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On the basis of the theory of a falling shadow which was first formulated by Wang (1985), the
notion of falling d∗-ideals in d-algebras is introduced, and related properties are investigated.
Characterizations of a falling d∗-ideal are established. Relations among falling d∗-ideals, falling
d-ideals, falling d#-ideals, falling d-subalgebras, and falling BCK-ideals are discussed.

1. Introduction

In the study of a unified treatment of uncertainty modelled by means of combining pro-
bability and fuzzy set theory, Goodman [1] pointed out the equivalence of a fuzzy set and a
class of random sets. Wang and Sanchez [2] introduced the theory of falling shadows which
directly relates probability concepts with the membership function of fuzzy sets. The mathe-
matical structure of the theory of falling shadows is formulated in [3]. Tan et al. [4, 5]
established a theoretical approach to define a fuzzy inference relation and fuzzy set opera-
tions based on the theory of falling shadows. Yuan and Lee [6] considered a fuzzy subgroup
(subring, ideal) as the falling shadow of the cloud of the subgroup (subring, ideal). Iséki and
Tanaka introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([7, 8]).
It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras;
that is, a BCI-algebra is a generalization of a BCK-algebra. As another useful generalization
of BCK-algebras, Neggers and Kim [9] introduced the notion of d-algebras. They investi-
gated several relations between d-algebras and BCK-algebras as well as several other rela-
tions between d-algebras and oriented digraphs. After that, some further aspects were
studied in [10, 11]. Neggers et al. [12] introduced the concept of d-fuzzy function which
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generalizes the concept of fuzzy subalgebra to a much larger class of functions in a natural
way. In addition, they discussed a method of fuzzification of a wide class of algebraic systems
onto [0, 1] along with some consequences. Jun et al. [13] discussed implicative ideals of BCK-
algebras based on the fuzzy sets and the theory of falling shadows. Also, Jun et al. [14] used
the theory of a falling shadow for considering falling d-subalgebras, falling d-ideals, falling
d#-ideals, and falling BCK-ideals in d-algebras.

In this paper, we introduce the notion of falling d∗-ideals in d-algebras, and investigate
several properties. We establish characterizations of falling d∗-ideals, and we use these char-
acterizations for considering relations among falling d∗-ideals, falling d-ideals, falling d#-
ideals, falling d-subalgebras and falling BCK-ideals.

2. Preliminaries

A d-algebra is a nonempty set X with a constant 0 and a binary operation “∗” satisfying the
following axioms:

(I) x ∗ x = 0,

(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y

for all x, y ∈ X.

A BCK-algebra is a d-algebra (X, ∗, 0) satisfying the following additional axioms:

(IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(V) (x ∗ (x ∗ y)) ∗ y = 0

for all x, y, z ∈ X.
Any BCK-algebra (X, ∗, 0) satisfies the following conditions:

(a1) (∀x, y ∈ X)((x ∗ y) ∗ x = 0),

(a2) (∀x, y, z ∈ X)((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0).

A subset I of a BCK-algebra X is called a BCK-ideal of X if it satisfies,

(b1) 0 ∈ I.

(b2) (∀x ∈ X)(∀y ∈ I)(x ∗ y ∈ I ⇒ x ∈ I).

We now display the basic theory on falling shadows. We refer the reader to the papers
[1–5] for further information regarding the theory of falling shadows.

Given a universe of discourse U, let P(U) denote the power set of U. For each u ∈ U,
let

u̇ := {E | u ∈ E and E ⊆ U}, (2.1)

and for each E ∈ P(U), let

Ė := {u̇ | u ∈ E}. (2.2)
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An ordered pair (P(U),B) is said to be a hypermeasurable structure on U if B is a σ-field
in P(U) and U̇ ⊆ B. Given a probability space (Ω,A, P) and a hypermeasurable structure
(P(U),B) on U, a random set on U is defined to be a mapping ξ : Ω → P(U) which is A-B
measurable, that is,

(∀C ∈ B)
(
ξ−1(C) = {ω | ω ∈ Ω and ξ(ω) ∈ C} ∈ A

)
. (2.3)

Suppose that ξ is a random set onU. Let

H̃(u) := P(ω | u ∈ ξ(ω)) for each u ∈ U. (2.4)

Then H̃ is a kind of fuzzy set in U. We call H̃ a falling shadow of the random set ξ, and ξ is
called a cloud of H̃.

For example, (Ω,A, P) = ([0, 1],A, m), where A is a Borel field on [0, 1] and m is the
usual Lebesgue measure. Let H̃ be a fuzzy set in U, and let H̃t := {u ∈ U | H̃(u) ≥ t} be a
t-cut of H̃. Then

ξ : [0, 1] −→ P(U), t 	−→ H̃t (2.5)

is a random set and ξ is a cloud of H̃. We will call ξ defined above as the cut-cloud of H̃ (see
[1]).

3. Falling d∗-Ideals

In what follows let X denote a d-algebra unless otherwise specified.
A nonempty subset S of X is called a d-subalgebra of X (see [11]) if x ∗y ∈ Swhenever

x ∈ S and y ∈ S.
A subset I of X is called a BCK-ideal of X (see [11]) if it satisfies conditions (b1) and

(b2).
A subset I of X is called a d-ideal of X (see [11]) if it satisfies condition (b2) and

(b3) (∀x, y ∈ X)(x ∈ I ⇒ x ∗ y ∈ I).

A d-ideal I of X is called a d#-ideal of X (see [11]) if, for arbitrary x, y, z ∈ X,

(b4) x ∗ z ∈ I whenever x ∗ y ∈ I and y ∗ z ∈ I.

Definition 3.1 (see [14]). Let (Ω,A, P) be a probability space, and let

ξ : Ω −→ P(X) (3.1)

be a random set. If ξ(ω) is a d-subalgebra (BCK-ideal, d-ideal and d#-ideal, resp.) of X for
any ω ∈ Ω with ξ(ω)/= ∅, then the falling shadow H̃ of the random set ξ, that is,

H̃(x) = P(ω | x ∈ ξ(ω)) (3.2)

is called a falling d-subalgebra (falling BCK-ideal, falling d-ideal and falling d#-ideal,resp.) of X.



4 International Journal of Mathematics and Mathematical Sciences

Lemma 3.2 (see [14]). Let H̃ be a falling shadow of a random set ξ on X. Then H̃ is a falling d-ideal
of X if and only if the following conditions are valid:

(a) (∀x, y ∈ X)(Ω(x ∗ y; ξ) ∩Ω(y; ξ) ⊆ Ω(x; ξ)),

(b) (∀x, y ∈ X)(Ω(x; ξ) ⊆ Ω(x ∗ y; ξ)).

Lemma 3.3 (see [14]). If H̃ is a falling d-ideal of X, then

(∀x, y ∈ X
)(
y ∗ x = 0 =⇒ Ω(x; ξ) ⊆ Ω

(
y; ξ

))
. (3.3)

Proposition 3.4. For a falling shadow H̃ of a random set ξ on X, if H̃ is a falling d-ideal of X, then

(∀x, y, z ∈ X
)((

x ∗ y) ∗ z = 0 =⇒ Ω
(
y; ξ

) ∩Ω(z; ξ) ⊆ Ω(x; ξ)
)
. (3.4)

Proof. Let x, y, z ∈ X be such that (x ∗ y) ∗ z = 0. Using Lemma 3.3, we have Ω(z; ξ) ⊆
Ω(x ∗ y; ξ). It follows from Lemma 3.2(a) that

Ω
(
y; ξ

) ∩Ω(z; ξ) ⊆ Ω
(
y; ξ

) ∩Ω
(
x ∗ y; ξ) ⊆ Ω(x; ξ). (3.5)

This completes the proof.

A fuzzy set μ on X is called a fuzzy d-ideal of X (see [10]) if it satisfies

(i) (∀x, y ∈ X)(μ(x) ≥ min{μ(x ∗ y), μ(y)}),

(ii) (∀x, y ∈ X)(μ(x ∗ y) ≥ μ(x)).

Lemma 3.5 (see [10]). A fuzzy set μ on X is a fuzzy d-ideal of X if and only if, for every λ ∈
[0, 1], μλ := {x ∈ X | μ(x) ≥ λ} is a d-ideal of X when it is nonempty.

Theorem 3.6. If we take the probability space (Ω,A, P) = ([0, 1],A, m), whereA is a Borel field on
[0, 1] and m is the usual Lebesgue measure, then every fuzzy d-ideal of X is a falling d-ideal of X.

Proof. Let μ be a fuzzy d-ideal of X. Then μλ(/= ∅) is a d-ideal of X for all λ ∈ [0, 1] by Lemma
3.5. Let

ξ : Ω −→ P(X) (3.6)

be a random set and ξ(λ) = μλ for every λ ∈ Ω. Then μ is a falling d-ideal of X.

We provide an example to show that the converse of Theorem 3.6 is not true.
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Example 3.7. Let X := {0, a, b, c} be a d-algebra which is not a BCK-algebra with the Cayley
table as follows:

∗ 0 a b c

0 0 0 0 0

a a 0 a a

b b b 0 0

c c c a 0

(3.7)

Let (Ω,A, P) = ([0, 1],A, m) and define a random set

ξ : Ω −→ P(X), ω 	−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if ω ∈ [0, 0.2),

∅ if ω ∈ [0.2, 0.3),

{0, a} if ω ∈ [0.3, 0.6),

{0, b} if ω ∈ [0.6, 0.85),

X if ω ∈ [0.85, 1].

(3.8)

Then the falling shadow H̃ of ξ is a falling d-ideal of X, and it is represented as follows:

H̃(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.9 if x = 0,

0.45 if x = a,

0.4 if x = b,

0.15 if x = c.

(3.9)

We know that H̃ is not a fuzzy d-ideal of X since

H̃(c) = 0.15/≥ 0.4 = min
{
H̃(c ∗ b), H̃(b)

}
. (3.10)

Let (Ω,A, P) be a probability space and let

F(X) :=
{
f | f : Ω −→ X is a mapping

}
. (3.11)

Define an operation � on F(X) by

(∀ω ∈ Ω)
((
f � g

)
(ω) = f(ω) ∗ g(ω)

)
(3.12)
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for all f, g ∈ F(X). Let θ ∈ F(X) be defined by θ(ω) = 0 for all ω ∈ Ω. Then (F(X);�, θ) is a
d-algebra [14]. For any subset A of X and f ∈ F(X), let

Af :=
{
ω ∈ Ω | f(ω) ∈ A

}
,

ξ : Ω −→ P(F(X)), ω 	−→ {
f ∈ F(X) | f(ω) ∈ A

}
.

(3.13)

Then Af ∈ A.

Theorem 3.8. If A is a d-ideal of X, then

ξ(ω) =
{
f ∈ F(X) | f(ω) ∈ A

}
(3.14)

is a d-ideal of F(X).

Proof. Assume that A is a d-ideal of X, and let ω ∈ Ω. Let f, g ∈ F(X) be such that g ∈ ξ(ω)
and f � g ∈ ξ(ω). Then g(ω) ∈ A and f(ω) ∗ g(ω) = (f � g)(ω) ∈ A. Since A is a d-ideal of
X, it follows from (b2) that f(ω) ∈ A so that f ∈ ξ(ω). For any f ∈ F(X), if f ∈ ξ(ω) then
f(ω) ∈ A. It follows that from (b3) that (f �g)(ω) = f(ω) ∗g(ω) ∈ A for all g ∈ F(X). Hence
f � g ∈ ξ(ω) for all g ∈ F(X). Therefore ξ(ω) is a d-ideal of F(X).

Theorem 3.9. If H̃ is a falling d-ideal of X, then

(a) (∀x, y ∈ X)(H̃(x ∗ y) ≥ H̃(x)),

(b) (∀x, y ∈ X)(H̃(x) ≥ Tm(H̃(x ∗ y), H̃(y))),

where Tm(s, t) = max{s + t − 1, 0} for any s, t ∈ [0, 1].

Proof. (a) It is clear.
(b) By Definition 3.1, ξ(ω) is a d-ideal of X for any ω ∈ Ωwith ξ(ω)/= ∅. Hence

{
ω ∈ Ω | x ∗ y ∈ ξ(ω)

} ∩ {
ω ∈ Ω | y ∈ ξ(ω)

} ⊆ {ω ∈ Ω | x ∈ ξ(ω)}, (3.15)

and thus

H̃(x) = P(ω | x ∈ ξ(ω))

≥ P
({

ω | x ∗ y ∈ ξ(ω)
} ∩ {

ω | y ∈ ξ(ω)
})

≥ P
(
ω | x ∗ y ∈ ξ(ω)

)
+ P

(
ω | y ∈ ξ(ω)

) − P
(
ω | x ∗ y ∈ ξ(ω)or y ∈ ξ(ω)

)

≥ H̃
(
x ∗ y) + H̃

(
y
) − 1.

(3.16)

Hence

H̃(x) ≥ max
{
H̃
(
x ∗ y) + H̃

(
y
) − 1, 0

}
= Tm

(
H̃
(
x ∗ y), H̃(

y
))

. (3.17)

This completes the proof.
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A d-algebra X is called a d∗-algebra (see [11]) if it satisfies the identity (x ∗ y) ∗ x = 0
for all x, y ∈ X.

If a d#-ideal I of X satisfies

(b5) x ∗ y ∈ I and y ∗ x ∈ I imply (x ∗ z) ∗ (y ∗ z) ∈ I and (z ∗ x) ∗ (z ∗ y) ∈ I for all
x, y, z ∈ X, then we say that I is a d∗-ideal of X (see [11]).

Definition 3.10. For a a probability space (Ω,A, P) and a random set ξ on X, if ξ(ω) is a d∗-
ideal ofX for anyω ∈ Ωwith ξ(ω)/= ∅, then the falling shadow H̃ of the random set ξ is called
a falling d∗-ideal of X.

Example 3.11. Let X := {0, a, b, c} be a d-algebra which is not a BCK-algebra with the
following Cayley table:

∗ 0 a b c

0 0 0 0 0

a a 0 0 a

b b b 0 0

c c c a 0

(3.18)

Let (Ω,A, P) = ([0, 1],A, m) and define a random set

ξ : Ω −→ P(X), ω 	−→

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{0, a} if ω ∈ [0, 0.6),

∅ if ω ∈ [0.6, 0.7),

X if ω ∈ [0.7, 1].

(3.19)

Then the falling shadow H̃ of ξ is a falling d∗-ideal of X.

Obviously, every falling d∗-ideal is a falling d#-ideal, but the converse does not hold in
general.

Example 3.12. Let X := {0, a, b, c} be a d-algebra which is not a BCK-algebra with the Cayley
table as follows:

∗ 0 a b c

0 0 0 0 0

a a 0 0 a

b c b 0 c

c c b b 0

(3.20)
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For a probability space (Ω,A, P) = ([0, 1],A, m), define a random set

ξ : Ω −→ P(X), ω 	−→

⎧
⎪⎪⎨
⎪⎪⎩

{0, a} if ω ∈ [0, 0.3),

X if ω ∈ [0.3, 0.8),

∅ if t ∈ [0.8, 1].

(3.21)

Then the falling shadow H̃ of ξ is a falling d#-ideal ofX, but not a falling d∗-ideal ofX because
if ω ∈ [0, 0.3) then ξ(ω) = {0, a} is not a d∗-ideal of X.

A characterization of a falling d#-ideal is established as follows.

Lemma 3.13 (see [14]). For a falling shadow H̃ of a random set ξ onX, the following are equivalent:

(a) H̃ is a falling d#-ideal of X,

(b) H̃ is a falling d-ideal of X that satisfies the following inclusion:

(∀x, y, z ∈ X
)(
Ω
(
x ∗ y; ξ) ∩Ω

(
y ∗ z; ξ) ⊆ Ω(x ∗ z; ξ)). (3.22)

We provide characterizations of a falling d∗-ideal.

Theorem 3.14. For a falling shadow H̃ of a random set ξ onX,H̃ is a falling d∗-ideal ofX if and only
if the following conditions are valid for every x, y, z ∈ X:

(a) Ω(x ∗ y; ξ) ∩Ω(y; ξ) ⊆ Ω(x; ξ),

(b) Ω(x; ξ) ⊆ Ω(x ∗ y; ξ),
(c) Ω(x ∗ y; ξ) ∩Ω(y ∗ z; ξ) ⊆ Ω(x ∗ z; ξ),
(d) Ω(x ∗ y; ξ) ∩Ω(y ∗ x; ξ) ⊆ Ω((x ∗ z) ∗ (y ∗ z); ξ) ∩Ω((z ∗ x) ∗ (z ∗ y); ξ).

Proof. Assume that H̃ is a falling d∗-ideal of X. Then H̃ is a falling d#-ideal of X, and so
conditions (a), (b), and (c) are valid by Lemmas 3.2 and 3.13. Let x, y, z ∈ X and ω ∈ Ω. If
ω ∈ Ω(x ∗ y; ξ) ∩Ω(y ∗ x; ξ), then x ∗ y ∈ ξ(ω) and y ∗ x ∈ ξ(ω). Since ξ(ω) is a d∗-ideal of X,
it follows from (b5) that (x ∗ z) ∗ (y ∗ z) ∈ ξ(ω) and (z ∗ x) ∗ (z ∗ y) ∈ ξ(ω) so that

ω ∈ Ω
(
(x ∗ z) ∗ (y ∗ z); ξ) ∩Ω

(
(z ∗ x) ∗ (z ∗ y); ξ) (3.23)

for all x, y, z ∈ X. Therefore (d) holds.
Conversely, suppose that conditions (a), (b), (c), and (d) are valid. Three conditions

(a), (b), and (c) imply that H̃ is a falling d#-ideal of X by Lemmas 3.2 and 3.13. Finally, let
x, y, z ∈ X and ω ∈ Ω be such that x ∗ y ∈ ξ(ω) and y ∗ x ∈ ξ(ω). Using the condition (d), we
have

ω ∈ Ω
(
x ∗ y; ξ) ∩Ω

(
y ∗ x; ξ) ⊆ Ω

(
(x ∗ z) ∗ (y ∗ z); ξ) ∩Ω

(
(z ∗ x) ∗ (z ∗ y); ξ), (3.24)

which implies that (x ∗ z) ∗ (y ∗ z) ∈ ξ(ω) and (z ∗ x) ∗ (z ∗ y) ∈ ξ(ω). Therefore H̃ is a falling
d∗-ideal of X.
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The following relation is described in [14]

Falling d-ideal

Falling d-subalgebra Falling BCK-ideal

Falling d♯-ideal

Combining this relation and the fact that every falling d∗-ideal is a falling d#-ideal, we
have the following relation:

Falling d∗-ideal

Falling d-ideal

Falling d-subalgebra Falling BCK-ideal

Falling d♯-ideal

In this diagram, the reverse implications are not true, and we need additional condi-
tions for considering the reverse implications. Jun et al. [14] showed that the following rela-
tion holds in d∗-algebras:

Falling d-ideal

Falling d-subalgebra Falling BCK-ideal

Lemma 3.15 (see [14]). For a falling shadow H̃ of a random set ξ on X, if H̃ is a falling BCK-ideal
of X, then

(a) (∀x, y ∈ X)(x ∗ y = 0 ⇒ Ω(y; ξ) ⊆ Ω(x; ξ)),

(b) (∀x, y ∈ X)(Ω(x ∗ y; ξ) ∩Ω(y; ξ) ⊆ Ω(x; ξ)).

Theorem 3.16. If X is a BCK-algebra, then every falling BCK-ideal of X is a falling d∗-ideal of X.

Proof. Let H̃ be a falling BCK-ideal of a BCK-algebra X. Then

Ω
(
x ∗ y; ξ) ∩Ω

(
y; ξ

) ⊆ Ω(x; ξ) (3.25)

for all x, y ∈ X by Lemma 3.15(b). Using (a1), we have (x∗y)∗x = 0 for all x, y ∈ X. Hence, by
Lemma 3.15(a), we get Ω(x; ξ) ⊆ Ω(x ∗ y; ξ) for all x, y ∈ X. If ω ∈ Ω(x ∗ y; ξ) ∩ Ω(y ∗ z; ξ),
then x ∗ y ∈ ξ(ω) and y ∗ z ∈ ξ(ω). Note that ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0 ∈ ξ(ω). Since
ξ(ω) is a BCK-ideal of X, it follows from (b2) that x ∗ z ∈ ξ(ω) so that ω ∈ Ω(x ∗ z; ξ). Thus
Ω(x ∗ y; ξ) ∩ Ω(y ∗ z; ξ) ⊆ Ω(x ∗ z; ξ). Let ω ∈ Ω(x ∗ y; ξ) ∩ Ω(y ∗ x; ξ). Then x ∗ y ∈ ξ(ω)
and y ∗ x ∈ ξ(ω). By (IV) and (a2), we have ((z ∗ x) ∗ (z ∗ y)) ∗ (y ∗ x) = 0 ∈ ξ(ω) and



10 International Journal of Mathematics and Mathematical Sciences

((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0 ∈ ξ(ω). It follows from (b2) that (z ∗ x) ∗ (z ∗ y) ∈ ξ(ω) and
(x ∗ z) ∗ (y ∗ z) ∈ ξ(ω) so that ω ∈ Ω((x ∗ z) ∗ (y ∗ z); ξ) ∩Ω((z ∗ x) ∗ (z ∗ y); ξ). Hence

Ω
(
x ∗ y; ξ) ∩Ω

(
y ∗ x; ξ) ⊆ Ω

(
(x ∗ z) ∗ (y ∗ z); ξ) ∩Ω

(
(z ∗ x) ∗ (z ∗ y); ξ). (3.26)

Using Theorem 3.14, we conclude that H̃ is a falling d∗-ideal of X.

Note that every BCK-algebra is a d∗-algebra (see [11]). Therefore, the above diagrams
together with Theorem 3.16 induce the following diagram in BCK-algebras:

Falling d-ideal

Falling d-subalgebraFalling BCK-ideal

Falling d∗-ideal Falling d♯-ideal
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