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This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of
system states andmodel parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to
validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position
and velocity information for a second-order state-spacemodel. In addition to the states, the dynamic system has been augmented by
the unknownmodel parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating
effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using
the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model
of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates
state predictions and dual-mode quadratic cost predictionmatrices based on the updated discrete state-spacemodels.The resulting
cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The
proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control
method.

1. Introduction

Undesirable mechanical and structural vibrations may often
cause discomfort in humans and in certain engineering appli-
cations can even lead to catastrophic failure or other extreme
consequences. Passive vibration attenuation approaches are
popular in engineering practice, but the required structural
changes tend to get troublesome with low frequency vibra-
tions [1, 2]. With the advent of new actuator and sensor types
and the availability of cheap computing technology, active
vibration control (AVC) has become an important tool in
managing excessive vibration levels [3, 4].

When designing the algorithm support for AVC sys-
tems, a frequent assumption is that the controlled structure
maintains its dynamic properties throughout the control
procedure. This assumption enables the straightforward tun-
ing of some controllers used in vibration attenuation like
positive position feedback (PPF) [2, 4], while, inmodel-based
algorithms such as linear quadratic (LQ) [3, 5] or model

predictive control [6–8] (MPC), it allows the use of a relatively
precise nominal model. However, not every AVC application
fits this convenient premise. A time-varying system behavior
may simply detune the controller causing it to operate with
suboptimal performance, but it may also affect the stability
of the closed-loop control system. Also, one of the most
important properties of self-reliant structural control systems
is adaptivity, implying a degree of in situ intelligence [9].

One of the possible ways to handle model and parameter
changes is robust controller design. The basis of the design
approach is the a priori analysis of system behavior given a
compact set of uncertain parameters. Within this predefined
bounded set, the controller remains stable and fulfills certain
tradeoff performance criteria; nevertheless, the best perfor-
mance is usually achieved only with the nominal model.
Robust versions of numerous well-known control methods
have been considered for the control of vibrating mechanical
structures, including robust pole-placement [10], robust H

∞

[11], robust LQ [12], and robustmin–maxLQ [1].Nonetheless,
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a real adaptive vibration control system offering a degree of
self-reliance requires advanced control looking beyond the
boundaries of mere robustness [9].

In addition to robust controller design practices, the
problem of variable structural properties is often addressed
by introducing a level of adaptivity into the control loop.
Adaptivity enables the vibration control system to function
under varying load conditions, partial actuator failure, or
performance degradation, a limited change in geometric
configuration or varying physical parameters. Modeling
uncertainties—and to a degree nonlinearities—can be also
compensated by adaptivity [13]. Thus, the advantage of
adaptive algorithms in general is their superior performance,
although they tend to be computationally more expensive
than robust implementations. An excellent overview of adap-
tive structural control with a focus on self-reliance is given by
Hyland and Davis in [9].

Possibly one of the best known and most widely used
adaptivemethods applied for AVC and especially active noise
control (ANC) is the least mean square (LMS) feedforward
control [14–16], where the changes in system dynamics are
translated into the coefficient variations in the adaptive finite
impulse response filter (FIR). A frequent choice of adaptive
AVC encountered in literature is model reference adaptive
control (MRAC) [13], which does not require the use of
explicitly defined system parameters [17]. Other adaptive
vibration control schemes proposed in the past include
sliding mode control [18, 19], neural networks [20, 21], or
an adaptive control scheme featuring a high-gain observer
for compensating model errors, which was introduced for
vibrating microcantilevers by Zhang et al. [22]. Suitable
online identification methods for adaptive AVC include the
subspace identification or autoregressive moving average
(ARMAX) models, adaptive feedforward control, while vari-
ants of the extended Kalman filter (EKF) have been used for
real-time modal parameter diagnostics applications [23].

In order to formulate an adaptive vibration controller,
instead of identifying the coefficients in FIR filters or using
the models without explicit parameterization, we apply the
augmented continuous-discrete extended Kalman filter [24–
26] to estimate the dynamic states as physically interpretable
parameters of a vibrating mechanical system, such as the
stiffness and damping coefficient.The extended Kalman filter
is possibly the most widely used algorithm for the estimation
of states and parameters of nonlinear dynamic systems [24];
here, it performs the online parameter identification for
adaptive-predictive vibration control. The use of EKF or its
alternatives to identify the parameters of vibrating systems
is also common; however, most of these methods involve
offline parameter estimation from measured data or online
diagnostics and do not use EKF in real-time to supple-
ment model data to model-based control systems. Examples
include disturbance force estimation on a free-free beam [27],
health monitoring of base-isolated structures under seismic
loads [28], and stiffness and damping coefficient estimation
in hydromount systems for reducing vibrations in automotive
applications [29]. Recently, Szabat and Orlowska-Kowalska
used the extended Kalman filter to adaptively control tor-
sional vibration in a two-mass rotating drive system [30, 31].

The EKF was previously used as a benchmark algorithm for
the open-loop state and parameter estimation of the free
vibrations of the cantilever beam considered in this work,
contrasting the results to moving horizon observer (MHO)
in an offline simulation [32].

In this work, the parameters estimated by the EKF are
used to update the continuous model, which is in turn
discretized, to create the state predictions for an input
constrained infinite horizon dual-mode MPC algorithm
[33, 34]. Regarded by many as one of the most important
developments in control engineering [35], the key advantage
of using a model-based predictive algorithm in any system
is that it can take the effect of future state, input, or output
constraints into account when computing the control move
[36]. Constraints are essential in every application field, but
piezoceramics often used in vibration control are particularly
prone to failure and performance degradation by depolar-
ization, which may occur if voltage limits are continually
exceeded [8, 37]. The explicit constraint handling feature
offered by the MPC method is unique and valuable property
amongst the available control algorithms [34]. In addition to
this hallmark feature, the performance of a well-designed and
tuned MPC algorithm may surpass other traditional control
strategies used in vibration control. This is due to the fact
thatmodel predictive control is an optimal controlmethod. A
significant drawback of using advanced optimization-based
control methods such as the MPC is the computational cost
of solving the problem online [6, 37].

The combination of EKF and MPC resulting in the
proposed adaptive EKF-MPC vibration control scheme is
applied to a clamped aluminum cantilever beam which is
equipped with piezoceramic transducers and its deformation
is measured at the free end using a laser triangulation system
(Figure 1). Let us assume that the dynamics of this beam
can be modeled using a second-order differential equation
describing themotion of the point-mass-damper system.This
assumption holds true, if the first resonance of the structure
dominates the dynamic response, which is the case for a
class of real-life structures [8, 38]. It is necessary to use such
a simple dynamic model in order to ensure the real-time
feasibility of the computation intensive quadratic program-
ming solver required for constrained MPC. Furthermore, let
us assume that the force contribution from the actuators
can be modeled by the input voltage multiplied by a scalar
conversion constant and that the beam is excited by an
external shock-like disturbance force.

The disturbance force is a series of impacts delivered
to the beam, emulating the release test similar to transient
vibration typical for aerospace structures [39]. The aim of
the adaptive EKF-MPC vibration control algorithm then is
to attempt to keep the beam position near its equilibrium
using constrained inputs and despite the external distur-
bances, while continually adapting to possible changes in
the dynamic behavior by observing the unknown system
parameters in addition to the system states. The control
system will shorten the overall settling time of the structure
and concurrently adapt the algorithmproperties to parameter
changes.
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(a) Active beam assembly

(b) Piezoceramic actuators (c) Laser feedback and stinger

Figure 1: Clamped cantilever with active vibration control.

The vibration control algorithm proposed here unifies the
advantages of the adaptivity enabled by the online extended
Kalman filter and constrained model predictive control. The
EKF-MPC method offers greater damping performance in
the face of time-varying physical parameters and model
uncertainties, while at the same time ensuring the fulfillment
of process constraints in order to increase the safety and
reliability of modern AVC systems. The advantages intro-
duced above come at a price, which is mainly the increase in
complexity and computational load.

After the formerly presented introductory section, the
theoreticalmethodology of thework is discussed in Section 2.
First, the modeling of the dynamics of the vibrating can-
tilever including the parameter augmentation is presented;
then, we review the formulation of the extended Kalman
filter for the given problem. The discretization procedure
of the continuous system model and the constrained model
predictive algorithm is followed by an overall summary of the
proposed EKF-MPC vibration control algorithm. Section 3
presents the experimental hardware inmore detail alongwith

the common assumptions and utilized settings, while the
different experimental scenarios are also introduced in this
section. We report the results of the experiments and discuss
theirmeaning in Section 4 and, finally, the paper is concluded
in Section 5.

2. Methodology

2.1. System Dynamics Augmented by Unknown Parameters.
Let us assume that the vibration dynamics of the fixed-
free cantilever beam can be approximated by a second-order
differential equation describing the motion of a spring-mass-
damper with an external force input [3, 4] and an unknown
external disturbance

𝑚 ̈𝑞 (𝑡) + 𝑏 ̇𝑞 (𝑡) + 𝑘𝑞 (𝑡) = 𝑐𝑢 (𝑡) + 𝐹
𝑒
(𝑡) , (1)

where 𝑚 (kg) is the equivalent mass of the beam and
the actuators, 𝑏 (Ns/m) is the equivalent viscous damping
coefficient, and 𝑘 (N/m) is the equivalent stiffness; let 𝑐 (N/V)
represent the scalar coefficient transforming input voltage to
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force 𝐹(𝑡) = 𝑐𝑢(𝑡) (N) and let 𝐹
𝑒
(𝑡) (N) be the disturbance

[40]. The input to this system is the voltage supplied to the
actuators 𝑢(𝑡) (V) and the single measured output is the
position of the beam 𝑞(𝑡) (m).

Such a second-order differential equation representing
a 1 DOF vibrating system only takes the first resonant
frequency into account; however, from the viewpoint of the
control system, this is not an issue, since the first resonance
dominates the response. Single degree of freedommodels are
routinely used in literature to identify the physical parameters
of vibrating structures using the EKF and other statistical
estimation methods [32, 41, 42].

If we choose the position and velocity as state variables
(𝑥
1
(𝑡) = 𝑞(𝑡), 𝑥

2
(𝑡) = ̇𝑞(𝑡)), it is possible to express this

equation in a continuous, linear, state-space form
ẋ (𝑡) = Φx (𝑡) + Γ𝑢 (𝑡) +Θ𝐹

𝑒
(𝑡) , (2)

𝑦 (𝑡) = Cx (𝑡) . (3)

Matrix Φ ∈ R2×2 is the dynamics matrix, Γ ∈ R2×1 is the
input matrix, and Θ ∈ R2×1 is the unknown force transition
matrix, which for the assumedmodel take the following form
[40, 43]:

Φ =
[

[

0 1

−

𝑘

𝑚

−

𝑏

𝑚

]

]

Γ = [

0

𝑐

𝑚

] Θ = [

0

1

𝑚

] . (4)

Furthermore, C = [1 0] outputs the position 𝑦(𝑡) = 𝑞(𝑡)

(m), measured at a single point at the beam tip, while direct
input feedthrough is omitted in this case. Assuming that
the equivalent mass 𝑚 is known and constant but other
parameters may vary with time, the system dynamics noted
asΦ(𝑡) and Γ(𝑡) are time variable and are continually updated
in the EKF-MPC algorithm.

The continuous state x(𝑡) describing only the system
dynamics as defined in (2) can be augmented by the vector
of unknown parameters p(𝑡). In this case,

p (𝑡) = [𝑘 (𝑡) 𝑏 (𝑡) 𝑐 (𝑡) 𝐹
𝑒
(𝑡)]

𝑇

, (5)

where p(𝑡) is expressing the unknown and potentially chang-
ing damping, stiffness, force conversion parameter, and the
external disturbance. The new augmented state becomes

x
𝑎
(𝑡) = [x (𝑡) p (𝑡)]

𝑇

. (6)

The system dynamics, which is augmented by the unknown
parameters, can be expressed as

ẋ (𝑡) = ̃
𝑓
𝑐
(x (𝑡) , p (𝑡) , 𝑢 (𝑡)) + 𝑤

𝑠
(𝑡) ,

ṗ (𝑡) = 𝑤
𝑝
(𝑡) ,

(7)

where 𝑤
𝑠
(𝑡) is the system process noise and 𝑤

𝑝
(𝑡) is the

parameter process noise. Equation (7) can be combined to get
the augmented dynamics

ẋ
𝑎
(𝑡) = 𝑓

𝑐
(x
𝑎
(𝑡) , 𝑢 (𝑡)) + 𝑤 (𝑡) , (8)

𝑦 (𝑡) = ℎ (x
𝑎
(𝑡) , 𝑢 (𝑡)) + V (𝑡)

= [1 0 0 0 0 0] x
𝑎
(𝑡) + V (𝑡) ,

(9)

where the function 𝑓
𝑐
represents the continuous augmented

dynamics, ℎ
𝑐
is the continuous measurement function, and

𝑤(𝑡) = [𝑤
𝑠
(𝑡) 𝑤

𝑝
(𝑡)]
𝑇 expresses system and parameter

process noise.The process noise andmeasurement noise have
the properties of white noise; in other words, they have a
sequentially uncorrelated Gaussian distribution with a zero
mean:

𝑤 (𝑡) ∼ 𝑁 (0,Q
𝑓𝑡
) ,

V (𝑡) ∼ 𝑁 (0,R
𝑓
) ,

(10)

where Q
𝑓𝑡

is a process noise covariance matrix and R
𝑓
is a

measurement noise covariance matrix.
Note that, by augmenting the dynamics of the mass-

spring-damper system by the parameters in (8) and (9), we
essentially turn the otherwise linear state-space model into a
nonlinear formulation, since the parameters will be used in
multiplicative operations inside the model [24, 25].

Even though the real system dynamics is continuous in
nature, in practice the output can be only observed at discrete
sampling times 𝑡 = 𝑘𝑇, 𝑘 = 1, 2, 3, . . ., where𝑇 is the sampling
interval. Therefore, we will consider a numerically simulated
nonlinear system [24] described and propagated by

x
𝑎(𝑘+1)

= 𝑓 (x
𝑎(𝑘)

, 𝑢
(𝑘)

) + 𝑤
(𝑘)

,

𝑦
(𝑘)

= ℎ (x
𝑎(𝑘)

, 𝑢
(𝑘)

) + V
(𝑘)

= [1 0 0 0 0 0] x
𝑎(𝑘)

+ V
(𝑘)

.

(11)

2.2. Hybrid Extended Kalman Filter. The EKF algorithm is
commonly used to estimate the parameters of nonlinear
dynamic systems and the variant summarized here is known
in literature as the continuous-discrete or hybrid EKF [24].
The EKF [24, 25] is initialized with the initial estimate of the
augmented state

x̂+
𝑎0

= 𝐸 [x
𝑎0
] (12)

and the covariance matrix of the initial state error estimate
P+
0
= 𝐸 [(x

𝑎0
− x̂+
𝑎0
) (x
𝑎0

− x̂+
𝑎0
)

𝑇

] . (13)

To obtain the a priori state estimate (denoted by the −
subscript) in the continuous part of the filter, the state
estimate of the augmented dynamic system (8) is simulatively
propagated from time 𝑡 = (𝑘 − 1) one step ahead to the next
time instant 𝑡 = (𝑘)

x̂−
𝑎(𝑘)

= 𝑓 (x̂+
𝑎(𝑘−1)

, 𝑢
(𝑘)

) , (14)

using the system dynamics of the mass-spring-damper
augmented by the change in parameters p(𝑡) = [𝑘(𝑡)

𝑏(𝑡) 𝑐(𝑡) 𝐹
𝑒
(𝑡)]
𝑇

̇𝑞 (𝑡) = 𝑥̇
1
(𝑡) = 𝑥

2
(𝑡)

̈𝑞 (𝑡) = 𝑥̇
2
(𝑡) = −

1

𝑚

𝑥
3
(𝑡) 𝑥
1
(𝑡) −

1

𝑚

𝑥
4
(𝑡) 𝑥
2
(𝑡)

+

1

𝑚

𝑥
5
(𝑡) 𝑢 (𝑡) +

1

𝑚

𝑥
6
(𝑡)
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̇
𝑘 (𝑡) = 𝑥̇

3
(𝑡) = 0

̇
𝑏 (𝑡) = 𝑥̇

4
(𝑡) = 0

̇𝑐 (𝑡) = 𝑥̇
5
(𝑡) = 0

𝐹̇
𝑒
(𝑡) = 𝑥̇

6
(𝑡) = 0.

(15)

The time update of the a priori covariance matrix estimate
[24, 25] is given by the equation

̇P (𝑡) = Z (x̂
𝑎
(𝑡))P (𝑡) + P (𝑡)Z𝑇 (x̂

𝑎
(𝑡)) +Q

𝑓𝑡
, (16)

where the Jacobian of the state equation (15) is expressed by

Z (x̂
𝑎
) =

𝜕𝑓
𝑐
(x
𝑎
)

𝜕x
𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x
𝑎
=x̂
𝑎

=

[

[

[

[

[

[

[

[

[

0 1 0 0 0 0

−

1

𝑚

𝑥
3
(𝑡) −

1

𝑚

𝑥
4
(𝑡) −

1

𝑚

𝑥
1
(𝑡) −

1

𝑚

𝑥
2
(𝑡)

1

𝑚

𝑢 (𝑡)

1

𝑚

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]

]

]

]

]

]

]

]

]x
𝑎
=x̂
𝑎

. (17)

Concluding the continuous part of the hybrid EKF,
the covariance matrix estimate is obtained by simulative
propagation of (16) from time 𝑡 = (𝑘 − 1) to the sample at
𝑡 = (𝑘)

P−
(𝑘)

= 𝑔 (P+
(𝑘−1)

,Z (x̂+
𝑎(𝑘−1)

)) . (18)

The Kalman gain matrix at sample (𝑘) is

K
𝑓(𝑘)

= P−
(𝑘)
L𝑇[LP−

(𝑘)
L𝑇 +MR

𝑓
M𝑇]
−1

. (19)

The augmented state estimate is updated to obtain the a
posteriori estimate (denoted by the + subscript) along with
the a posteriori update of the error covariance matrix

x̂+
𝑎(𝑘)

= x̂−
𝑎(𝑘)

+ K
𝑓(𝑘)

[𝑦
(𝑘)

− ℎ (x̂−
𝑎(𝑘)

, 𝑢
(𝑘)

)] , (20)

P+
(𝑘)

= [I − K
𝑓(𝑘)

L]P−
(𝑘)

[I − K
𝑓(𝑘)

L]
𝑇

+ K
𝑓(𝑘)

MR
𝑓
M𝑇K𝑇
𝑓(𝑘)

,

(21)

using the Jacobians of themeasurement equation ℎ(x
𝑎(𝑡)

)with
respect to x

𝑎(𝑡)
and k
𝑎(𝑡)

L
(𝑘)

=

𝜕ℎ (x
𝑎(𝑡)

)

𝜕x
𝑎(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x
𝑎(𝑡)
=x̂−
𝑎(𝑡)

= [1 0 0 0 0 0]

M
(𝑘)

=

𝜕ℎ (x
𝑎(𝑡)

)

𝜕k
𝑎(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x
𝑎(𝑡)
=x̂−
𝑎(𝑡)

= 1.

(22)

Both x̂+
𝑎(𝑘)

and P+
(𝑘)

are stored and used in the next step of the
a priori computation.

2.3. Model Updates and Discretization. The continuous
model in (2) defined by Φ

(𝑘)
and Γ

(𝑘)
is updated at discrete

times (𝑘) based on the latest available estimates of the
parameters 𝑘

(𝑘)
, 𝑏
(𝑘)
, and 𝑐

(𝑘)
by the EKF introduced in the

previous section.The linear time-invariantMPC formulation
assumed in this work expects a discrete-time model given by

x
(𝑘+1)

= A
(𝑘)
x
(𝑘)

+ B
(𝑘)

𝑢
(𝑘)

, (23)
𝑦
(𝑘)

= Cx
(𝑘)

. (24)

Matrix A
(𝑘)

∈ R2×2 is the dynamics matrix, B
(𝑘)

∈ R2×1

is the input matrix, and C = [1 0] outputs the position
𝑦
(𝑘)

= 𝑥
1(𝑘)

= 𝑞
(𝑘)

(m). Using a discrete sampling time 𝑇 (s),
the continuous-time state and inputmatricesΦ

(𝑘)
andΓ
(𝑘)

are
discretized [44] using

A
(𝑘)

= I +Φ
(𝑘)

𝑇Ψ
(𝑘)

, (25)
B
(𝑘)

= Ψ
(𝑘)

𝑇Γ
(𝑘)

, (26)

where the termΨ
(𝑘)

is expressed by the infinite series

Ψ
(𝑘)

= I +
Φ
(𝑘)

𝑇

2!

+

Φ
(𝑘)

𝑇

3!

+

Φ
(𝑘)

𝑇

4!

+ ⋅ ⋅ ⋅ , (27)

which in practice can be approximated using successive
iterations 𝑗 of [44]

Ψ
(𝑘)

≈ I +
Φ
(𝑘)

𝑇

2

(I +
Φ
(𝑘)

𝑇

3

(⋅ ⋅ ⋅

Φ
(𝑘)

𝑇

𝑗 − 1

(I +
Φ
(𝑘)

𝑇

𝑗

)) ⋅ ⋅ ⋅ ) .

(28)

2.4. Model Predictive Control. The online MPC optimization
problem involves minimizing the cost function subject to
constraints on the voltage input.The particularMPCmethod
considered here is known as the infinite horizon constrained
dual-modeMPC algorithm [33, 34]. After choosing a horizon
of 𝑛 steps, we may predict the evolution of the future states—
compactly denoted by x⃗

(𝑘)
—based on the estimate of the

current state x
0(𝑘)

= x̂+
0(𝑘)

(excluding parameters p(𝑘)) and
the sequence of future inputs 𝑢⃗

(𝑘)
, at time (𝑘) by the recursive

substitution of states using (23) [34]. We may express this in
a compact notation by [33, 34]

x⃗
(𝑘)

= M
(𝑘)
x
0(𝑘)

+ N
(𝑘)
u⃗
(𝑘)

, (29)
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where matricesM
(𝑘)

and N
(𝑘)

for step (𝑘) are [33]

M
(𝑘)

= [A0
(𝑘)

A1
(𝑘)

. . . A𝑛−2
(𝑘)

A𝑛−1
(𝑘)

A𝑛
(𝑘)

]

𝑇 (30)

N
(𝑘)

=

[

[

[

[

[

[

[

0 0 . . . 0 0 0
B
(𝑘)

0 . . . 0 0 0
A
(𝑘)
B
(𝑘)

B
(𝑘)

. . . 0 0 0
...

... d
...

...
...

A𝑛−1
(𝑘)

B
(𝑘)

A𝑛−2
(𝑘)

B
(𝑘)

. . . A2
(𝑘)
B
(𝑘)

A
(𝑘)
B
(𝑘)

B
(𝑘)

]

]

]

]

]

]

]

. (31)

Let us define the linear, quadratic cost function, expressing
the contribution of future states x⃗

(𝑘)
and future inputs u⃗

(𝑘)

into the numerical control quality indicator 𝐽(-). This cost
function uses the dual-mode paradigm, utilizing free inputs
for the first 𝑛 steps and a fixed feedback controller afterwards
[45]:

𝐽
(𝑘)

=

𝑛−1

∑

𝑖=0

(x𝑇
(𝑘+𝑖)

Qx
(𝑘+𝑖)

+ 𝑢
𝑇

(𝑘+𝑖)
R𝑢
(𝑘+𝑖)

) + x𝑇
(𝑘+𝑛)

P
𝑓(𝑘)

x
(𝑘+𝑛)

,

(32)

where Q = Q𝑇 ≥ 0 is the user determined penalization
matrix for states and R = R𝑇 ≥ 0 is the penalization
matrix for inputs. Furthermore, P

𝑓(𝑘)
is the solution of the

unconstrained, infinite horizon quadratic regulation prob-
lem [33, 34, 45] at sample (𝑘). The recursive feasibility of
constraints to provide stability guarantees [46, 47] is not
implemented in this work, so that the feasibility of the real-
time implementation is ensured given the relatively short
sampling periods of the vibration control problem [8, 37].

Unlike in the case of MPC with a nominal model, here
the terminal weight P

𝑓(𝑘)
must be recomputed online as

the solution of the discrete-time algebraic Riccati equation
(DARE) [48]:

A𝑇
(𝑘)
P
𝑓(𝑘)

A
(𝑘)

− P
𝑓(𝑘)

− A𝑇
(𝑘)
P
𝑓(𝑘)

B
(𝑘)

(R + B𝑇
(𝑘)
P
𝑓(𝑘)

B
(𝑘)

)

−1

B
(𝑘)
P
𝑓(𝑘)

A
(𝑘)

+Q = 0.

(33)

For the numerical solution of this classical control problem,
amongst others, iterative cost reduction algorithms [49],
Schur methods [50], or eigenvalue decomposition methods
[48, 51] may be applied, of which we consider the latter
procedure based on the work of Pappas et al. [48]. Let us
define G

(𝑘)
as

G
(𝑘)

= B
(𝑘)
R−1B𝑇
(𝑘)

. (34)

Consider the generalized eigenvalue problem as

Y
(𝑘)
V
(𝑘)

= U
(𝑘)
X
(𝑘)
V
(𝑘)

, (35)

where U
(𝑘)

is the diagonal matrix containing generalized
eigenvalues and the full matrix V

(𝑘)
corresponding to the

generalized principal vectors of (35). We define X
(𝑘)

and Y
(𝑘)

as

X
(𝑘)

=
[

[

I G
(𝑘)

0 A𝑇
(𝑘)

]

]

Y
(𝑘)

= [

A
(𝑘)

0
−Q I] . (36)

After solving (35), the diagonal matrix U
(𝑘)

can be used to
identify the indices of stable eigenvalues. The eigenvectors of
V
(𝑘)

that are corresponding to the identified stable eigenval-
ues can be inserted in a matrix W

(𝑘)
used as the basis of the

stable eigenspace, which is partitioned into two submatrices

W
(𝑘)

= [

W
1(𝑘)

W
2(𝑘)

] . (37)

Finally, the solution of the discrete-time algebraic Riccati
equation in (33) can be computed as [48]

P
𝑓(𝑘)

= W
2(𝑘)

W−1
1(𝑘)

. (38)

Since the adaptive MPC algorithm considered here does not
implement a recursive constraint checking horizon needed
to guarantee stability on an infinite horizon [46, 47], it does
not explicitly need the LQ gain itself, only the solution of
the DARE. Nevertheless, this work uses the unconstrained
equivalent LQ gain as a certain diagnostic indicator of the
algorithm behavior. The unconstrained equivalent LQ gain
can be computed by evaluating

K
(𝑘)

= (R + B𝑇
(𝑘)
P
𝑓(𝑘)

B
(𝑘)

)

−1

B𝑇
(𝑘)
P
𝑓(𝑘)

A
(𝑘)

. (39)

The model predictive control algorithm is formulated
based on the minimization of the dual-mode cost in (32). To
find the solution of the MPC problem at a given sample, one
must execute the minimization [33, 34]

minu
𝑘

𝐽 (u
𝑘
, x
𝑘
) =

𝑛−1

∑

𝑖=0

(x𝑇
(𝑘+𝑖)

Qx
(𝑘+𝑖)

+ 𝑢
𝑇

(𝑘+𝑖)
R𝑢
(𝑘+𝑖)

)

+ x𝑇
(𝑘+𝑛)

P
𝑓(𝑘)

x
(𝑘+𝑛)

,

(40)

subject to the following constraints:
𝑢 ≤ 𝑢
(𝑘+𝑖)

≤ 𝑢, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 (41)
x
0(𝑘)

= x
(𝑘)

(42)
x
(𝑘+1+𝑖)

= A
(𝑘)
x
(𝑘+𝑖)

+ B
(𝑘)

𝑢
(𝑘+𝑖)

, 𝑖 ≥ 0 (43)
𝑦
(𝑘+𝑖)

= Cx
(𝑘+𝑖)

, 𝑖 ≥ 0 (44)
𝑢
(𝑘+𝑖)

= K
(𝑘)
x
(𝑘+𝑖)

, 𝑖 ≥ 𝑛, (45)
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where (41) expresses the predefined process constraints
on the voltage levels, (42) is the observed dynamic state
containing position and velocity estimates, (43) and (44)
are the discrete linear state-space model updated by the
parameters, and (45) is the constraint which is implicitly
included in the terminal cost and, due to the receding horizon
implementation, it is never realized.

In order to make this optimization procedure suitable
for numerical solvers, the cost and the constraints are trans-
formed. The cost function in (32) can be compactly denoted
[33, 34] by

𝐽
(𝑘)

= u⃗𝑇
(𝑘)
H
(𝑘)
u⃗
(𝑘)

+ 2x𝑇
0(𝑘)

G𝑇
(𝑘)
u⃗
(𝑘)

+ x𝑇
0(𝑘)

F
(𝑘)
x
0(𝑘)

.

(46)

Since the part x𝑇
0(𝑘)

F
(𝑘)
x
0(𝑘)

does not depend on the optimiza-
tion variable u⃗

(𝑘)
and contributes only a fixed value to the

cost at each iteration, we may omit it from the optimization
procedure. For the variablemodel structure,H

(𝑘)
andG

(𝑘)
are

evaluated online at each step (𝑘) by [33, 34]

H
(𝑘)

=

𝑛−1

∑

𝑖=0

N𝑇
𝑖(𝑘)

QN
𝑖(𝑘)

+ N𝑇
𝑛(𝑘)

P
𝑓(𝑘)

N
𝑛(𝑘)

+R,

G
(𝑘)

=

𝑛−1

∑

𝑖=0

N𝑇
𝑖(𝑘)

QM
𝑖(𝑘)

+ N𝑇
𝑛(𝑘)

P
𝑓(𝑘)

M
𝑛(𝑘)

,

(47)

where the index 𝑖 denotes the 𝑖th block row, respectively,
and 𝑛 denotes the last block row of N

(𝑘)
and M

(𝑘)
identified,

discretized, and computed for time (𝑘). MatrixR is the block
matrix with the input penalty R on its main diagonal. Using
this formulation, the constraints defined by (43)–(45) are
included in the cost function itself.

The upper and lower constraints in (41) which are
enforced on all future input variables 𝑢 ≤ u⃗

(𝑘)
< 𝑢 until the

end of the horizon can be compactly expressed [34] by

[

I
−I] u⃗(𝑘) ≤ [

1𝑢
−1𝑢] . (48)

In this case, the constraints define limits on the allowable
voltage potential supplied to the actuators.

2.5. Adaptive-Predictive EKF-MPC Vibration Control Strat-
egy. The resulting adaptive-predictive EKF-MPC control
strategy can be summarized in the following algorithm [40].

Algorithm 1. Perform the following set of operations at each
sampling instant (𝑘):

(1) propagate the state x̂−
𝑎(𝑘)

in (14) and covariance matrix
Ṗ(𝑡) in (16) in simulation to obtain the a priori
estimate;

(2) sample the actual deflection 𝑦
(𝑘)

filtered by the low-
pass and running mean filter;

(3) compute the Kalman gain K
𝑓(𝑘)

using (19);
(4) based on the measurement sample and gain, update

the state x̂+
𝑎(𝑘)

through (20) to get a posteriori state

estimates; then update the covariance matrix P+
(𝑘)

in
(21);

(5) based on the new parameters p
(𝑘)
, reassemble the

continuous system modelΦ
(𝑘)

and Γ
(𝑘)

by (4);
(6) approximate Ψ

(𝑘)
through (28) to discretize the sys-

tem matrices A
(𝑘)

and B
(𝑘)

using (25);
(7) solve the discrete-time algebraic Riccati equation in

(33) for the terminal weighting P
𝑓(𝑘)

matrix using
(34)–(38);

(8) use the discretizedmodel to compute the state predic-
tion matricesM

(𝑘)
and N

(𝑘)
by (30);

(9) use the state prediction matrices to compute the cost
prediction matricesH

(𝑘)
and G

(𝑘)
through (46);

(10) minimize the quadraticMPCcost function 𝐽
(𝑘)

in (46)
subject to the following input constraints: 𝑢 ≤ 𝑢

(𝑘+𝑖)
≤

𝑢, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1;
(11) apply the first element of the vector of optimal control

moves u⃗
(𝑘)

to the controlled system;
(12) repeat the procedure from (1).

3. Laboratory Hardware and Experimental
Settings

The experimental hardware (Figure 1(a)) consists of a can-
tilever beamfixed at one end and free at the other.Though it is
very simple in its design, this lightly damped cantilever beam
used here as the demonstration example may represent a
wide variety of real-life structures [8, 38] from the standpoint
of dynamic control, including wing surfaces [39], helicopter
rotor blades [52], robotic manipulators in space [53], solar
panels in space [54], and antenna systems [55].

The beam is made of commercially available pure alu-
minum in the dimensions of 550 × 40 × 3mm.The actuating
elements are MIDÉ QP16n piezoelectric transducers made
of PZT5A piezoceramic material (Figure 1(b)), housed in a
film case with prefabricated electrical terminals. Actuators
are connected counterphase to aMIDÉ EL-1225 amplifier and
receive an analog control signal. The sensor is a Keyence LK-
G82 laser triangulation system, connected to theKeyence LK-
G3001V filtering and processing unit, providing an analog
voltage signal to the controller (Figure 1(c)).

The external disturbance resembles transient vibration
effects common in aerospace constructions [39] that are often
introduced to cantilever-like structures using release tests
[56–58]. Repeated impacts are delivered using the stinger
mechanism, providing bursts of force at the free end of the
beam using a linear motor controlled by a digital input signal
(Figure 1(c)).

The EKF-MPC vibration control algorithm is developed
in the MATLAB/Simulink environment, where all online
algorithm stages are made compatible with the real-time
capability of the software. Custom blocks such as the EKF
algorithm, model reassembly, discretization, prediction, and
others are developed in the MATLAB m-file scripting lan-
guage and recompiled into C language for the Real-Time
Workshop target using the Embedded MATLAB Editor.
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Figure 2: Schematic representation of the experimental system.
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Figure 3: Simplified block scheme of the proposed adaptive vibration control algorithm.

The online Simulink block scheme of the controller
algorithm is implemented on a personal computer running
the MATLAB xPC Target rapid control software prototyping
platform, connected to hardware componentswith aNational
Instruments PCI-6030E measurement card. The developed
control system is loaded onto the Target platform via the
TCP/IP protocol.The overall schematic representation of the
experimental system is illustrated in Figure 2.

The simplified block scheme of the proposed adaptive
vibration control algorithm is featured in Figure 3, where the
essential blocks are emphasized. The position measurement
is sampled in the block named “PCI-6030E AD,” and then
it is scaled according to the linear amplification of the laser

system and converted to meter units. The incoming signal
is low- pass filtered and then the running mean is removed.
This processed position measurement is used in the block
named “EKF” to estimate the dynamic states and parameters
of the system using (5)–(22). The estimated parameters are
used to reassemble the continuous state-space model of the
system in (2)–(4) by “vibSS,” and then the system matrices
are discretized using the procedure in (23)–(28) in the block
named “c2d.” The prediction matrices are updated according
to the new model in “mpc” based on (29)–(31), along with
the current LQ gain and terminal weight based on (33)–
(39). The cost function defined by (46) is minimized using
quadratic programming in the block named “QP Solver,”
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Figure 4: Experiment design: measured position output and actuator input.

which requires the Hessian, gradient, and a state estimate; the
rest of the inputs such as the constraints are fixed. The first
input is scaled down to the amplifier constant and sent to the
output named “PCI-6030E DA/DO.” The rest of the blocks
are responsible for data logging and monitoring, timing and
driving the stinger mechanism with the periodic disturbance
signal fed to the digital output.

To evaluate the control strategy presented in Section 2,
four experimental scenarios were considered. In all of these
scenarios, during the first 30 s, the initial identification
procedure was performed using the fixed LQ gain based on
the initial parameter estimates and the settings of the MPC
algorithm, excited by disturbance bursts spaced 4 s apart.
This was followed by switching to the adaptive MPC control
scheme and an 8 s pause; then, the disturbances spaced at 4 s
apart continued. Figure 4 illustrates the experiment design
with the different experimental settings. Experiment 1 (grey)
assumed the original beam without added mass and the
controllers switched off (open-loop control). The rest of the
experiments used the EKF-MPC algorithm to generate the
control inputs to the piezoceramic actuator. Experiment 2

(blue) assumed a small weight added to the end of the beam

Table 1: Summary of experimental scenarios and settings.

Exp. Control Weight Change 𝑡 Color
1 M M N/A Grey
2 ✓ ✓ 0 s Blue
3 ✓ ✓ ∼30 s Green
4 ✓ M N/A Red

for thewhole experiment, Experiment 3 (green) assumed that
the weight was added manually during the pause after ∼30 s,
and finally Experiment 4 (red) assumed no added weight, just
the original beam. The summary of experimental scenarios
and settings is given in Table 1.

Global sampling times were set 𝑇 = 0.01 s for all
experiments, while the simulation step for the continuous
part of the EKF algorithm was 𝑑𝑡 = 𝑇/500 = 20 𝜇s. The EKF
was set with a fixed mass of 𝑚 = 0.178 g, which is the real
measured mass of the beam section starting from the clamp.
An offline grey-box identification procedure [59] may result
in a different weight parameter; however, it is important to
realize that the dynamic weight may not correspond to the
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physical weight and is highly dependent on the settings of the
EKF.

For each experimental scenario, the initial augmented
state estimate was

x̂+
𝑎0

= [0 0 450 0.1 1𝐸 − 3 0]

𝑇

, (49)

and the initial error covariance estimate matrix was set to

P+
0
= diag [1𝐸 − 5 1𝐸 − 2 1𝐸 + 4 1𝐸 − 2 1𝐸 − 5 1𝐸 − 1] .

(50)

Measurement noise covariance for the single position output
was R

𝑓
= 𝑅
𝑓

= 1𝐸 − 9, while the process noise covariance
matrix was set to

Q
𝑓𝑡

= diag [1𝐸 − 10 1𝐸 − 4 1𝐸 − 2 1𝐸 − 8 1𝐸 − 12 𝐸 − 2] . (51)

Though the measurement noise covariance may seem to be
too low, this is a physically meaningful setting; as the position
varies in the range of millimeters and the precise optical
measurement system implies only very slight inaccuracies.
To prevent the estimation of negative parameters, an ad hoc
clipping strategy [32, 40, 43] was used in the EKF.

The continuous model was discretized with an approx-
imation of Ψ with 𝑗 = 10 iterations. The MPC algorithm
was set up using an input penalty R = 𝑅 = 1𝐸 − 10, state
penalty Q = C𝑇C, input constraints −100 ≤ u⃗

(𝑘)
< 100V

(see Figure 4(b)), no state constraints, and 𝑛 = 10 steps
prediction horizon.The constrained quadratic programming
problem was solved online using the qpOASES active-set
sequential quadratic programming solver [60–62], which
is specifically designed for solving optimization problems
occurring in MPC. The measurement chain included a low-
pass FIR filter with the passband edge at 30Hz and stopband
edge at 50Hz and a windowed running mean filter with a
0.1 Hz fundamental frequency.

4. Results and Discussion

Figure 5 shows a detailed view of the measured position
𝑥
1(𝑘)

= 𝑞(𝑘) (Figure 5(a)), estimated velocity 𝑥
2(𝑘)

= ̇𝑞(𝑘)

(Figure 5(b)), input voltage 𝑢
(𝑘)

(Figure 5(c)), and distur-
bance force 𝐹

𝑒(𝑘)
(Figure 5(d)) for a selected time window

of 15 s. The initial identification procedure ends at the 30 s,
just after the second disturbance, and the adaptive EKF-MPC
algorithm continues to take over the control of the beam.

From the measured positions shown in Figure 5(a), it is
clear that in all experiments with the EKF-MPC (Experi-
ments 2–4) the vibration levels are attenuated very effectively;
in fact, settling times are shorter by approximately a factor
of ten when compared to the open-loop case (Experiment1).
The settling time for closed-loop control is approximately
𝑡
𝑠
≅ 1.9 s, while the open-loop system does not settle until

the next impact is delivered from the stinger (𝑡
𝑠
≫ 4 s, where

𝑡
𝑠
is 5% of the position of the largest amplitude at impact).The

difference between the considered experimental scenarios is
more subtle but still visible on both Figures 5(a) and 5(b),
where the lightest beam with the nominal weight produces
the smallest vibration amplitudes and speeds (Experiment
4), while the perturbed physical parameters caused by a
weight (Experiments 2, 3) result in slightly larger vibration
amplitudes and speeds.

In spite of the added weight and increased deformation
amplitudes, the EKF-MPC algorithm compensates for the
change in the dynamics by using more agile inputs, which
is demonstrated in the longer lasting evolution of input
voltages having greater amplitudes outside the constrained
region. Note the intensity of the inputs in Figure 5(c), where
this effect is especially evident in the case of Experiment 3
(before and after the mass has been added) and the difference
between the input behavior in the case of Experiment 2 versus
Experiment 4. The larger mass in Experiment 2 results in
more aggressive inputs than in Experiment 4, while the effects
of the mass increase in Experiment 3 are demonstrated after
a short adaptation period.

These results suggest that the proposed EKF-MPC algo-
rithm enables the system to maintain the time required to
settle comparable in all closed-loop control cases (Experi-
ments 2–4). These matching settling times are a consequence
of increased input activity on the piezoceramic elements. In
addition to the adaptation feature, the constrained infinite
horizon model predictive algorithm respects the process
constraints imposed on the inputs throughout the experi-
ments (Figure 5(c)). Figure 5(d) shows the estimated force
disturbance. The shock-like disturbance force 𝐹

𝑒(𝑘)
is some-

what distorted by the low-pass and running mean filtering
on the measured inputs; however, as one would expect, it
remains consistent throughout all experimental scenarios
(Experiments 1 and 4).

Figure 6 shows the estimated parameters and the equiva-
lent LQ gain for the whole duration of the experiments. The
estimated spring constant 𝑘

(𝑘)
is shown in Figure 6(a), damp-

ing constant 𝑏
(𝑘)

in Figure 6(b), and the force conversion
constant 𝑐

(𝑘)
in Figure 6(c).The unconstrained equivalent LQ

gain is shown for diagnostic purposes only in Figure 6(d)
in order to illustrate the adaptive behavior of the EKF-MPC
control algorithm.

All the parameters simultaneously demonstrate a change
to actively compensate for themass added to the system, since
the mass itself is not an extra identified but a fixed parameter.
The dynamic model used in the MPC algorithm represents
an equivalent point-mass-damper system instead of the
real cantilever beam; therefore, the variations in the mass
translate to a hypothetical change in other equivalent model
parameters. These are to be understood merely as analogous
changes in stiffness, damping, or actuator efficiency.
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Figure 5: Detail of the estimated system states, control input, and disturbance force.
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Figure 6: Estimated model parameters and the equivalent unconstrained LQ gain.

Overall, the equivalent stiffness, force conversion con-
stant, and the K

1,1
component of the LQ gain drop with

increased mass, while damping increases. The sudden spikes
visible in all parameters are due to the mismatch between
the impulse-like disturbance of the stinger mechanism and
the formulation of the EKF algorithm, which is expecting
only centered Gaussian noise as disturbance [24–26]. Of the
three identified parameters, stiffness was the most stable and
consistent one, while the online identification of the damping
parameter proved to be somewhat challenging.

In case the mass is kept constant during the entire dura-
tion of the test (Experiments 1, 2, and 4), all the parameters
adapt to the changes in the system dynamics during the initial
identification phase and then are kept on these levels even
after the EKF-MPC algorithm takes over. When the mass
is added to the beam just before 40 s (Experiment 3), the
adaptation process starts only after this time. The parameter
variations are translated as the model updates in the MPC
algorithm.

In practical applications, especially with joint state and
parameter estimation, the excitation of the dynamic system
may be absent at certain operation times. The proposed
method works well with information-rich processes, how-
ever, it has not been tested with nonpersistent excitation
signals.The EKF is known to degrade in performance or even
become unstable in the absence of excitation as a result of ill-
conditioned numerical operations [63].

5. Conclusions

An adaptive active vibration control algorithm based on
the extended Kalman filter for real-time parameter esti-
mation and the infinite horizon dual-mode constrained
model predictive algorithm has been proposed for fixed-
free cantilevers in this paper. The EKF-MPC algorithm has
been implemented and experimentally tested in real time
on the laboratory system featuring an aluminum beam with
piezoceramic actuation and position feedback.
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Four experimental scenarios were used to evaluate the
proposed EKF-MPC adaptive control algorithm.The closed-
loop settling times were reduced by a factor of ten in all
cases, while the controller promptly reacted to changes in the
beam dynamics. The mass increase, emulated by the added
weight, induced change in the estimated parameters of the
equivalent point-mass-damper system. This mass increase
resulted in the harder-to-control system requiring increased
control inputs. In fact, according to the experimental results
presented here, the parameter changes translated to theMPC
algorithm resulted in more aggressive control moves.

The proposed EKF-MPC algorithm unifies the key fea-
tures of both methods, introducing adaptivity and constraint
handling to the vibration control of flexible cantilever beam-
like structures.

5.1. Future Work. Certain aspects of the unmodeled dynam-
ics, namely, the effect of the outside disturbance, may cause
the identification algorithm to diverge (not shown in the
experiments here). These drawbacks will be addressed in an
upcomingwork [64] by the introduction of spectrum shaping
filters [25, 26] into the augmented models and possibly by
selective error covariance matrix update disabling during
disturbances.

The performance and stability of the proposed algorithm
have not been tested in operation modes without significant
outside excitation. The nonpersistent excitation may result
in an ill-posed numerical problem and stability problems
in the online EKF component. A possible solution to this
problem may be the use of the moving horizon observer
instead of the EKF, as it is suggested here. Instead of pro-
ducing estimates based on the last know measurement and a
recursive procedure, theMHO uses a moving window of past
measurements. While this alone may increase the efficiency
of the estimation procedure faced with nonpersistent data,
the MHO variants enhanced by regularization mechanisms
to cope with this situation have been suggested [63]. The
price of eliminating these problems using the MHO is a
heavy increase in computation cost, as theMHO requires the
use of online nonlinear constrained optimization procedures.
The use of MHO to estimate the states and parameters of
vibration dynamics has been demonstrated in simulation [32]
and using offline measurement data for a nanopositioner
mechanism [65]. Real-time use of the MHO for vibration
mechanics and adaptive vibration control is currently under
development, but an online experimental implementation of
the estimator alone has been recently proposed [66].

Another relevant matter requiring attention in upcoming
research is the question of the stability of the MPC compo-
nent of the proposed algorithm. Stability guarantees may be
given for linear systems and nominal models by enforcing
recursive constraints beyond the control horizon [46, 47];
however, the stability issue of MPC in face of uncertainties—
also known as stochasticMPC—is amore complex issue [67].
Recent advancements in the field of uncertain and robust
MPC formulations can address this problem effectively [68–
70].

An important aspect of self-reliance in an adaptive struc-
tural control scheme is process monitoring and fault diag-

nostics; thus, in addition to the adaptive features discussed
in this paper, online system diagnostics can be also easily
included in the formulation, since adaptive control requires
some form of online system identification. In addition to the
advanced model-based fault diagnostics methods [23, 71],
recent advances in data-driven fault tolerant control [72–74]
can be an attractive way to increase the self-reliance of active
vibration control.
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