
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 525431, 10 pages
doi:10.1155/2012/525431

Research Article
Spectral Ratios for Crack Detection Using P and
Rayleigh Waves

Enrique Olivera-Villaseñor,1 Norberto Flores-Guzmán,2
Ernesto Pineda-León,3 Jaime Núñez-Farfán,1
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We obtain numerical results to help the detection and characterization of subsurface cracks in
solids by the application of P and Rayleigh elastic waves. The response is obtained from boundary
integral equations, which belongs to the field of elastodynamics. Once the implementation of
the boundary conditions has been done, a system of Fredholm integral equations of the second
kind and order zero is found. This system is solved using the method of Gaussian elimination.
Resonance peaks in the frequency domain allow us to infer the presence of cracks using spectral
ratios. Several models of cracked media were analyzed, where effects due to different crack
orientations and locations were observed. The results obtained are in good agreement with those
published in the references.

1. Introduction

It is well known that the presence of cracks in structural components leads to integrity
problems. Cracks in materials used in mechanical and civil engineering cause reduction in
strength which leads to instability, leakage, or collapse depending on the cracked component.
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The development of studies for the identification and characterization of cracks has its
origins in a variety of areas, citing for example, Griffith (1921) [1]. The technological progress
focused on nondestructive testing (NDT) of materials has led to the development of devices
such as pulse generators and receivers that can reach frequencies as high as 200MHz. On
the other hand, the advances in theoretical and numerical models [2, 3] has proved to be
useful for a joint interpretation with developments in the NDT field [4, 5]. An important
overview of theoretical results in relation to the interaction of elastic waves with cracks can
be seen in Zhang and Gross [6]. The identification and characterization of subsurface cracks
and surface-breaking cracks using Rayleigh waves are of much interest in the industry, see
for example, references [7–12]. Using resonant spectroscopy techniques, Zadler and Scales
[13] and Fan et al. [14] concluded that the presence of microcracks in materials affects a
wide range of mechanical properties including shear, bulk, and Young’s modulus, for various
levels of internal fracturing. Moreover, results of [13] suggest that bulk modulus is more
sensitive to changes in crack density, while [14] points out that the Young’s modulus is a
function of crack damage parameter.

This paper considers the study of boundary integral equations, derived from the
Somigliana classical theorem [15], to deal with the detection and characterization of
subsurface discontinuities using P and Rayleigh waves. This method can be seen as one
belonging to the boundary element method (BEM). It acquires the character of indirect
(IBEM), because the unknown force densities in the integrant are obtained in an intermediate
step. Subsequent to the implementation of the boundary conditions, a system of Fredholm
integral equations of the second kind and order zero in the frequency domain is solved using
the method of Gaussian elimination. It is important to mention that an analysis in frequency
domain reveals resonance peaks, which can be linked to the presence of subsurface cracks.

2. Boundary Integral Equation

If an elastic solid domain V bounded by its boundary S is considered, the diffracted
displacement and traction fields under harmonic excitation can be expressed, neglecting body
forces, by means of the single-layer boundary integral equations

ud
i (x) =

∫
∂S

Gij(x, ξ)φj(ξ)dSξ, (2.1)

tdi (x) = cφi(x) +
∫
∂S

Tij(x, ξ)φj(ξ)dSξ, (2.2)

where ud
i (x) = ith component of the displacement at point x,Gij(x; ξ) =Green function, which

represent the displacement produced in direction i at x due to the application of a unitary
force in direction j at point ξ, φj(ξ) is the force density in the direction j at point ξ. The product
φj(ξ)dSξ is the force distribution at the surface S (the subscripts i, j are limited to be 1 or 3).
The subscript in the differential shows the variable over which the integration is done. This
integral equation can be obtained from Somigliana representation [15]. Furthermore, it was
demonstrated that if φj(ξ) is continuous along S, the displacement field is continuous across
S [16]. tdi (x) = ith component of tractions, c = 0.5 if x tends to the boundary S “from inside”
the region, c = −0.5 if x tends S “from outside” the region, or c = 0 if x is not at S. Tij(x; ξ) =
Green function traction, that is, the traction in i direction at point x, due to the application
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of a unitary force in j direction at ξ on S. The following section presents Green functions for
displacements and tractions.

3. Two-Dimensional Green Functions in Unbounded Space

In a homogeneous isotropic elastic unbounded medium, 2D Green functions are the
displacements and tractions responses of the medium at a given location x when a unit line
load is applied at ξ.

Assuming harmonic time dependence, exp(iωt), where i =
√−1, ω = circular

frequency, and t = time, the displacement in i direction when the load is applied in jth
direction can be expressed as

Gij(x; ξ) = Aδij − B
(
2γiγj − δij

)
. (3.1)

On the other hand, the tractions at x in i direction for a given unit vector ni normal to
Swhen the unit load is applied at ξ in the direction j are

Tij =
μ

r

{[
−4B + λ

D(ωr/α)
2μα2

]
γjni +

[
−4B +

D
(
ωr/β

)
2β2

]
× [

γinj + γknkδij
]}

+
μ

r

{
(C + 16B)γiγjγknk

}
.

(3.2)

For (3.1) and (3.2), these expressions are defined as follows:

A =
1
i8ρ

[
H

(2)
0 (ωr/α)

α2
+
H

(2)
0

(
ωr/β

)
β2

]
,

B =
1
i8ρ

[
H

(2)
2 (ωr/α)

α2
− H

(2)
2

(
ωr/β

)
β2

]
,

C =
D(ωr/α)

α2
− D

(
ωr/β

)
β2

,

D
(
p
)
=

i
2ρ

pH
(2)
1

(
p
)
,

(3.3)

where λ and μ are Lamé’s constants, ρ = mass density, and α =
√
(λ + 2μ)/ρ and β =

√
μ/ρ

are the P and S wave velocities, respectively, r =
√
(x1 − ξ1)

2 + (x3 − ξ3)
2, γj = (xj − ξj)/r, δij =

Kronecker’s delta (=1 if i = j, = 0 if i /= j), and H
(2)
m (·) is the Hankel’s function of second kind

and order m.

4. Statement of the Problem

In general terms, the response of a cracked medium should satisfy the displacement and
traction states represented by the sum of a free field (superscript “o”) and a diffracted field
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(superscript “d”), that is, ui(x) = uo
i (x) + ud

i (x) and ti(x) = toi (x) + tdi (x), respectively. The
free field always represents the incidence of P or Rayleigh waves. To represent the crack or
discontinuity, tractions free boundary conditions must be established at its contour, that is,
ti(x) = 0.

The integral equations established in (2.1) allow the inclusion of cracks or discontinu-
ities, because of the use of multiregion concept, in which the domain of study may be discrete
in regions, and the join between them is given by the boundary conditions that represent
continuity (uR

i (x) = uE
i (x) and tRi (x) = tEi (x)) for example, the union of the region R and the

region E). To include a crack between two regions, traction-free boundary conditions tRi (x) = 0
and tEi (x) = 0 must be established for the discontinuity sides that belong to each region.

Each surface is divided in boundary elements of length equal to or less than 1/6 of the
shortest SVwavelength each, depending on the frequency. For example, for a free surface, the
join between regions R and E and the discontinuity requires N, M, and K boundary elements,
respectively, then, (2.1) must be written, considering free and diffracted fields and boundary
conditions described previously, as follows:

cφR
i (x) +

∫
∂R

φR
j (ξ)T

R
ij (x; ξ)dSξ = −toi R(x), x ∈ ∂3R,

∫
∂R

φR
j (ξ)G

R
ij(x; ξ)dSξ −

∫
∂E

φE
j (ξ)G

E
ij(x; ξ)dSξ = uo

i
E(x) − uo

i
R(x), x ∈ ∂1R = ∂1E,

cφR
i (x) +

∫
∂R

φR
j (ξ)T

R
ij (x; ξ)dSξ − cφE

i (x) −
∫
∂E

φE
j (ξ)T

E
ij (x; ξ)dSξ = toi

E(x) − toi
R(x),

x ∈ ∂1R = ∂1E,

cφR
i (x) +

∫
∂R

φR
j (ξ)T

R
ij (x; ξ)dSξ = −toi R(x), x ∈ ∂2R,

cφE
i (x) +

∫
∂E

φE
j (ξ)T

E
ij (x; ξ)dSξ = −toi E(x), x ∈ ∂2E.

(4.1)

Region R is formed by the boundary ∂R = ∂1R∪∂2R∪∂3R, while the region E by the boundary
∂E = ∂1E ∪ ∂2E. ∂1R and ∂1E represent the continuous segments between regions R and E,
∂2R is the discontinuity or crack face in the side of the region R, ∂2E is the discontinuity or
crack face in the side of the region E, and ∂3R is the free surface belonging to region R.

Equation (4.1) form a Fredholm system of integral equations to be solved. Once
the unknown values (φ’s) are obtained, the diffracted displacement and traction fields are
computed by means of (2.1) and (2.2), respectively.

5. Validation and Numerical Examples

A reference has been selected to validate the results obtained by this integral formulation
for a noncracked medium. Graff [17] shows analytic normalized displacements due to the
incidence of Rayleigh waves versus normalized depth for two Poisson ratios (ν = 0.25 and
ν = 0.33, see Figure 1). He mentions that the energy is located near the free surface and
disappears at almost one Rayleighwavelength (λR). Then, the effective use of Rayleighwaves
for crack detection could be limited to shallow cracks. Graff [17] plots horizontal (h) and
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Figure 1: Normalized displacements versus normalized depth, where vo is the value for the vertical
displacement at the surface.

Rayleigh waves

Subsurface cracks
Surface-breaking cracks

(a)

Receiver locations

∆ ∆ ∆ ∆ ∆1 2 3 4 5

θ
2a b

d/2a x1

x3

δr

(b)

Figure 2: (a) Cracked medium under the incidence of Rayleigh waves, (b) Crack dimensions and receiver
locations.

vertical (v) displacements and obtains the values of h = 0.68 and v = 1.00 at the free surface,
for the Poisson ratio ν = 0.25. Therefore, the spectral ratio for this case is h/v = 0.68. Figure 1
includes curves obtained in the present work for ν = 0.25 (plotted with dashed line). Good
agreement between the IBEM and Graff [17] is observed. Models of cracked media under the
incidence of Rayleigh waves are illustrated in Figures 2(a) and 2(b).

To study the effect of cracks under the incidence of Rayleigh waves four depth ratios
d/2a = 0.2, 0.4, 0.6 and 1.0, where d is crack depth and 2a is crack length, were selected. The
frequency analysis was carried out for the range 0 ≤ η ≤ 3.0, where η = ωd/CR , ω is the
circular frequency, and CR represents the Rayleigh wave velocity. A Poisson solid (ν = 0.25)
was considered. Horizontal and vertical displacements measured at point A (see detail in
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Figure 3: Cracks subjected to the incidence of Rayleigh waves. (a) Horizontal displacements for crack
depth ratios d/2a = 0.2 and d/2a = 1.0, (b) Vertical displacements for crack depth ratios d/2a = 0.2 and
d/2a = 1.0, (c) Spectral ratio h/v for crack depths d/2a = 0.2, 0.4, 0.6 and 1.0.

Figure 3(a)) are shown in Figures 3(a) and 3(b), respectively, for the shallowest (d/2a =
0.2) and the deepest (d/2a = 1.0) crack. It is expected that a shallow crack causes major
alterations to Rayleigh wave front, while a deep crack has an effect almost negligible for both
displacements.

Figure 3(c) shows a spectral ratio h/v almost constant for all depth ratios, except for
crack depths d/2a = 0.2 and d/2a = 0.4. In the amplified detail of Figure 3(c), it can be
observed that the first peak is caused by crack depth d/2a = 0.2, as well as the constant
behavior shown for crack depth d/2a = 1.0, additionally, it can be seen that at low frequencies
the spectral ratio h/v tends to 0.6815 for any crack depth, moreover, this value is maintained
even for the case when there is no crack, see also Figure 1 for values h = 0.68 and v = 1.00 on
the surface (then h/v = 0.68) obtained by Graff [17]. The agreement is excellent.

Spectral ratios to observe the influence of crack orientation are plotted in Figure 4.
Here, the crack has an angle θ = 45◦ (descending crack) and θ = 135◦ (ascending crack)
and a depth ratio d/2a = 0.1, for both cases. Spectral ratios for five receivers are displayed,
the distance increment between them is δr = 2. Important aspects emerge from these cases
studied. Descending crack (continuous line) causes energy splitting to the interior of the
medium. For this reason, the receivers 4 and 5 do not show wave interactions between



Journal of Applied Mathematics 7

R
ay

le
ig

h’
s 

w
av

e 
sp

ec
tr

al
 r

at
io

(h
/
v
)

−0.5 0 0.5 1 1.5 2

Receiver 1

Receiver 2

Receiver 3

Receiver 4

Receiver 5

1 2 3 4 5 1 2 3 4 5

Descending 
crack η

=
0.

23
62

η
=

0.
57

24

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

Ascending crack

Dimensionless frequency, η = ωd/CR

Figure 4: Rayleigh wave spectral ratios for ascending (dashed line) and descending (continuous line)
cracks, for a Poisson solid.

Ascending cracks
Descending cracks
Horizontal cracks

0
1
2
3
4

0
1
2
3
4

−0.5 0 0.5 1 1.5 2

Receiver 1

Receiver 5

R
ay

le
ig

h’
s 

w
av

e 
sp

ec
tr

al
 r

at
io

(h
/
v
)

Dimensionless frequency, η = ωd/CR
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media.

the crack and the free surface. These interactions are clearly observed for receivers 1 and 2.
Similar behavior can be seen for ascending crack (dashed line), except that wave reflections
are very evident for receivers 1 and 2. For receiver 3, significant resonance peaks are present.
For the case of descending cracks a strong amplification is obtained at η = 0.2362, while for
ascending cracks this peak is observed at η = 0.5724. This fact implies that resonance peaks
presented in the h/v ratios may depend on the direction in which Rayleigh wave travels,
therefore, the same crack, practically, can show different patterns. Following this remark, an
analysis of crack orientation for several angles was carried out, and results are presented in
Figure 6.
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Figure 6: Effect of crack orientation. (a) model studied, (b) spectral ratio, (c) detailed response for several
crack orientations.
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Figure 7: Cracked medium under P-wave incidence. (a) Validation of the problem, (b) P-wave spectral
ratio for four crack depth ratios.
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To observe the h/v spectral ratios due to multiple cracking, systems of three cracks
were modeled. Now, three consecutive ascending (θ = 135◦), descending (θ = 45◦), or
horizontal (θ = 0◦) cracks were considered, and the spectral ratios measured for the receivers
1 and 5 only. The distance from receiver 1 to 5 is 32/2a, d/2a = 0.1, b/2a = 0.7171 (see
Figure 2(b)) for nonhorizontal cracks and b/2a = 1.0 for horizontal cracks. In Figure 5,
descending cracks (dashed line) display a few wave interactions for both receivers, as
expected. However, ascending (continuous line) and horizontal (dotted line) cracks show
more waves interacting between the up-crack face and the free surface. This effect is
more evident in receiver 1. In all cases, receiver 5 shows an attenuated response for high
frequencies.

As mentioned above, resonance peaks caused by the incidence of Rayleigh waves are
stronger for some given directions of propagation or crack orientations. This characteristic
may cause problems when identifying or characterizing cracks is required. Therefore, a crack
could present evident resonance peaks when subjected to a given direction of Rayleigh
waves, while, the same crack may not present important resonance peaks for other incidence
or crack orientation. Figure 6 plots spectral ratios calculated at point B for twelve crack
orientations according to Figure 6(a). Spectral ratios are graphed in Figure 6(b), while the
detailed response for each angle of incidence is illustrated in Figure 6(c). It is remarkable that
horizontal or almost horizontal cracks make sharp peaks appear. The maximum h/v ratio is
obtained for γ = 165◦ reaching a spectral ratio h/v = 30. The vertical crack shows an almost
constant value.

Finally, spectral ratios for the case of P-wave incidence are presented. In Figure 7(a)
the validation of this integral formulation is shown, horizontal displacements calculated at
point A (see Figure 3(a)) are compared. The same crack depths and frequency range were
considered. As mentioned above, shallow cracks displays sharp peaks, and these tend to be
negligible as the crack depth increases. Our results show good agreement with those obtained
by Achenbach et al. [18]. Spectral ratios for these analyses are depicted in Figure 7(b),
where several resonance peaks appear. Lower resonant effects are observed for the deeper
crack. Moreover, spectral ratios could be considered as a way to identify and characterize
subsuperficial cracks

6. Conclusions

The present work deals with the detection and characterization of subsurface cracks in solids
by the application of P and Rayleigh elastic waves. The response is obtained from boundary
integral equations, which belongs to the field of elastodynamics. After the implementation of
the boundary conditions and the use of the multiregion concept, it was possible to formulate
a system of integral equations, where the unknowns named as force densities were obtained.
This method is understood as an indirect boundary element formulation or IBEM and can
be seen as a conceptualization of Somigliana classical theorem. The excitation of the system
was carried out by the incidence of Rayleigh waves leading to spectra that is useful for the
characterization of embedded cracks in solids.

The results obtained in the present workwere validatedwith published results of Graff
[17] for noncracked medium and with Achenbach et al. [18] for a cracked one. The presence
of cracks or discontinuities causes resonance peaks, which can be identified using frequency
analysis; the resonance peaks are sharper as the defects are shallower. Moreover, it was
noticed that a crack could present evident resonance peaks when this is subjected to a given
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direction of excitation, while the same crack may not present important resonance peaks for
other incidence or crack orientation. This integral formulation can deal with complex crack
shapes or free-surface geometries, which is an advantage of this method.
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