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This paper studies the𝐻-infinity stochastic control problem for a class of networked control systems (NCSs) with time delays and
packet dropouts. The state feedback closed-loop NCS is modeled as a Markovian jump linear system. Through using a Lyapunov
function, a sufficient condition is obtained, under which the system is stochastically exponential stability with a desired𝐻-infinity
disturbance attenuation level.The designed𝐻-infinity controller is obtained by solving a set of linear matrix inequalities with some
inversion constraints. An numerical example is presented to demonstrate the effectiveness of the proposed method.

1. Introduction

In the past few years, the networked control systems (NCSs)
whose control loops are connected via communication net-
works have received increasing attention due to their advan-
tages, such as reduced cost, low weight, easier installation,
and maintenance. Time delay and packet dropout are the
two major causes of instability of system and deterioration
of system performance. Therefore, the time delay and packet
dropout problems have been investigated in the existing
literature. In [1], time delays are time-varying in intervals. In
[2, 3], the bounds were imposed on the maximum number
of successive dropouts. In [4], the sufficient condition that
establishes the quantitative relation between the packet-
dropout rate and the stability of theNCSwith a constant delay
is obtained.

Considering the disturbance attenuation problem, there
has been much research effort on 𝐻

∞
controller design. In

[5–7], the controller dynamics is continuous, but in many
NCSs, the system is controlled by a discrete-time controller
with sample and hold devices. In [8–10], a discrete-time

controller is designed; however, it should be pointed out
that the packet dropout or the delay problem is studied
separately.

In [11, 12], 𝐻
∞

control of a class of systems with random
packet dropout is investigated. It is noticed that the plant
is a discrete-time system and the delay is a multiple of the
sampling time; therefore, the result of the papers cannot be
applied to the NCSs when the plant is a continuous-time
system and the delay is smaller than the sampling period. In
[13], the plant studied is a continuous-time system; the delay
takes values in a finite set at a fixed rate. In fact, the time delays
and packet dropouts may be random andmodeled asMarkov
chains in most cases. Unfortunately, they do not take into
account the time delay and packet dropout with Markovian
characterization in [13].

In this paper, we investigate the 𝐻
∞

stochastic control
of a class of NCSs with time delays and packet dropouts.
The random time delay and packet dropout are described by
a Markov chain. By using a Lyapunov function, we obtain
the system with exponential stability with a desired 𝐻

∞

disturbance attenuation level. The designed 𝐻
∞

stochastic
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Figure 1: The structure of NCS.

controller is obtained by an iterative linear matrix inequality
approach. To demonstrate the effectiveness of the method, an
illustrative example is presented.

2. Model for Networked Control System

The structure of the NCS is shown in Figure 1. Consider a
continuous-time linear system described by

𝑥̇ = 𝐴
𝑝
𝑥 (𝑡) + 𝐵

𝑝
𝑢 (𝑡) + 𝐸

𝑝
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state, 𝑢(𝑡) ∈ 𝑅

𝑚 is the plant input,
𝑤(𝑡) ∈ 𝑅

𝑞 is the disturbance input, and 𝑧(𝑡) ∈ 𝑅
𝑙 is the plant

output.𝐴
𝑝
,𝐵
𝑝
,𝐸
𝑝
, and𝐶 are constantmatrices of appropriate

dimensions.
The following assumptions are made for the considered

NCS throughout the paper [13].
The controller is event-driven; both the sensor and the

actuator are time-driven.The sampling period of the sensor is
𝑇.The actuator has a receiving bufferwhich contains themost
recently updated packet from the controller. The actuator
reads the buffer periodically at a smaller period than 𝑇, say
𝑇
0

= 𝑇/𝑁 for some integer 𝑁 large enough. The sensor
and the actuator are time synchronized. Upon reading a new
value, the actuator with a zero-order-hold device will update
the output value. The network-induced delay 𝜏(𝑘) satisfies
0 ≤ 𝜏(𝑘) < 𝑇.

Based on the above assumptions, the discrete-time state
feedback𝐻

∞
controller can be expressed as follows:

𝑢 (𝑘) = 𝐾𝑥 (𝑘) , (2)

where

𝑥 (𝑘) = {

𝑥 (𝑘) , if 𝑥 (𝑘) is successfully transmitted,
𝑥 (𝑘 − 1) , if 𝑥 (𝑘) is lost during transmission,

(3)

where 𝑥(𝑘) is the value of 𝑥(𝑡) at the sampling time 𝑘𝑇.
Consider

𝑧 (𝑘) = 𝐶𝑥 (𝑘) , (4)

where 𝑧(𝑘) is the value of the 𝑧(𝑡) at the sampling time 𝑘𝑇.

During each sampling period, several different cases may
arise, which leads to the following discrete-time switched
system model [13]:

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐸𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) ,

(5)

where

𝑥 (𝑘 + 1) = [

𝑥 (𝑘 + 1)

𝑥 (𝑘)
] , 𝐸 = [

𝐸

0
] , 𝐶 = [𝐶 0] ,

(6)

𝐴
𝜎(𝑘)

= [

𝐴 + 𝐴
1𝜎(𝑘)

𝐾 𝐴
0𝜎(𝑘)

𝐾

𝐼 0
] ,

for 𝜎 (𝑘) = 0, 1, 2 . . . , 𝑁 − 1

(7)

𝐴
𝜎(𝑘)

= [

𝐴 𝐵𝐾

0 𝐼
] , for 𝜎 (𝑘) = 𝑁 (8)

𝐴 = exp {𝐴
𝑝
𝑇} , 𝐴

0𝜎(𝑘)
= ∫

𝑇

𝑇−𝜎(𝑘)𝑇0

exp {𝐴
𝑝
𝜏} 𝐵
𝑝
d𝜏,

𝐵 = ∫

𝑇

0

exp {𝐴
𝑝
𝜏} 𝐵
𝑝
d𝜏,

𝐴
1𝜎(𝑘)

= ∫

𝑇−𝜎(𝑘)𝑇0

0

exp {𝐴
𝑝
𝜏} 𝐵
𝑝
d𝜏,

𝐸 = ∫

𝑇

0

exp {𝐴
𝑝
𝜏} 𝐸
𝑝
d𝜏.

(9)

The 𝜎(𝑘) is called a switching signal. Note that 𝜎(𝑘) = 𝑖, 𝑖 =
0, 1, . . . , 𝑁 − 1, implies 𝜏(𝑘) = 𝑖𝑇

0
, while 𝜎(𝑘) = 𝑁 implies

packet dropout.
𝜎(𝑘) is modeled as Markov chain that takes values in

{0, 1, . . . , 𝑁−1,𝑁}.The transition probabilitymatrices of𝜎(𝑘)
are Π = [𝜋

𝑖𝑗
]. That means that 𝜎(𝑘) jump from mode 𝑖 to

mode 𝑗, from mode with probabilities 𝜋
𝑖𝑗
:

𝜋
𝑖𝑗
= Pr (𝜎 (𝑘 + 1) = 𝑗 | 𝜎 (𝑘) = 𝑖) , (10)

where 𝜋
𝑖𝑗
≥ 0 and ∑

𝑁

𝑗=0
𝜋
𝑖𝑗
= 1.

3. 𝐻
∞

Disturbance Attenuation Analysis

Definition 1. System (5) is said to be stochastically and
exponentially stable, if there exist constants 𝐶 > 0 and 0 <

𝜆 < 1, such that E(‖𝑥(𝑘)‖
2

) ≤ 𝐶𝜆
𝑘E(‖𝑥(0)‖

2

) for 𝑤(𝑡) ≡ 0.

Definition 2. System (5) is said to be stochastically and
exponentially stable with an 𝐻

∞
disturbance attenuation

level 𝛾, if system (5) is stochastically and exponentially stable
and for the zero initial condition, ∑

∞

𝑘=0
E{𝑧
𝑇

(𝑘)𝑧(𝑘)} ≤

𝛾
2

∑
∞

𝑘=0
E{𝑤
𝑇

(𝑘)𝑤(𝑘)}.
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Lemma 3 (see [14]). Define 𝑉
𝜎(𝑘)

(𝑘) = 𝑥
T
(𝑘)𝑃
𝜎(𝑘)

𝑥(𝑘), where
𝑃
𝜎(𝑘)

is a positive definite matrix; then there exist constant
scalars 𝛽

1
, 𝛽
2
> 0 such that

𝛽
1
‖𝑥(𝑘)‖

2

≤ 𝑉
𝜎(𝑘)

(𝑘) ≤ 𝛽
2
‖𝑥 (𝑘)‖

2

, 𝜎 (𝑘) = 0, 1, 2, . . . , 𝑁.

(11)

Theorem 4. For given positive scalars 𝜋
𝑖𝑗
(𝑖, 𝑗 = 0, 1, 2, . . . ,

𝑁), 𝜆, and 𝛾, if there exist matrices 𝑃
𝑖
> 0, 𝑄

𝑖
> 0, such that

Ω
𝑖
= [

C
𝑖11

∗

C
𝑖21

C
𝑖22

] < 0, 𝑖 = 0, 1, . . . , 𝑁 − 1, (12)

Ω = [

C
11

∗

C
21

C
22

] < 0, (13)

where

C
𝑖11

=

[

[

[

[

[

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝑄
𝑗
− 𝜆𝑃
𝑖
+ 𝐶

T
𝐶 0 0

0 −𝜆𝑄
𝑖

0

0 0 −𝛾
2

𝐼

]

]

]

]

]

,

C
𝑖21

=

[

[

[

[

[

√𝜋
𝑖0
(𝐴 + 𝐴

1𝑖
𝐾) √𝜋

𝑖0
𝐴
0𝑖
𝐾 √𝜋

𝑖0
𝐸

√𝜋
𝑖1
(𝐴 + 𝐴

1𝑖
𝐾) √𝜋

𝑖1
𝐴
0𝑖
𝐾 √𝜋

𝑖1
𝐸

...
...

...
√𝜋
𝑖𝑁

(𝐴 + 𝐴
1𝑖
𝐾) √𝜋

𝑖𝑁
𝐴
0𝑖
𝐾 √𝜋

𝑖𝑁
𝐸

]

]

]

]

]

,

C
𝑖22

= diag {−𝑃−1
0

−𝑃
−1

1
⋅ ⋅ ⋅ −𝑃

−1

𝑁
} ,

C
11

=

[

[

[

[

[

[

[

[

[

[

[

−𝜆𝑃
𝑁
+ 𝐶

T
𝐶 0

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝑃
𝑗
𝐸

∗

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝑄
𝑗
− 𝜆𝑄
𝑁

0

∗ ∗

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐸
𝑇

𝑃
𝑗
𝐸 − 𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

,

C
21

=

[

[

[

[

[

√𝜋
𝑁0

𝐴 √𝜋
𝑁0

𝐵𝐾 0

√𝜋
𝑁1

𝐴 √𝜋
𝑁1

𝐵𝐾 0

...
...

...
√𝜋
𝑁𝑁

𝐴 √𝜋
𝑁𝑁

𝐵𝐾 0

]

]

]

]

]

,

C
22

= diag {−𝑃−1
0

−𝑃
−1

1
⋅ ⋅ ⋅ −𝑃

−1

𝑁
}

(14)

then system (5) is stochastically and exponentially stable with
an𝐻
∞

disturbance attenuation level 𝛾.

Proof. Let the Lyapunov function

𝑉
𝑖
(𝑘) = 𝑥

𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘) + 𝑥

𝑇

(𝑘 − 1)𝑄
𝑖
𝑥 (𝑘 − 1)

= 𝑥
𝑇

(𝑘) 𝑃̃
𝑖
𝑥 (𝑘)

(15)

correspond to the subsystem as follows:

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐸𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) ,

(16)

where

𝑃̃
𝑖
= [

𝑃
𝑖

0

0 𝑄
𝑖

] . (17)

When 𝜎(𝑘) = 𝑖 (𝑖 = 0, 1, 2, . . . , 𝑁 − 1), we obtain

E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) − 𝜆𝑉
𝜎(𝑘)

(𝑘) + 𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘))

= E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) | 𝜎 (𝑘) = 𝑖) − 𝜆𝑉
𝑖
(𝑘)

+ 𝑥
𝑇

(𝑘) 𝐶
𝑇

𝐶𝑥 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

=

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
(𝑥
𝑇

(𝑘) 𝐴
𝑇

𝑖
+ 𝑤
𝑇

(𝑘) 𝐸
𝑇

) 𝑃̃
𝑗
(𝐴
𝑖
𝑥 (𝑘) + 𝐸𝑤 (𝑘))

− 𝜆𝑥
𝑇

(𝑘) 𝑃̃
𝑖
𝑥 (𝑘) + 𝑥

𝑇

(𝑘) 𝐶
𝑇

𝐶𝑥 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

= 𝑥
𝑇

(𝑘)(

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐴
𝑇

𝑖
𝑃̃
𝑗
𝐴
𝑖
)𝑥 (𝑘) + 𝑥

𝑇

(𝑘)

×(

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐴
𝑇

𝑖
𝑃̃
𝑗
𝐸)𝑤 (𝑘) + 𝑤

𝑇

(𝑘)(

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐸
𝑇

𝑃̃
𝑗
𝐴
𝑖
)𝑥 (𝑘)

+ 𝑤
𝑇

(𝑘)(

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐸
𝑇

𝑃̃
𝑗
𝐸)𝑤 (𝑘) − 𝜆𝑥

𝑇

(𝑘) 𝑃̃
𝑖
𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝐶
𝑇

𝐶𝑥 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

= [𝑥
𝑇

(𝑘) 𝑤
𝑇

(𝑘)]Θ
𝑖
[

𝑥 (𝑘)

𝑤 (𝑘)
] ,

(18)

where

Θ
𝑖
=

[

[

[

[

[

[

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐴
𝑇

𝑖
𝑃̃
𝑗
𝐴
𝑖
− 𝜆𝑃̃
𝑖
+ 𝐶
𝑇

𝐶

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐴
𝑇

𝑖
𝑃̃
𝑗
𝐸

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐸
𝑇

𝑃̃
𝑗
𝐴
𝑖

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐸
𝑇

𝑃̃
𝑗
𝐸 − 𝛾
2

𝐼

]

]

]

]

]

]

.

(19)

From (6) and (7), it can be obtained that

Θ
𝑖
=
[

[

A
𝑖11

A
𝑖12

A
𝑖13

∗ A
𝑖22

A
𝑖23

∗ ∗ A
𝑖33

]

]

.

A
𝑖11

=

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
[(𝐴
𝑇

+ 𝐾
𝑇

𝐴
𝑇

1𝑖
) 𝑃
𝑗
(𝐴 + 𝐴

1𝑖
𝐾) + 𝑄

𝑗
]

− 𝜆𝑃
𝑖
+ 𝐶
𝑇

𝐶,
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A
𝑖12

=

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
(𝐴
𝑇

+ 𝐾
𝑇

𝐴
𝑇

1𝑖
) 𝑃
𝑗
𝐴
0𝑖
𝐾,

A
𝑖13

=

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
(𝐴 + 𝐴

1𝑖
𝐾)
𝑇

𝑃
𝑗
𝐸,

A
𝑖22

=

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐾
𝑇

𝐴
𝑇

0𝑖
𝑃
𝑗
𝐴
0𝑖
𝐾 − 𝜆𝑄

𝑖
,

A
𝑖23

=

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
(𝐴
0𝑖
𝐾)
𝑇

𝑃
𝑗
𝐸,

A
𝑖33

=

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝐸 − 𝛾
2

𝐼.

(20)

Θ
𝑖
< 0 can be rewritten as follows:

Φ
𝑖
+
[

[

[

√𝜋
𝑖0
(𝐴
𝑇

+ 𝐾
𝑇

𝐴
𝑇

1𝑖
)

√𝜋
𝑖0
𝐾
𝑇

𝐴
𝑇

0𝑖

√𝜋
𝑖0
𝐸
𝑇

]

]

]

× 𝑃
0
[√𝜋
𝑖0
(𝐴 + 𝐴

1𝑖
𝐾) √𝜋

𝑖0
𝐴
0𝑖
𝐾 √𝜋

𝑖0
𝐸] < 0,

(21)

where

Φ
𝑖
=
[

[

B
𝑖11

B
𝑖12

B
𝑖13

∗ B
𝑖22

B
𝑖23

∗ ∗ B
𝑖33

]

]

.

B
𝑖11

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
(𝐴
𝑇

+ 𝐾
𝑇

𝐴
𝑇

1𝑖
) 𝑃
𝑗
(𝐴 + 𝐴

1𝑖
𝐾)

+

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝑄
𝑗
− 𝜆𝑃
𝑖
+ 𝐶
𝑇

𝐶,

B
𝑖12

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
(𝐴
𝑇

+ 𝐾
𝑇

𝐴
𝑇

1𝑖
) 𝑃
𝑗
𝐴
0𝑖
𝐾,

B
𝑖13

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
(𝐴 + 𝐴

1𝑖
𝐾)
𝑇

𝑃
𝑗
𝐸,

B
𝑖22

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝐾
𝑇

𝐴
𝑇

0𝑖
𝑃
𝑗
𝐴
0𝑖
𝐾 − 𝜆𝑄

𝑖
,

B
𝑖23

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
(𝐴
0𝑖
𝐾)
𝑇

𝑃
𝑗
𝐸,

B
𝑖33

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝐸 − 𝛾
2

𝐼.

(22)

From the Schur complement, we have that (21) is equiva-
lent to

Ψ
𝑖
=

[

[

[

[

[

B
𝑖11

B
𝑖12

B
𝑖13 √𝜋

𝑖0
(𝐴
𝑇

+ 𝐾
𝑇

𝐴
𝑇

10
)

∗ B
𝑖22

B
𝑖23 √𝜋

𝑖0
𝐾
𝑇

𝐴
𝑇

0𝑖

∗ ∗ B
𝑖33 √𝜋

𝑖0
𝐸
𝑇

∗ ∗ ∗ −𝑃
−1

0

]

]

]

]

]

< 0. (23)

Similarly, we can see that Ψ
𝑖
< 0 is equivalent to

Ω
𝑖
= [

C
𝑖11

∗

C
𝑖21

C
𝑖22

] < 0. (24)

It can be seen that if (12) holds, Θ
𝑖
< 0 is true, which

means

E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) − 𝜆𝑉
𝜎(𝑘)

(𝑘) + 𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘))

< 0.

(25)

When 𝜎(𝑘) = 𝑁,

E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) − 𝜆𝑉
𝜎(𝑘)

(𝑘) + 𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘))

= [𝑥
𝑇

(𝑘) 𝑤
𝑇

(𝑘)]Θ [

𝑥 (𝑘)

𝑤 (𝑘)
] ,

(26)

where

Θ =

[

[

[

[

[

[

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐴
𝑇

𝑁
𝑃̃
𝑗
𝐴
𝑁
− 𝜆𝑃̃
𝑁
+ 𝐶
𝑇

𝐶

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐴
𝑇

𝑁
𝑃̃
𝑗
𝐸

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐸
𝑇

𝑃̃
𝑗
𝐴
𝑁

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐸
𝑇

𝑃̃
𝑗
𝐸 − 𝛾
2

𝐼

]

]

]

]

]

]

.

(27)

From (6) and (8), it can be seen that

Θ =
[

[

A
11

A
12

A
13

∗ A
22

A
23

∗ ∗ A
33

]

]

,

A
11

=

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐴
𝑇

𝑃
𝑗
𝐴 − 𝜆𝑃

𝑁
+ 𝐶
𝑇

𝐶,

A
12

=

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐴
𝑇

𝑃
𝑗
𝐵𝐾,

A
13

=

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝑃
𝑗
𝐸,

A
22

=

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐾
𝑇

𝐵
𝑇

𝑃
𝑗
𝐵𝐾 +

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝑄
𝑗
− 𝜆𝑄
𝑁
,

A
23

= 0,

A
33

=

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐸
𝑇

𝑃
𝑗
𝐸 − 𝛾
2

𝐼.

(28)
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Θ < 0 can be rewritten as follows:

Φ +
[

[

√𝜋
𝑁0

𝐴
𝑇

√𝜋
𝑁0

𝐾
𝑇

𝐵
𝑇

0

]

]

𝑃
0
[√𝜋
𝑁0

𝐴 √𝜋
𝑁0

𝐵𝐾 0] < 0, (29)

where

Φ =
[

[

[

B
11

B
12

B
13

∗ B
22

B
23

∗ ∗ B
33

]

]

]

,

B
11

=

𝑁

∑

𝑗=1

𝜋
𝑁𝑗

𝐴
𝑇

𝑃
𝑗
𝐴 − 𝜆𝑃

𝑁
+ 𝐶
𝑇

𝐶,

B
12

=

𝑁

∑

𝑗=1

𝜋
𝑁𝑗

𝐴
𝑇

𝑃
𝑗
𝐵𝐾,

B̃
13

=

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝑃
𝑗
𝐸,

B
22

=

𝑁

∑

𝑗=1

𝜋
𝑁𝑗

𝐾
𝑇

𝐵
𝑇

𝑃
𝑗
𝐵𝐾 +

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝑄
𝑗
− 𝜆𝑄
𝑁
,

B
23

= 0,

B
33

=

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐸
𝑇

𝑃
𝑗
𝐸 − 𝛾
2

𝐼.

(30)

From the Schur complement, we have that (29) is equiv-
alent to

Ψ =

[

[

[

[

B
11

B
12

B
13 √𝜋

𝑁0
𝐴
𝑇

∗ B
22

B
23 √𝜋

𝑁0
𝐾
𝑇

𝐵
𝑇

∗ ∗ B
33

0

∗ ∗ ∗ −𝑃
−1

0

]

]

]

]

< 0. (31)

Similarly, it is easy to see that Ψ < 0 is equivalent to

Ω = [

C
11

∗

C
21

C
22

] < 0. (32)

It can be seen that if (13) holds,Θ < 0 is true, whichmeans

E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) − 𝜆𝑉
𝑁
(𝑘) + 𝑧

𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘))

< 0.

(33)

It follows from (25) and (33) that

E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) − 𝜆𝑉
𝜎(𝑘)

(𝑘) + 𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘))

< 0

(34)

which means

E (𝑉
𝜎(𝑘+1)

(𝑘 + 1))

< E (𝑉
𝜎(𝑘)

(𝑘)) −E (𝑧
𝑇

(𝑘) 𝑧 (𝑘)) + 𝛾
2

E (𝑤
𝑇

(𝑘) 𝑤 (𝑘)) ,

E (𝑉
𝜎(∞)

(𝑘 + 1))

< E (𝑉
𝜎(0)

(0)) −

∞

∑

𝑘=0

E (𝑧
𝑇

(𝑘) 𝑧 (𝑘))

+ 𝛾
2

∞

∑

𝑘=0

E (𝑤
𝑇

(𝑘) 𝑤 (𝑘)) ,

∞

∑

𝑘=0

E (𝑧
𝑇

(𝑘) 𝑧 (𝑘)) ≤ 𝛾
2

∞

∑

𝑘=0

E (𝑤
𝑇

(𝑘) 𝑤 (𝑘)) .

(35)

Next, we prove the stochastically and exponentially stable
system (5). The perturbation 𝑤(𝑡) is assumed to be zero.

When 𝜎(𝑘) = 𝑖, (𝑖 = 0, 1, 2, . . . , 𝑁 − 1), we obtain

E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) − 𝜆𝑉
𝜎(𝑘)

(𝑘))

= E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) | 𝜎 (𝑘) = 𝑖) − 𝜆𝑉
𝑖
(𝑘)

= 𝑥
𝑇

(𝑘)(

𝑁

∑

𝑗=0

𝜋
𝑖𝑗
𝐴
𝑇

𝑖
𝑃̃
𝑗
𝐴
𝑖
− 𝜆𝑃̃
𝑖
)𝑥.

(36)

From (21), (23), and (24), it can be seen that Θ < 0 is
equivalent to Ω < 0.

Then, it can be seen from (19) that if (12) holds, we have

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝐴
𝑇

𝑖
𝑃̃
𝑗
𝐴
𝑖
− 𝜆𝑃̃
𝑖
+ 𝐶
𝑇

𝐶 < 0 (37)

and then
𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝐴
𝑇

𝑖
𝑃̃
𝑗
𝐴
𝑖
− 𝜆𝑃̃
𝑖
< 0 (38)

which means

E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) − 𝜆𝑉
𝜎(𝑘)

(𝑘)) < 0. (39)

When 𝜎(𝑘) = 𝑁,

E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) − 𝜆𝑉
𝑁
(𝑘))

= 𝑥
𝑇

(𝑘)(

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐴
𝑇

𝑁
𝑃̃
𝑗
𝐴
𝑁
− 𝜆𝑃̃
𝑁
)𝑥 (𝑘) .

(40)

From (27), (29), (31), and (32), it can be seen that Θ < 0

is equivalent to Ω < 0.
Then, it can be seen from (27) that if (13) holds, we have

𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐴
𝑇

𝑁
𝑃̃
𝑗
𝐴
𝑁
− 𝜆𝑃̃
𝑁
+ 𝐶
𝑇

𝐶 < 0 (41)
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and then
𝑁

∑

𝑗=0

𝜋
𝑁𝑗

𝐴
𝑇

𝑁
𝑃̃
𝑗
𝐴
𝑁
− 𝜆𝑃̃
𝑁

< 0 (42)

which means
E (𝑉
𝜎(𝑘+1)

(𝑘 + 1) − 𝜆𝑉
𝑁
(𝑘)) < 0. (43)

From (36) and (43), we have
E (𝑉
𝜎(𝑘+1)

(𝑘 + 1)) < E (𝜆𝑉
𝜎(𝑘)

(𝑘)) ,

E (𝑉
𝜎(𝑘)

(𝑘)) < 𝜆
𝑘

E (𝑉
𝜎(0)

(0)) .

(44)

From Lemma 3, we get

E (‖𝑥 (𝑘)‖
2

) ≤ 𝐶𝜆
𝑘

E (‖𝑥 (0)‖
2

) . (45)

Then, the result is established.

The conditions in Theorem 4 are a set of LMIs with
some inversion constraints. 𝐾 can be solved by an iterative
LMI approach which is called the cone complementarity
linearization algorithm [15, 16].

4. Numerical Example

Consider the following system [13]. Suppose 𝛾 = 0.91, 𝜆 =

0.9760. The transition probability matrices of 𝜎(𝑘) are taken
as follow:

[

[

[

[

0.1 0.8 0 0.1

0.2 0.7 0 0.1

0.4 0.5 0 0.1

0.6 0.3 0 0.1

]

]

]

]

(46)

which means
𝜋
01

= 0.1, 𝜋
02

= 0.8, 𝜋
03

= 0, 𝜋
04

= 0.1,

𝜋
11

= 0.3, 𝜋
12

= 0.7, 𝜋
13

= 0, 𝜋
14

= 0,

𝜋
21

= 0.3, 𝜋
22

= 0.7, 𝜋
23

= 0, 𝜋
24

= 0,

𝜋
31

= 0.6, 𝜋
32

= 0.3, 𝜋
33

= 0, 𝜋
34

= 0.1.

(47)

UsingTheorem4 and the cone complementarity linearization
algorithm, we obtain

𝐾 = [−1.4252 −5.7880] . (48)

Figure 2 is the possible realizations of the mode 𝜎(𝑘). Under
this mode sequence, the corresponding state trajectories of
the closed-loop system are shown in Figure 3. It is shown that
the closed-loop system is stochastically and exponentially
stable.

5. Conclusions

In this paper, by modeling the random delays and packet
dropouts as a Markov chain, a new Markovian jump system
model is presented to describe the networked control system
with disturbance attenuation. The criteria for the system are
stochastically and exponentially stable with an 𝐻

∞
distur-

bance attenuation level which is derived by an iterative LMI
approach.
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Figure 2: Random mode 𝜎(𝑘).
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Figure 3: State trajectories of the NCS.
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