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The drainage of liquid foams involves the interplay of gravity, surface tension, and viscous forces. Foaming occurs in many
distillation and absorption processes. In this study, a new reliable technique is used to handle the foam drainage equation. This
new method resulted from VIM by a simple modification, that is, variational iteration method-II (VIM-II). It has been shown
that the VIM-II is a powerful technique in obtaining accurate solutions that cannot be given otherwise by perturbation and other
methods. The accuracy and convergence of the method are also investigated and compared with other methods. The results showed

that there are good agreements between the results.

1. Introduction

Foams [1, 2] are a prime example of a multiphase “soft con-
densed matter” system. They have important applications in
the food and chemical industries, firefighting, mineral pro-
cessing, and structural material science [3], and their proper-
ties are of subject of intensive studies from both practical and
scientific points of view [4]. Foams are common in personal
care products such as creams and lotions, and foams often
occur, even when not desired, during cleaning (clothes,
dishes, scrubbing) and dispensing processes (cf. [5]). Less ob-
viously they appear in acoustic cladding, lightweight mechan-
ical components, and impact absorbing parts on cars, heat
exchangers, and textured wallpapers (incorporated as foam-
ing inks) and even have an analogy in cosmology. History
connects foams with a number of eminent scientists, and
foams continue to excite imaginations [6]. Although there are
now many applications of polymeric foams [7] and more
recently metallic foams, which are foams made out of metals
such as aluminum [8]. In addition, industrial applications of
polymeric foams and porous metals include their use for
structural purposes and as heat exchange media analogous to
common “finned” structures [9].

Recent research in foams and emulsions has been cen-
tered on three topics which are often treated separately but are

in fact interdependent: drainage, coarsening, and rheology;
see Figure 1. We focus here on a quantitative description of the
coupling of drainage and coarsening.

The flow of liquid relative to the bubbles is called drainage.
Drainage plays an important role in foam stability: indeed,
when foam dries, its structure becomes more fragile; the liq-
uid films between adjacent bubbles being thinner, then can
break, leading to foam collapse. In the case of aqueous foams,
surfactant is added into water and it adsorbs at the surface of
the films, protecting them against rupture (cf. [10]).

Foam drainage is the flow of liquid through channels (Pla-
teau borders) and nodes (intersections of four channels) bet-
ween the bubbles, driven by gravity and capillarity [11-13].

The foam drainage equation models the dynamics of the
liquid volume in the foam on length scales larger than the
bubble size. Generally drainage is driven by gravity and/or
capillary (surface tension) forces and is resisted by viscous
forces (cf. [5]).

Recent theoretical studies by Verbist and Weaire describe
the main features of both free drainage [14, 15], where liquid
drains out of a foam due to gravity, and forced drainage [16],
where liquid is introduced to the top of a column of. Forced
foam drainage may well be the best prototype for certain gen-
eral phenomena described by nonlinear differential equa-
tions, particularly the type of solitary wave which is most
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FIGURE 1: Schematic illustration of the interdependence of drainage, coarsening, and rheology of foams [3].

FIGURE 2: The surfaces on both columns, respectively, show the solutions, u(x, t), for VIM-II on the right and exactly on the left when ¢ = 1.

familiar in tidal bores. Fadravi et al. [17] employed homotopy
analysis method for solving foam drainage equation with
space- and time-fractional derivatives. homotopy perturba-
tion method was used for solving the foam drainage equation
by Fereidoon et al. [18].

In recent years, several such techniques have drawn spe-
cial attention, such as inverse scattering method [19], Ado-
mian decomposition method [20, 21], Hamiltonian approach
[22], variational iteration method [23-25], homotopy analysis
method [26, 27], variational approach [28], and homotopy
perturbation method [29-38].

The aim of current study is to analytically investigate non-
linear foam drainage equation in the form of (1), using vari-
ational iteration method-II (VIM-II) [39, 40]. We will apply
new algorithm that is a powerful and efficient technique in

finding the approximate solutions for the following foam
drainage equation:
04,9 <A2 =0, o

ot ox

VA 0A
2 0x

where x and t are scaled position and time coordinates,
respectively.

In the case of forced drainage, the solution can be
expressed as [41]

A(x,t) = ctanh® (Ve (x — ct)), (2)

where c is the velocity of the wave front [16].
The pursuit of analytical solutions for foam drainage
equation is of intrinsic scientific interest. To the best of
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FIGURE 3: The surfaces on both columns, respectively, show the solutions, u(x, t), for VIM-II on the right and exactly on the left when ¢ = 2.

the authors’ knowledge, there is no paper that has solved the
nonlinear foam drainage equation by VIM-IL In this paper,
the basic idea of VIM-II is described, and then, it is applied
to study the following nonlinear foam drainage equation.
Finally, the results of VIM-II and HPM as analytical solutions
are then compared with those derived from Adomian decom-
position method.

2. Basic Concept of VIM-II

In the following section, to clarify the idea of the proposed
method for solution of the nonlinear governing equation of
a cantilever beam undergoing large deformation, the basic
concept of variational iteration method-II [39, 40] is firstly
treated. A general nonlinear equation of kth order is consid-
ered at the following form:

u® f (u’ vul bt u(k)) 0. (3)

The classical variational iteration algorithm is as follows:

Uy (E) = u, () + Lt A(u® + f,) de, (4)

where A is a general Lagrange multiplier. We apply Laplace
transform to identify the Lagrange multiplier [42-44]. By
using Laplace transform, we have

su (s) +€{f (u,u',...,u(k))} =0,

_ —E{f(u,u',...,u(k))}.

k

(5)
U (s)

S

The inverse Laplace transform reads as

f (un (e),u, (e),... ,uf,k) (s)) de.
(6)

Hence, after identifying the Lagrange multiplier A, the varia-
tional iteration algorithm-II [39, 40] is constructed as follows:

t (o #\k-1
MﬂﬂAVL%fﬁ—

Uy (£) = 1 (8) + (=1)

Eoo kel
[ 0ol 0)

7)

The above equation is generally called the variational iteration
algorithm-II, in which u(¢) is the initial solution. The initial
values are usually used for selecting the zeroth approximation
u,. With 1, determined, then several approximations u,, n >
0, follow immediately. Consequently, the exact solution could
be obtained as follows:

u(t) = ,,ILI%O”n'

(8)

3. Implementation of VIM-II

In this section, we will apply the VIM-II to solve foam drain-
age equation. Foam drainage equation (1) can be written as
[41]:

1

u 2
u, + 2uu, — 5 tex _4\/ﬁ(uX) =0, )
with initial conditions
1 (x,0) = 3tanh® (\/gx) . (10)



TABLE 1: Comparison between errors of ADM, HPM, and VIM-II
fort = 0.01 and ¢ = 3.

X Uexact — Unpm Uexact ~ UaDM Uexact — Uvimnr
-10 2.4E - 18 1.77636E — 15 0

-8 2.01600E - 15 1.86962E — 12 0

-6 2.05744E - 12 1.9087E - 9 0

-4 2.09993E -9 1.94811E - 6 6E - 08

-2 0.000002123 0.00197296 -6.0881E - 0.5
-1 0.000050433 0.0485679 0

0 0.000014557 0.00051592 8.08544E -3

TABLE 2: Comparison between errors of ADM, HPM, and VIM-II
for t = 0.001 and ¢ = 3.

X Uexact — Uripm Uexact ~ UaDM Uexact ~ UviM-1T
-10 0 4.44089E - 16 0
-8 2.4E - 18 2.24265E — 13 0
-6 2.1059E - 15 2.29754E - 10 0
-4 2.14918E — 12 2.34498E - 7 0
-2 2.17229E -9 0.000236656 3.54069E — 15
-1 5.10302E - 8 0.00523834 1.64365E — 13
0 1.45797E -9 5.2479E - 8 0

The exact solution for this problem is
u (x,t) = ctanh® (Ve (x — ct)). 1)

The VIM-II is implemented in (9). First, according to the
method, by applying Laplace transform to identify the
Lagrange multiplier, we have

A=1. (12)

So, variational iteration algorithm-II is derived:

t

Vu 1
Uy = Up + J (_Zuux + Tuxx + w(ux)z de. (13)

0

According to the above equation, for first order approxi-
mation, it can be written as follows:

L(%x)z) de.

t N7
0
U = uy + Jo (‘2”0”0x + ——Up, T

2 4y
(14)
We have the following successive approximation:
u, = 3tanh (\/gx)z - 36tanh (\/gxf
X (1 — tanh (\/5x)2> V3t
+ \/75 \/tanh (\/gx)2 X 18(1 — tanh (\/gx)z)z )

— 36 tanh (\/gx)2 (1 — tanh (\/3x)2> t
9 tanh (\/gx)z(l — tanh (\/§x)2)2 \/3t
\/tanh (\/gx)z

+
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Proceeding in the same way, we can obtain the high order
approximations. The VIM-II method admits the use of

u= nllngoun. (16)

By Figures 2 and 3, we may simply compare the VIM-II
solution and exact solution of (1) for ¢ = 1 and ¢ = 2, respec-
tively. Tables 1 and 2 investigated comparison presented
method and HPM [18] between errors of ADM [41].

4. Conclusions

In this paper, an explicit analytical solution is obtained for
foam drainage equation by means of the variational iteration
method-II (VIM-II), which is a powerful mathematical tool
in dealing with nonlinear equations. By looking at the results
of figures and tables, we can see that the agreement between
VIM-II and Adomian decomposition method (ADM) is sat-
isfactory. Clearly, VIM-II is easy to calculate with the explicit
polynomial expressions. This is especially convenient for pra-
ctical engineering applications with minimum requirements
on calculation and computation.
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