Â𝑇 ̇̂A + B̂𝑇 ̇̂B

= (G𝑟 (y
𝑠
) (B̂) − 𝛿F𝑟 (x

𝑚
) (Â) −Ψe𝑟)

𝑇

e𝑟

+ (G𝑖 (y
𝑠
) (B̂) − 𝛿F𝑖 (x

𝑚
) (Â) −Ψe𝑖)

𝑇

e𝑖

+ Â𝑇 (𝛿(F𝑟 (x
𝑚
))
𝑇e𝑟 + (𝛿F𝑖 (x

𝑚
))
𝑇

e𝑖 − 𝜁Â)

+ B̂𝑇(−G𝑟 (y
𝑠
))
𝑇e𝑟 + (−G𝑖 (y

𝑠
))
𝑇

e𝑖 − 𝜁B̂

= − [(Ψe𝑟)𝑇e𝑟 + (Ψe𝑖)
𝑇

e𝑖] − B̂𝑇 (𝜁B̂) − Â𝑇 (𝜁Â)

= −(

𝑛

∑

𝑙=1

𝜓
2𝑙−1

𝑒
2

𝑢
2𝑙−1

+

𝑛

∑

𝑙=1

𝜓
𝑙
𝑒
2

𝑢
2𝑙

)

− B̂𝑇 (𝜁B̂) − Â𝑇 (𝜁Â) .

(12)

Since 𝑉(𝑡) is a positive definite function and its derivative is
negative definite, therefore, Lyapunov’s directmethod implies
that the equilibrium point 𝑒

𝑢
2𝑙

and 𝑒
𝑢
2𝑙−1

= 0; 𝑙 = 1, . . . , 𝑛.
Consequently, the states of the slave system and the master
system will be globally synchronized asymptotically. This
completes the proof.

Remark 2. If systems (5) and (6) satisfy f(⋅) = g(⋅) and
F(⋅) = G(⋅), then the structure of system (5) and system
(6) is identical. Therefore, our scheme is also applicable to
the adaptive synchronization of two identical chaotic systems
with fully unknown parameters and the adaptive laws of
parameters are selected as

̇̃A =
̇̃B = [(G𝑟 (y

𝑠
(𝑡)))
𝑇

− (𝛿F𝑟 (x
𝑚
(𝑡)))
𝑇

] e𝑟

+ [(G𝑖 (y
𝑠
(𝑡)))
𝑇

− (𝛿F𝑖 (x
𝑚
(𝑡)))
𝑇

] e𝑖 + 𝜁Â.

(13)

Finally, our scheme is illustrated by applying it for two
identical Chen systems in Section 3 and two different chaotic
complex Lorenz and Lü systems in Section 4.
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3. Projective Synchronization between Two
Complex Chen Systems

3.1. Analytical Formula of Controller. Let us now investigate
the projective synchronization of two identical chaotic com-
plex Chen systems with uncertain parameters as an example
for Section 2. The master and the slave systems are thus
defined, respectively, as follows:

�̇�
𝑚

= 𝑎 (𝑦
𝑚

− 𝑥
𝑚
) ,

̇𝑦
𝑚

= (𝑐 − 𝑎) 𝑥
𝑚

− 𝑥
𝑚
𝑧
𝑚

+ 𝑐𝑦
𝑚
,

�̇�
𝑚

=
1

2
(𝑥
𝑚
𝑦
𝑚

+ 𝑥
𝑚
𝑦
𝑚
) − 𝑏𝑧

𝑚
,

(14)

̇𝑥
𝑠
= 𝑎 (𝑦

𝑠
− 𝑥
𝑠
) + 𝐿
1
,

̇𝑦
𝑠
= (𝑐 − 𝑎) 𝑥

𝑠
− 𝑥
𝑠
𝑧
𝑠
+ 𝑐𝑦
𝑠
+ 𝐿
2
,

̇𝑧
𝑠
=

1

2
(𝑥
𝑠
𝑦
𝑠
+ 𝑥
𝑠
𝑦
𝑠
) − 𝑏𝑧

𝑠
+ 𝐿
3
,

(15)

where 𝐿
1
= V
1
+ 𝑗V
2
, 𝐿
2
= V
3
+ 𝑗V
4
and 𝐿

3
= V
5
, 𝐿
4
= V
7
are

complex and real control functions, respectively, which are to
be determined.

The complex systems (14) and (15) can be formed,
respectively, as

(

�̇�
𝑚

̇𝑦
𝑚

�̇�
𝑚

) = (

𝑦
𝑚

− 𝑥
𝑚

0 0

−𝑥
𝑚

𝑥
𝑚

+ 𝑦
𝑚

0

0 0 −𝑧
𝑚

)(

𝑎

𝑐

𝑏

)

+ (

0

−𝑥
𝑚
𝑧
𝑚

1

2
(𝑥
𝑚
𝑦
𝑚

+ 𝑥
𝑚
𝑦
𝑚
)

) ,

(

�̇�
𝑠

̇𝑦
𝑠

�̇�
𝑠

) = (

𝑦
𝑠
− 𝑥
𝑠

0 0

−𝑥
𝑠

𝑥
𝑠
+ 𝑦
𝑠

0

0 0 −𝑧
𝑠

)(

𝑎

𝑐

𝑏

)

+ (

0

−𝑥
𝑠
𝑧
𝑠

1

2
(𝑥
𝑠
𝑦
𝑠
+ 𝑥
𝑠
𝑦
𝑠
)

) + (

𝐿
1

𝐿
2

𝐿
3

) .

(16)

So, by comparing the complex systems (16) with the form of
systems (5) and (6), respectively, we find

F (x
𝑚
) = (

𝑦
𝑚

− 𝑥
𝑚

0 0

−𝑥
𝑚

𝑥
𝑚

+ 𝑦
𝑚

0

0 0 −𝑧
𝑚

) ,

G (y
𝑠
) = (

𝑦
𝑠
− 𝑥
𝑠

0 0

−𝑥
𝑠

𝑥
𝑠
+ 𝑦
𝑠

0

0 0 −𝑧
𝑠

) ,

A = B = (

𝑎

𝑐

𝑏

) , f (x
𝑚
) = (

0

−𝑥
𝑚
𝑧
𝑚

1

2
(𝑥
𝑚
𝑦
𝑚

+ 𝑥
𝑚
𝑦
𝑚
)

) ,

g (y
𝑠
) = (

0

−𝑥
𝑠
𝑧
𝑠

1

2
(𝑥
𝑠
𝑦
𝑠
+ 𝑥
𝑠
𝑦
𝑠
)

) .

(17)

According toTheorem 1, the controller is designed as

L = [−G (y
𝑠
) (B̃) + 𝛿F (x

𝑚
) (Ã)] + [−g (y

𝑠
) + 𝛿f (x

𝑚
)] −Ψe,

(

𝐿
1

𝐿
2

𝐿
3

) = (

−𝑎 (𝑦
𝑠
− 𝑥
𝑠
) + 𝛿𝑎 (𝑦

𝑚
− 𝑥
𝑚
) − 𝜓
1
𝑒
1

−𝑐 (𝑦
𝑠
+ 𝑥
𝑠
) + 𝑎𝑥

𝑠
+ 𝑥
𝑠
𝑧
𝑠
+ 𝛿 [𝑐 (𝑦

𝑚
+ 𝑥
𝑚
) − 𝑎𝑥

𝑚
− 𝑥
𝑚
𝑧
𝑚
] − 𝜓
2
𝑒
2

�̂�𝑧
𝑠
−

1

2
(𝑥
𝑠
𝑦
𝑠
+ 𝑥
𝑠
𝑦
𝑠
) + 𝛿 [−�̂�𝑧

𝑚
+

1

2
(𝑥
𝑚
𝑦
𝑚

+ 𝑥
𝑚
𝑦
𝑚
)] − 𝜓

3
𝑒
3

),

L = (

−𝑎 (𝑢
3𝑠

− 𝑢
1𝑠

− 𝛿𝑢
3𝑚

+ 𝛿𝑢
1𝑚

) − 𝜓
1
𝑒
𝑢
1

−𝑐 (𝑢
3𝑠

+ 𝑢
1𝑠
) + 𝑎𝑢

1𝑠
+ 𝑢
1𝑠
𝑢
5𝑠

+ 𝛿 [𝑐 (𝑢
3𝑚

+ 𝑢
1𝑚

) − 𝑎𝑢
1𝑚

− 𝑢
1𝑚

𝑢
5𝑚

] − 𝜓
2
𝑒
𝑢
3

�̂� (𝑢
5𝑠

− 𝛿𝑢
5𝑚

) − 𝑢
1𝑠
𝑢
3𝑠

+ 𝛿𝑢
1𝑚

𝑢
3𝑚

− 𝑢
2𝑠
𝑢
4𝑠

+ 𝛿𝑢
2𝑚

𝑢
4𝑚

− 𝜓
3
𝑒
𝑢
5

)

+ 𝑗(

−𝑎 (𝑢
4𝑠

− 𝑢
2𝑠

− 𝛿𝑢
4𝑚

+ 𝛿𝑢
2𝑚

) − 𝜓
1
𝑒
𝑢
2

−𝑐 (𝑢
4𝑠

(𝑡) + 𝑢
2𝑠
) + 𝑎𝑢

2𝑠
+ 𝑢
2𝑠
𝑢
5𝑠

+ 𝛿 [𝑐 (𝑢
4𝑚

+ 𝑢
2𝑚

) − 𝑎𝑢
2𝑚

− 𝑢
2𝑚

𝑢
5𝑚

] − 𝜓
2
𝑒
𝑢
4

0

) ,

(18)

where 𝑒
𝑢
𝑙

= 𝑢
𝑙𝑠
− 𝛿𝑢
𝑙𝑚
; 𝑙 = 1, 2, 3, 4, 5, 7.
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Since A = B = (𝑎, 𝑐, 𝑏)
𝑇 we can calculate the adaptive

laws of parameters by using (13) as

̇̃A =
̇̃B = (

̇̃𝑎

̇̃𝑐

̇̃
𝑏

)

= (

−𝑒
2

𝑢1
− 𝛿
2

𝑢2
+ 𝜁
1
𝑎

(𝑒
𝑢
3

+ 𝑒
𝑢
1

) 𝑒
𝑢
3

+ (𝑒
𝑢
4

+ 𝑒
𝑢
2

) 𝑒
𝑢
2

+ 𝜁
2
𝑐

𝑒
2

𝑢
5

+ 𝜁
3
�̂�

) .

(19)

3.2. Numerical Results. To verify and demonstrate the fea-
sibility of the proposed scheme, we discuss the simulation
results of the projective synchronization between two identi-
cal chaotic complex Chen systems (14) and (15). Systems (14)
and (15) with the controller (18) are solved numerically, and
the parameters are chosen as 𝑎 = 42, 𝑏 = 4, and 𝑐 = 26.
The initial condition of the master system state vector, the
initial value of the slave system state vector, and the diagonal
constant matrices are taken as (𝑥

𝑚
(0), 𝑦
𝑚
(0), 𝑧
𝑚
(0))
𝑇

= (1 +

2𝑗, 3 + 4𝑗, 5, 6)
𝑇and (𝑥

𝑠
(0), 𝑦
𝑠
(0), 𝑧
𝑠
(0), 𝑤

𝑠
(0))
𝑇
= (6 + 8𝑗, 3 +

4𝑗, 8, 1)
𝑇and Ψ = diag(12, 15, 11) and 𝜁 = diag(6, 9, 10, 7).

The initial values of estimate for unknown parameters vector
are considered as (𝑎(0), 𝑐(0), �̂�(0))

𝑇
= (3, 4, 5)

𝑇. The results
are depicted in Figures 1 and 2.

In Figure 1 the solutions of (14) and (15) are plotted
subject to different initial conditions and show that projective
synchronization is indeed achieved. In Figure 1(a) we select
𝛿 = −1 and the attractors in (𝑢

1
, 𝑢
3
, 𝑢
5
) space of master

system (14) and slave system (15) have the same size but
opposite shape. But when we choose 𝛿 = −2 in Figure 1(b)
the attractors of (14) and (15) have the opposite shape in
(𝑢
1
, 𝑢
3
, 𝑢
5
) space, but the size of the attractor of the slave

system is twice as big as of the master system. Figure 2
shows that the estimated values of the unknown parameters
𝑎(𝑡), 𝑐(𝑡), and �̂�(𝑡) converge to 42, 26, and 4, respectively.
These results ensure that our scheme is suitable for effecting
adaptive projective synchronization of two identical chaotic
complex nonlinear systems.

4. Projective Synchronization between
Complex Lorenz and Lü Systems

4.1. Analytical Formula of Controller. This subsection is
devoted to test the validity of the Scheme of Section 2 by
applying it to the chaotic complex Lorenz as a master system
and Lü complex as a salve system with fully unknown
parameters.

The master and slave systems are described by the fol-
lowing equations, respectively:

�̇�
𝑚

= 𝛼 (𝑦
𝑚

− 𝑥
𝑚
) ,

̇𝑦
𝑚

= 𝛾𝑥
𝑚

− 𝑦
𝑚

− 𝑥
𝑚
𝑧
𝑚
,

�̇�
𝑚

=
1

2
(𝑥
𝑚
𝑦
𝑚

+ 𝑥
𝑚
𝑦
𝑚
) − 𝛽𝑧

𝑚
,

(20)

�̇�
𝑠
= 𝜌 (𝑦

𝑠
− 𝑥
𝑠
) + 𝐿
1
,

̇𝑦
𝑠
= ]𝑦
𝑠
− 𝑥
𝑠
𝑧
𝑠
+ 𝐿
2
,

�̇�
𝑠
=

1

2
(𝑥
𝑠
𝑦
𝑠
+ 𝑥
𝑠
𝑦
𝑠
) − 𝜇𝑧

𝑠
+ 𝐿
3
,

(21)

where𝑥
𝑚

= 𝑢
1𝑚

+𝑗𝑢
2𝑚
,𝑦
𝑚

= 𝑢
3𝑚

+𝑗𝑢
4𝑚
, 𝑧
𝑚

= 𝑢
5𝑚
,𝑥
𝑠
= 𝑢
1𝑠
+

𝑗𝑢
2𝑠
, 𝑦
𝑠
= 𝑢
3𝑠
+𝑗𝑢
4𝑠
, 𝑧
𝑠
= 𝑢
5𝑠
, 𝐿
1
= V
1
+𝑗V
2
, 𝐿
2
= V
3
+𝑗V
4
, and

𝐿
3
= V
5
are complex and real control functions, respectively,

which we need to determine.
Considering systems (20) and (21) are equivalent to

systems (5) and (6), respectively, so

F (x
𝑚
) = (

𝑦
𝑚

− 𝑥
𝑚

0 0

0 𝑥
𝑚

0

0 0 −𝑧
𝑚

) ,

G (y
𝑠
) = (

𝑦
𝑠
− 𝑥
𝑠

0 0

0 𝑦
𝑠

0

0 0 −𝑧
𝑠

) ,

A = (

𝛼

𝛾

𝛽

) , B = (

𝜌

]
𝜇

) ,

f (x
𝑚
) = (

0

−𝑦
𝑚

− 𝑥
𝑚
𝑧
𝑚

1

2
(𝑥
𝑚
𝑦
𝑚

+ 𝑥
𝑚
𝑦
𝑚
)

) ,

g (y
𝑠
) = (

0

−𝑥
𝑠
𝑧
𝑠

1

2
(𝑥
𝑠
𝑦
𝑠
+ 𝑥
𝑠
𝑦
𝑠
)

) .

(22)

According to (7), the adaptive controller is calculated as

𝐿
1
= V
1
+ 𝑗V
2

= −𝜌 ((𝑢
3𝑠

− 𝑢
1𝑠
) + 𝑗 (𝑢

4𝑠
− 𝑢
2𝑠
))

+ �̃�𝛿 ((𝑢
3𝑚

− 𝑢
1𝑚

) + 𝑗 (𝑢
4𝑚

− 𝑢
2𝑚

))

− 𝜓
1
(𝑒
𝑢
1

− 𝑗𝑒
𝑢
2

) ,

𝐿
2
= V
3
+ 𝑗V
4

= −]̃ (𝑢
3𝑠

+ 𝑗𝑢
4𝑠
) + 𝑢
5𝑠

(𝑢
1𝑠

+ 𝑗𝑢
2𝑠
)

+ 𝛿𝛾 (𝑢
1𝑚

+ 𝑗𝑢
2𝑚

) − 𝛿 (𝑢
3𝑚

+ 𝑗𝑢
4𝑚

)

− 𝛿𝑢
5𝑚

(𝑢
1𝑚

+ 𝑗𝑢
2𝑚

) − 𝜓
2
(𝑒
𝑢
3

− 𝑗𝑒
𝑢
4

) ,

𝐿
3
= V
5
= 𝜇𝑢
5𝑠

− 𝛿𝛽𝑢
5𝑚

− 𝑢
3𝑠
𝑢
1𝑠

− 𝑢
4𝑠
𝑢
2𝑠

+ 𝛿𝑢
3𝑚

𝑢
1𝑚

+ 𝛿𝑢
4𝑚

𝑢
2𝑚

− 𝜓
3
𝑒
𝑢
5

,

(23)
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Figure 1: Chaotic attractors of the master system (14) (blue color) and the slave system (15) (red color): (a) when 𝛿 = −1, (b) when 𝛿 = −2.
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Figure 2: Adaptive parameters estimation laws 𝑎(𝑡), 𝑐(𝑡), and �̃�(𝑡) of themaster system (14) and slave system (15) versus 𝑡. (a) (𝑎(𝑡), 𝑡) diagram,
(b) (𝑐(𝑡), 𝑡) diagram, and (c) (�̃�(𝑡), 𝑡) diagram.
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Figure 3: Chaotic attractors of the master system (20) (blue color) and the slave system (21) (red color): (a) when 𝛿 = −1, (b) when 𝛿 = −2.

and we can calculate the adaptive laws of parameters
�̃�, 𝛾, 𝛽, 𝜌, ]̃, and 𝜇 by using (8) as

̇̃𝛼 = −𝑒
𝑢
1

(𝛿𝑢
3𝑚

− 𝛿𝑢
1𝑚

) − 𝑒
𝑢
2

(𝛿𝑢
4𝑚

− 𝛿𝑢
2𝑚

) + 𝜁
1
�̂�,

̇̃𝛾 = −𝛿𝑒
𝑢
3

𝑢
1𝑚

− 𝛿𝑒
𝑢
4

𝑢
2𝑚

+ 𝜁
2
𝛾,

̇̃
𝛽 = 𝛿𝑒

𝑢
5

𝑢
5𝑚

+ 𝜁
3
𝛽,

̇̃𝜌 = 𝑒
𝑢
1

(𝑢
3𝑠

− 𝑢
1𝑠
) + 𝑒
𝑢
2

(𝑢
4𝑠

− 𝑢
2𝑠
) + 𝜁
1
𝜌,

̇̃] = 𝑒
𝑢
3

𝑢
3𝑠

+ 𝑒
𝑢
4

𝑢
4𝑠

+ 𝜁
2
]̂, ̇̃𝜇 = −𝑒

𝑢
5

𝑢
5𝑠

+ 𝜁
3
𝜇.

(24)

4.2. Numerical Results. In this subsection, we solve systems
(20) and (21) with (23) and (24) numerically (using, e.g.,
Mathematica 7 software) with the initial conditions 𝑡

0
=

0, 𝑢
1𝑚

(0) = 1, 𝑢
2𝑚

(0) = 2, 𝑢
3𝑚

(0) = 3, 𝑢
4𝑚

(0) = 4,
𝑢
5𝑚

(0) = 5, 𝑢
1𝑠
(0) = 5, 𝑢

2𝑠
(0) = −3, 𝑢

3𝑠
(0) = 13,

𝑢
4𝑠
(0) = 2, and 𝑢

5𝑠
(0) = 8. We choose Ψ = diag(12, 15, 11)

and 𝜁 = diag(6, 9, 10). The initial values of the parameters
estimation laws are �̃�(0) = 1, 𝛾(0) = 2, 𝛽(0) = 3, 𝜌(0) = 1,
]̃(0) = 4, and 𝜇(0) = 5. The results of adaptive projective
synchronization of two different chaotic complex Lorenz and
Lü systems are shown in Figure 3. In Figures 3(a) and 3(b)
we plotted hyperchaotic attractors for different values of 𝛿 as
𝛿 = −1 and −2, respectively. It is clear that, from Figure 3(a),
the attractors in (𝑢

1
, 𝑢
3
, 𝑢
5
) plane of master system (20) and

slave system (21) have the same size but opposite shape. In
Figure 3(b), for 𝛿 = −2, the two attractors have opposite
shape and the size of the attractor of (20) is one half the slave
system. In Figure 4 it can be seen that the synchronization
errors will converge to zero after small value of 𝑡. Figure 4
shows the estimations of �̃�(𝑡), 𝛾(𝑡), 𝛽(𝑡), 𝜌(𝑡), ]̃(𝑡), and 𝜇(𝑡)

of the unknown parameters of master and slave systems (20)

and (21) which converge to 𝛼 = 14, 𝛾 = 35, 𝛽 = 3.7, 𝜌 = 40,
] = 22, and 𝜇 = 5, respectively, as 𝑡 → ∞.

5. The Application in Secure Communications

In this section, secure communications scheme based on
projective synchronization between two identical chaotic
complex Chen systems is investigated. We consider the two
chaotic complex Chen systems as transmitter and receiver
systems. The message signal 𝑟(𝑡) and chaotic signals of the
transmitter system are encrypted by means of an invert-
ible nonlinear function Ξ = 𝜙(𝑟, 𝑢

1𝑚
, 𝑢
2𝑚

, 𝑢
3𝑚

, 𝑢
4𝑚

, 𝑢
5𝑚

).
Then we add the signal Ξ to one of the five variables
𝑢
1𝑚

, 𝑢
2𝑚

, 𝑢
3𝑚

, 𝑢
4𝑚

, 𝑢
5𝑚
; for instance, we inject it into the

variable 𝑢
3𝑚

so the combined signal is Δ(𝑡) = Ξ + 𝑢
3𝑚
.

Then, chaotic signals of the transmitter system and combined
signal are transmitted to the receiver side. In the receiver,
the controller L can be constructed by (18), so the projective
synchronization between two chaotic complex Chen systems
will be achieved after some time and the states of X will
approach Y/𝛿 where 𝛿 is a nonzero constant scaling factor
and increases the content and security of the transmitted
message. At a certain time the receiver starts to recover Ξ

through a simple transformation Ξ = Δ(𝑡) − 𝑢
3𝑠
/𝛿. Finally,

since the nonlinear function 𝜙 is invertible, the message
signal can be recovered as ̆𝑟(𝑡) = 𝜙

−1
(𝑢
1𝑠
, 𝑢
2𝑠
, 𝑢
3𝑠
, 𝑢
4𝑠
, 𝑢
5𝑠
, Ξ).

In the following numerical simulations the systemparam-
eters, initial conditions of the transmitter, and receiver
systems are chosen as the same values as those in Section 3
and the constant scaling factor 𝛿 = 0.7. We choose the
invertible function as Ξ = 𝑢

1𝑚
+ arctan(𝑟(𝑡)); 𝑟(𝑡) =

cos(2𝜋𝑡) and we assume that the signal Ξ is added to the
variable 𝑢

3𝑚
. The numerical simulation for the application

of projective synchronization in secure communication is
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Figure 4: Adaptive parameters estimation laws �̃�(𝑡), 𝛾(𝑡), 𝛽(𝑡), 𝜌(𝑡), ]̃(𝑡), and 𝜇(𝑡) of the master system (20) and slave system (21) versus 𝑡.
(a) (�̃�(𝑡), 𝑡) diagram, (b) (𝛾(𝑡), 𝑡) diagram, (c) (𝛽(𝑡), 𝑡) diagram, (d) (𝜌(𝑡), 𝑡) diagram, (e) (]̃(𝑡), 𝑡) diagram, and (f) (𝜇(𝑡), 𝑡) diagram.

shown in Figure 5. The message 𝑟(𝑡) and the transmitted
signal Δ(𝑡) are shown in Figures 5(a) and 5(b), respectively.
Figure 5(c) displays the recovered message ̆𝑟(𝑡). The error
between the original message and the recovered one is shown
in Figure 5(d). From Figure 4(d), it is easy to find that the
information signal 𝑠(𝑡) is recovered accurately after a short
transient.

6. Conclusion

Synchronization and control are important topics which
have been studied to date primarily on dynamical systems
described by real variables in applied nonlinear sciences.
There also exist, however, interesting cases of dynamical sys-
tems where the main variables participating in the dynamics
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Figure 5: Simulation results of secure communication using projective synchronization of two identical chaotic complex Chen systems when
the message signal is 𝑟(𝑡) = cos 2𝜋𝑡. (a) The original message 𝑟(𝑡). (b) The transmitted signal Δ(𝑡). (c) The recovered message ̆𝑟(𝑡). (d) The
error signal 𝑟(𝑡) − ̆𝑟(𝑡).

are complex as, for example, when amplitudes of electro-
magnetic fields are involved. Our goal in this paper is to
study and investigate projective synchronization of chaotic
attractors of complex systems with uncertain parameters. A
scheme is designed to achieve projective synchronization of
two identical or different chaotic complex nonlinear systems
with uncertain parameters based on Lyapunov functions.
Through this scheme we determined analytically the control
complex functions and adaptive laws of parameters to achieve
projective synchronization. Illustrative examples are given to
verify the correctness of our scheme. The secure communi-
cations by using projective synchronization in two chaotic
complex Chen systems are implemented.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors would like to thank Institute of Scientific
Research and Revival of Islamic Heritage at Umm Al-Qura
University (Project ID 43305003) for the financial support.

References

[1] R. Mainieri and J. Rehacek, “Projective synchronization in
three-dimensional chaotic systems,” Physical Review Letters,
vol. 82, no. 15, pp. 3042–3045, 1999.

[2] D. Xu and Z. Li, “Controlled projective synchronization in
nonpartially-linear chaotic systems,” International Journal of
Bifurcation and Chaos, vol. 12, no. 6, pp. 1395–1402, 2002.

[3] G.-H. Li, “Generalized projective synchronization between
Lorenz system and Chen’s system,” Chaos, Solitons and Fractals,
vol. 32, pp. 1454–1458, 2007.

[4] J. Yan and C. Li, “Generalized projective synchronization of a
unified chaotic system,”Chaos, Solitons and Fractals, vol. 26, no.
4, pp. 1119–1124, 2005.

[5] Q. Jia, “Projective synchronization of a new hyperchaotic
Lorenz system,”Physics Letters A, vol. 370, no. 1, pp. 40–45, 2007.

[6] M. Hu and Z. Xu, “Adaptive feedback controller for projective
synchronization,” Nonlinear Analysis: Real World Applications,
vol. 9, no. 3, pp. 1253–1260, 2008.

[7] A. C. Fowler, J. D. Gibbon, and M. J. McGuinness, “The real
and complex Lorenz equations and their relevance to physical
systems,” Physica D, vol. 7, no. 1–3, pp. 126–134, 1983.

[8] C.-Z. Ning and H. Haken, “Detuned lasers and the complex
Lorenz equations: subcritical and supercritical Hopf bifurca-
tions,” Physical Review A, vol. 41, no. 7, pp. 3826–3837, 1990.



10 Mathematical Problems in Engineering

[9] E. E. Mahmoud, “Adaptive anti-lag synchronization of two
identical or non-identical hyperchaotic complex nonlinear
systems with uncertain parameters,” Journal of the Franklin
Institute, vol. 349, no. 3, pp. 1247–1266, 2012.

[10] E. E.Mahmoud, “Dynamics and synchronization of new hyper-
chaotic complex Lorenz system,” Mathematical and Computer
Modelling, vol. 55, no. 7-8, pp. 1951–1962, 2012.

[11] E. E. Mahmoud, “Modified projective phase synchronization of
chaotic complex nonlinear systems,”Mathematics and Comput-
ers in Simulation, vol. 89, pp. 69–85, 2013.

[12] E. E. Mahmoud, “Lag synchronization of hyperchaotic complex
nonlinear systems via passive control,” Applied Mathematics &
Information Sciences, vol. 7, no. 4, pp. 1429–1436, 2013.

[13] E. E. Mahmoud, “Complex complete synchronization of two
non-identical hyperchaotic complex nonlinear systems,”Math-
ematical Methods in the Applied Sciences, vol. 37, no. 3, pp. 321–
328, 2014.

[14] P. Liu and S. Liu, “Anti-synchronization between different
chaotic complex systems,” Physica Scripta, vol. 83, no. 6, Article
ID 065006, 2011.

[15] S. Liu and P. Liu, “Adaptive anti-synchronization of chaotic
complex nonlinear systems with unknown parameters,” Non-
linear Analysis: RealWorld Applications, vol. 12, no. 6, pp. 3046–
3055, 2011.

[16] G. M. Mahmoud, M. A. Al-Kashif, and S. A. Aly, “Basic
properties and chaotic synchronization of complex Lorenz
system,” International Journal of Modern Physics C, vol. 18, no.
2, pp. 253–265, 2007.

[17] G. M. Mahmoud and E. E. Mahmoud, “Complex modified
projective synchronization of two chaotic complex nonlinear
systems,” Nonlinear Dynamics, vol. 73, no. 4, pp. 2231–2240,
2013.

[18] G. M. Mahmoud, E. E. Mahmoud, and A. A. Arafa, “Passive
control of n-dimensional chaotic complex nonlinear systems,”
Journal of Vibration and Control, vol. 19, pp. 1061–1071, 2013.

[19] G. M. Mahmoud, T. Bountis, and E. E. Mahmoud, “Active
control and global synchronization of the complex Chen and
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