brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Crossref

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 8680541, 14 pages
http://dx.doi.org/10.1155/2016/8680541

Hindawi

Review Article
Low Cost Eye Tracking: The Current Panorama

Onur Ferhat"? and Fernando Vilariio"’
IComputer Vision Center, Edifici O, Campus UAB, 08193 Bellaterra, Spain
2Computer Science Department, Universitat Autonoma de Barcelona, Edifici Q, Campus UAB, 08193 Bellaterra, Spain

Correspondence should be addressed to Onur Ferhat; oferhat@cvc.uab.es
Received 27 November 2015; Accepted 18 February 2016
Academic Editor: Ying Wei

Copyright © 2016 O. Ferhat and F. Vilarifo. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Despite the availability of accurate, commercial gaze tracker devices working with infrared (IR) technology, visible light gaze
tracking constitutes an interesting alternative by allowing scalability and removing hardware requirements. Over the last years, this
field has seen examples of research showing performance comparable to the IR alternatives. In this work, we survey the previous
work on remote, visible light gaze trackers and analyze the explored techniques from various perspectives such as calibration
strategies, head pose invariance, and gaze estimation techniques. We also provide information on related aspects of research such
as public datasets to test against, open source projects to build upon, and gaze tracking services to directly use in applications. With
all this information, we aim to provide the contemporary and future researchers with a map detailing previously explored ideas and

the required tools.

1. Introduction

From a computer scientist’s perspective, human beings are
machines which receive input from their sensors such as ears,
eyes, and skin and which interact with the world they live in
through their actuators, which are their hands, feet, and so
on. Their attention can be understood by analyzing the way
they direct their sensors (i.e., looking at specific locations or
inspecting unknown objects by touching or smelling). More-
over, as in the case of robots, examining this attention can give
us hints about their state of mind and their way of reasoning.
Among the human senses, sight has an important place in
today’s world where we are surrounded with digital displays
be it in our mobile phones, our computers, or televisions.
Instead of making passive observations of the objects around,
it also gives hints about what the person actively chooses to
see through eye movements. Analysis of these movements,
therefore, sparked great interest in research communities.
Devices or systems that track a person’s eye movements
are called eye trackers or gaze trackers. Currently, the most
widespread techniques used in these trackers make use of
light sources and cameras that operate in the infrared (IR)
spectrum. There are many available commercial models that
are in the form of either eyeglasses or table mounted devices

[1-3] and also open source alternatives that allow the use of
custom hardware [4].

Visible light gaze tracking, on the other hand, does
not require any special hardware and aims to solve the
task making use of regular cameras. In this paper, we will
concentrate on this class of trackers and survey the related
research. Furthermore, we will limit our search to the table
mounted setup (also called remote setup) as it is ubiquitous
in contemporary devices and it removes the restrictions for
camera placement (with a few exceptions). Our aim and
contribution is as follows:

(i) To provide an exhaustive literature review.

(ii) To comment on these works from various perspec-
tives.

(iii) To list publicly available datasets.
(iv) To list open source software.
(v) To list gaze trackers as a web service.
The rest of the paper is organized as follows: we will
start with an overview of the software structure used in

remote, visible light gaze trackers. Then, we will categorize
and explain the previous work according to the techniques

https://core.ac.uk/display/194976445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

used and continue with two other categorization schemes:
how/if they are calibrated and how/if they handle head
movements. Afterwards, we will list and comment on the
avaijlable datasets, online gaze tracking services, and open
source projects. We will finish with our conclusions regarding
the current state and future directions.

2. Categorization and Structure of
Visible Light Gaze Trackers

The categorization of the works that we analyze in this paper
is not trivial, because the borders between groups of methods
are not always clear and in the literature different naming
schemes exist.

In the early review by Morimoto and Mimica [5], meth-
ods using the eye appearance (i.e., eye region image pixels)
directly for gaze estimation are called appearance-based or
view-based methods, and the rest is left unnamed. Here,
the given name refers to all the visible light methods and
does not give information about the subcategories. Even
in a more recent survey [6] where both infrared (IR) and
visible light methods are considered, the latter group is
considered as just an alternative, and its subcategories are
left unclear. Other categorization schemes also build on this
ambiguity: appearance-based versus feature-based [7, 8] and
appearance-based versus model-based [9, 10]. It should also
be noted that the “appearance-based” name is still being used
to refer to all visible light methods [11, 12], adding to the
confusion.

With the aim of clearly identifying the borders between
different visible light gaze estimation techniques (and hope-
fully not adding to the confusion), we present a new catego-
rization scheme:

(1) Appearance-Based. These methods only use the eye
image pixel intensities to create a mapping to the
gaze estimation. The image pixels are converted to a
vector representation via raster scanning and fed to
the estimation component.

(2) Feature-Based. Methods of this category also make
use of a mapping to calculate the gaze; however, they
use richer feature vectors compared to the methods in
the previous category (i.e., not just pixel intensities).

(3) Model-Based. Compared to the discriminative approach
of the first two categories, the methods belonging to
this category follow a generative approach by trying to
model the eyes and maybe even the face. The gaze is
calculated geometrically using the model parameters.

After explaining our categorization and the reasoning
behind it, we can continue with the discussion about the
software pipeline of these trackers. Although the variation in
details is huge, a common skeletal structure that describes
their software implementation can easily be identified as seen
in Figure 1.

The input to the system is generally a video stream;
however, examples of systems working on still images are also
found [13]. In the former case, the previously processed video

Computational Intelligence and Neuroscience

Image

<

Spatiotemporal
tracking

Eye image as features

Gaze

FIGURE L: The common software structure for visible light gaze
trackers. The methods start by locating the eyes. To make the
estimation more stable, spatiotemporal tracking may be utilized at
this step. Later, the location information is used to extract features,
fit 2D or 3D models to the eyes, or just extract the eye region image.
In the case of model-based methods, the fitted model is used to
calculate the gaze geometrically, whereas in the other methods, a
mapping function is necessary to calculate the gaze angle or point.

frames’ results may be used to improve the performance for
the next frames [14].

The first task in the pipeline is to extract the eye region. If
an optional head pose estimation component is present, and if
its output contains information about the eye location, it may
be used directly as the location or it may be used as a rough
initial estimate for the actual eye locator. Otherwise, the eye
locator component has the option of using face detectors to
restrict the processed image area and reduce computational
cost [15, 16]. In order to calculate accurate eye location, the
system can make use of iris center detectors [17], eye corner
detectors [18], or 3D eye models that take into account the
appearance of the entire eye [19].

Once the region of interest (ROI), that is, the eye region,
is located, the second step is to prepare the input for the
gaze estimation component. Depending on the class of gaze
estimation method, the required input for the last step varies.
In appearance-based methods, the extracted eye image from
the first step is used directly as the input. Here, each image
pixel intensity is considered as one dimension of the input
vector. As the change in illumination and shadows may
interfere with these inputs, this class of methods may not
always give robust results.

Feature-based methods try to break the direct connection
between the raw pixel intensities and the final input vector, in
an attempt to increase robustness to lighting changes. Some
of the features used in the literature are as follows:

Computational Intelligence and Neuroscience

(i) Pixel positions of keypoints (e.g., inner eye corners,
iris center, and eyelid) [20, 21].

(ii) Their relative positions (i.e., vectors connecting two
positions) [22-24].

(iii) Standard computer vision features such as histogram
of oriented gradients (HOG) [25, 26] and local binary
patterns (LBPs) [11, 27].

(iv) Features calculated by a convolutional neural network
(CNN) [13].

(v) Features grouping and summarizing pixel intensities
[28-31].

Finally, the model-based gaze estimation methods require
the parameters for a 2D or 3D eye model as the input. In
case of 2D, these can be the parameters defining the iris
edge model [32]; in the 3D case, it can get more complex to
include 3D positions of the eyeball center [33] or other facial
landmarks [34].

The last step in the described pipeline is the estimation
of the gaze, given the inputs calculated in the previous
step. Appearance-based and feature-based methods require
a mapping function that maps the input vectors to the gaze
point or the gaze direction. The commonly used techniques
include neural networks (NNs) [35, 36], Gaussian process
(GP) regression [14, 37], and linear interpolation [38, 39]. On
the other hand, model-based methods use the geometry of
their 3D model (e.g., normal vector for the iris of 3D eye ball
model) to calculate the gaze [40, 41].

3. Methods for Single Camera
Remote Gaze Tracking

In this section, we categorize the works that we focused on
according to our scheme. A summary of these works can be
seen in Table I.

3.1. Appearance-Based Methods. The first techniques pro-
posed for visible light gaze tracking introduced the category
of appearance-based methods [16, 35, 42]. These methods are
characterized by their use of eye image pixel intensities as
their features for gaze estimations. After a possible histogram
normalization step for standardizing image appearances over
the whole dataset, these feature vectors are fed to the estima-
tion component which maps them to screen coordinates.

3.1.1. Neural Networks. One of the most popular mapping
functions used in eye tracking is neural networks (NNs). In
their pioneering work, Baluja and Pomerleau [35] introduce
the first method making use of NNs. They test their system
extensively by varying the inputs (iris region or entire eye),
NN structure (single continuous or divided hidden layer),
and the hidden layer unit number. In another experiment,
they demonstrate that, by training the system with inputs
from different head poses, the system can even handle small
head movements. Finally, they top their system with an offset
table that is used to correct the systematic shifts in actual eye
tracker use. In the best case, their reported accuracy is around
1.5°.

Stiefelhagen et al. [16] use skin color segmentation and
pupil detection to replace the use of a light source for this task
in the original work of Baluja and Pomerleau. Xu et al. [42]
introduced an iterative thresholding method to locate the iris
region accurately and also proposed Gaussian smoothing for
outputs of the NN during training. Two recent works [43, 44]
used the NN technique for gaze tracking on commercial
tablet computers and report lower accuracy (average error >
3°), mainly because of the low sampling rates in tablets and
high training data demand of the NNs.

3.1.2. Local Linear Interpolation. A recently more popular
alternative to NN mapping is local linear interpolation as
proposed for gaze tracking by Tan et al. [38]. In their work,
they see the eye region images as coming from an appearance
manifold, and gaze estimation is posed as a linear inter-
polation problem using the most similar samples from this
manifold. Although this work makes use of IR illumination
for eye localization, the gaze estimation technique is valid for
purely visible light setups. The reported accuracy of around
0.40° shows the promise of the proposed technique.

Ono et al. [45] calculate the decomposition of the eye
image, which takes into account variations caused by gaze
direction, base eye appearance, and shifts in image cropping.
Using this decomposition, they can encounter the most
similar 3 training samples and use LLI to calculate the gaze
with 2.4° accuracy.

Sugano et al. [46] use an LLI technique that allows head
movements. They cluster the eye images according to the cor-
responding head pose and choose samples for interpolation
only from the cluster with the same head pose as the current
sample. Their system keeps learning from user interaction
(i.e., mouse clicks) and continuously updates its parameters,
adding clusters for new head poses when necessary. The
reported average error is in the range 4-5°. The extended
version of the work [47] provides methods for refining gaze
labels acquired through mouse clicks, discarding high-error
training samples, and locating the eye position better, thus
decreasing the average error to only 2.9°.

Lu et al. [7, 29] decompose the gaze estimation problem
into subproblems: (1) estimation under fixed head pose and
(2) compensation of errors caused by head rotation and
eye appearance distortion. Unlike other work, they do not
choose the most similar local training samples explicitly;
however, they argue that their method for weighting all the
training samples automatically selects a small number of
local samples. By learning eye appearance distortion from 5-
second video clips and applying both compensations, they
decrease the average error from 6° to 2.38° (and from 13.72° to
2.11° in the 2014 paper). In their later work [48, 49], instead of
video clips (containing around 100 frames), they acquire only
4 additional training samples under reference head poses and
synthesize extra training samples by modeling the change in
eye appearance.

Alnajar et al. [50] propose a calibration-free estimation
based on the assumption that humans have similar gaze
patterns for the same stimulus. Here, first initial gaze points
are calculated for a user without calibration, and then a
transformation is calculated to map the user’s gaze pattern

Computational Intelligence and Neuroscience

TABLE 1: Summary and results of all the techniques analyzed in this work. Methods are grouped into categories for easier reference. HP column
shows whether the technique has head pose invariance or not. Techniques allowing small head movements are denoted by = symbol. Output
column shows what type of gaze is calculated: point of gaze (o) or line of gaze (4).

Feature Mapping Calibration HP Dataset Output Accuracy References Comments
— NN Grid — — o 15-4 [16, 35, 42-44]
— GP Grid — [98] ° 2 (9]
— GP Grid S — ° n/a [37, 53] Rigorous calib. for HP
— LLI Grid — — 0.4 [38] IR to locate eye
Appearance-based LLI Grid B o ° 24 [43]
— LLI Grid+ HP v — o 2.2-25 [7,29,48,49] 0.85° error with fixed HP
— LLI Grid Y — £ 4.8 (8]
— LLI — Y — ° 3-5 (46, 47] Incremental calibration
— LLI Grid Y [99] £ 4 [51] 8 cameras
— LLI — — — ° 3.5-4.3 [10, 50] Saliency for calibration
PC-EC GP Grid — — o 1.6 [20, 54]
PC-EC LI Grid - - Vi 1.2 [22]
PC-EC LI Grid — — ° n/a [24, 55]
PC-EC PI Grid — — o 1.2 [39] 3" without chin rest
PC-EC LI Grid v — o 2-5 [56]
PC-EC PI Grid — — o 2.4 [57]
PC-EC PI Grid Y — ° 2.3 (18] 1.2° error with fixed HP
Several NN Grid — — o 1-2 [23, 58]
Several NN Grid Y — ° 2-7 [21] Few tests
EC shift n/a Grid — — ° 3.2 [59]
EC shift LI — — — o 34 [60] Hand-coded params.
Feature-based GC-CM LI Grid — — ° 1.5 [62]
Several LI Grid — — ° 3 [17]
Edge energy S’GP Grid — — ° 0.8 [14]
Intensity ALR Grid Y — ° 0.6 [28, 63] 8D or 15D feats.
Intensity RR Grid — — ° 1.1 [31] 120D feats.
HOG SVR/RVR Grid — — o 22 [26]
Several NN Grid — — ° 3.7 [36] Dim. reduced to 50
CS-LBP S’GP Grid — — ° 0.9 [11] Partially labelled data
Several Several Grid — [100] ° 2.7 [66] Dim. reduced to 16
Several Several Grid Y [101] o 3.2 [67]
CNN Several Continuous v [68] £ ~6 [13] Calib. from dataset
Segmentation GP Grid — — o 2.2 [30]
Model Calibration HP Dataset Output Accuracy References Comments
Iris contour Camera Y — £ 1 [32,70] One-circle alg.
Iris contour Grid Y — o 4 [71, 72]
Iris contour — Y — £ n/a [73] Two-circle alg.
Iris contour Camera — — ° n/a [74]
Iris contour Camera — — £ 0.8 [75] Error for single dir.
Iris contour Grid Y — £ 33 [76]
Iris contour Grid Y — £ 35 [77]
Model-based Iris contour Grid Y — ° 6.9 (12]
Eyeball Grid Y — £ 3.2 [34] Calib. personal params.
Eyeball Grid — — £ 35 [40] PF tracking
Eyeball 1target ¥ — £ ~2 [78] Error for single dir.
Eyeball Grid Y — ° 2.7 [33]
Eyeball — v — £ 9 [19,79] Autocalibration
Eyeball Grid Y — ° n/a [41]
Eyeball — v [102,103] 4 5.6 (80]

Computational Intelligence and Neuroscience

to other users. For the initial gaze estimation, they either use
the closest neighbors from the training set to reconstruct the
current eye appearance (with samples from other users) or
project the eye appearance to a 2D manifold to get the most
similar samples.

Lai etal. [8] use random forests to learn the neighborhood
structure for their joint head pose and eye appearance feature
(HPEA). Gaze is estimated with linear interpolation using
the neighbors in the random forest, yielding an accuracy of
around 4.8° (horizontal and vertical combined).

Sugano et al. [51] build a multiview dataset and use it to
reconstruct part of the face in 3D. They use this 3D model
to generate synthetic samples acquired from different camera
angles and use the extended dataset to train a random forest.
Here, unlike their previous work [46], they do not divide the
data strictly according to the head pose; however, they build
sets of regression trees with overlapping head pose ranges
(i.e., samples from a single head pose are used in building sev-
eral sets of trees). Gaze is calculated as the average result from
the nearest regression forests according to head pose, result-
ing in an average error of 6.5° with cross-subject training.

3.1.3. Gaussian Processes. Gaussian process (GP) is another
choice for the mapping in some gaze tracking methods.
GP predictions are probabilistic and allow calculation of
confidence intervals for the outputs which may be used as an
indicator to detect when the calibration is no longer valid for
the test data [20, 52].

Nguyen et al. [37, 53] describe a system where they use
a Viola and Jones [15] eye detector and optical flow (OF)
to detect and track the eye in the camera image. Then, the
extracted eye image is fed to a GP to calculate the gaze
point. In the extended work [37], they show that when the
calibration is repeated in several head poses, the system can
even become head pose invariant.

Ferhat et al. [9] also propose a similar method, where they
use several Viola-Jones detectors (face, eye, nose, and mouth)
to choose 8 anchor points on the face automatically and use
the extracted eye image to train a GP. In the final system, the
average error is 2° (horizontal and vertical combined).

Sugano et al. [10] use saliency information to automat-
ically calibrate a gaze tracker while the subject is watching
a video clip. While calibrating the GP-based tracker, instead
of using known gaze positions, they train the GP with gaze
probability maps calculated by aggregating several saliency
maps.

3.2. Feature-Based Methods. In the appearance-based meth-
ods, the inputs to the mapping functions were the same across
all techniques; therefore, we categorized them according to
the mapping functions they used. However, in feature-based
methods, the main difference is their feature set, and our
categorization also reflects this difference.

3.2.1. Anchor Point Position-Based Features. In this first sub-
category of feature-based methods, the positions of impor-
tant anchor points inside and around the eye (e.g., pupil (iris)
center, inner and outer eye corners, and nostrils) are used as
features. In some cases, they constitute distinct dimensions of

the feature set, whereas in other cases, the relation between
them (i.e., the vector connecting two anchor points) is used
as the feature.

Pupil Center-Eye Corner Vector. In infrared gaze trackers, a
feature widely used for gaze estimation is the pupil center-
corneal reflection vector (PC-CR) [39]. The equivalent of this
in natural light methods is the pupil center-eye corner vector
(PC-EC) (or, alternatively, iris center-eye corner (IC-EC)
vector).

The first use of the PC-EC vector in natural light eye
trackers is proposed by two distinct research groups around
the same time [20, 22, 54]. Hansen et al. [20, 54] use Active
Appearance Model (AAM) and mean shift to track the eyes
over time and find the positions of pupil center and eye
corners. Gaze estimation is done by training a Gaussian
process (GP) where the input is the PC-EC vector. The system
results in an average error of around 1.6°, and the eye tracker
is verified in an eye-typing interface. Zhu and Yang [22], on
the other hand, propose methods for detecting the iris center
and the eye corner with subpixel accuracy. They use a 2D
linear mapping to estimate gaze positions from the feature
vectors. They report an accuracy of around 1.2° from their
experiments.

Valenti et al. [24, 55] propose a novel eye corner locator
and combine it with a state-of-the-art eye center locator to
calculate the EC-PC vector. Inspired by Zhu and Yang [22],
they also use a 2D linear mapping for gaze estimation. In
their later work [56], they make use of a head pose estimator
and use the calculated transformation matrix to normalize
the eye regions. The more accurate eye location found this
way, in turn, is used to better estimate the head pose in a
feedback loop. To solve the gaze estimation problem with
head movements, they retarget the known calibration points
to the monitor coordinates whenever there is a change in
the head pose and calibrate the system again. With these
improvements, they achieve average errors of between 2° and
5° in two experimental tasks.

Sesma et al. [39] normalize the PC-EC vector, dividing
the vector components by the Euclidean distance between the
inner and outer eye corners. For gaze estimation, they use
both PC-EC vectors for the inner and outer eye corners and
their experiments show the average error to be 1.25° when the
head movement is constrained and around 3° when no chin
rest is used.

Baek et al. [57] apply image rectification to rectify the eye
images to a front facing head pose and combine it with a
novel iris center localization method. They use second-order
polynomial equations (as in [39]) to calculate the gaze and
measure an accuracy of 2.42°.

Cheung and Peng [18] fit Active Shape Models (ASM) on
images normalized using local sensitive histograms. With the
novel methods they propose for iris center and eye corner
detection, they achieve errors of 1.28" with fixed head pose
and 2.27° with head movements.

Others. Some feature-based methods making use of anchor
point positions may take a different path and combine or
replace the EC and PC positions with information coming

from other anchor points (e.g., nostrils) or simply calculate
the features in another way.

In his thesis, Back [21] uses several geometrical features
such as iris center, eye corner, nostril positions, head angle,
and eye angles to create a rich feature vector and trains a
NN for gaze estimation. The system is not tested heavily;
however, the accuracy is reported to be in the range 2-4° and
sometimes even up to 7-8°.

Torricelli et al. [23, 58] calculate several distance and
angle features from both eyes to fill the feature vector. These
features include distances of inner and outer eye corners to
the iris center, the slopes of the lines connecting these points,
and the positions of outer eye corners. The trained NN gaze
estimation component results in average errors in the range
1-2°.

Ince and Kim [59] track the iris with a custom method
and calculate the gaze using the iris center displacement
between subsequent camera frames. The proposed system
has an accuracy of 3.23° (horizontal and vertical combined).
Nguyen et al. [60] take a similar approach and make use of the
center-bias effect, which states that gaze distribution is biased
towards the center of the screen [61]. Their system does not
require any calibration and works by calculating the mean
iris center over time and estimating the gaze through the
difference of current iris center and the mean. The combined
error in x and y directions is 3.43° of visual angle.

Wojciechowski and Fornalczyk [62] preprocess the eye
images by calculating the edges and then extract their features
which are the geometric center and center of mass of edge
pixel positions. The final feature is the vector connecting these
two locations (GC-CM), which is used to calculate the gaze
estimation using the weighted average of data from 4 training
points. The system has around 1.5 accuracy (combined).

Skodras et al. [17] track several moving and stationary
anchor points (e.g., eye corner, eyelid control points, and
iris center) and calculate vectors from their relative positions
to build the final feature vector. They use linear regression
for mapping to gaze point and achieve an accuracy of 2.96°
(combined).

3.2.2. Intensity-Based Features. In some feature-based meth-
ods, the direct connection between the image pixel intensity
and feature vector is not broken completely. Williams et al.
[14] combine the image pixel intensities with edge energies
in their feature vector. They train a sparse, semisupervised
Gaussian process (SGP) which also infers the missing labels
in the partially labeled training data. They make use of the
confidence value for the GP to filter the estimation over time
using a Kalman filter and achieve a final accuracy of 0.83°".

Lu et al. [28, 63] propose extracting 8D or 15D intensity
features from the eye region, which is identical to resizing
the grayscale eye image to 2 x 4 or 3 x 5 pixels, respectively.
Together with the proposed subpixel alignment method for
eye region, and adaptive linear regression (ALR) for gaze
estimation, they can estimate the gaze point with up to 0.62°
accuracy.

Xu et al. [31] extend the work of Lu et al. [28, 63] to
increase the feature dimension to 120D (2 eye images of 6 x 10

Computational Intelligence and Neuroscience

pixels) and to use ridge regression for gaze estimation and
achieve slightly worse results (1.06).

3.2.3. Traditional Computer Vision Features. Computer
vision (CV) tasks such as object detection and classification
are normally solved by using features (e.g., histogram of
oriented gradients (HOG) [25], scale-invariant feature
transform (SIFT) [64], and local binary patterns (LBPs)
[27]) extracted around salient points in the images. However,
until recently, this approach was still unexplored for the gaze
tracking problem.

Martinez et al. [26] introduce this concept in a head
mounted tracker, where they extract multilevel HOG features
from eye images and use support vector regression (SVR) or
relevance vector regression (RVR) to map these features to
the gaze point, and achieve an accuracy of 2.20° (combined).

Zhang et al. [36] combine several features to build
their feature vectors: color, pixel intensity, orientation (from
several Gabor filters), Haar-like features, and spatiogram
features (combining color histogram with spatial informa-
tion). After generating this rich representation, they apply
a dimensionality reduction technique to reduce the feature
vector size to 50 and train a NN for gaze estimation. Although
the reported average error is not very low (around 3.70°,
when combined), the work is a great example of applying the
traditional CV pipeline to gaze trackers.

Liang et al. [11] build on the previously explained S’GP
technique [14] and train it with CS-LBP features [65], which
is based on LBPs. They make use of spectral clustering to
learn from partially labeled data and report an average error
0f 0.92°.

Schneider et al. [66] explore several feature types (DCT,
LBP, and HOG) in conjunction with many alternatives for
regression (GP, k-nearest neighbors (kNN), regression trees,
SVR, RVR, and splines). They use a dually supervised embed-
ding method to reduce the feature dimensionality, resulting
in up to 31.2% decrease in the errors (best accuracy being
2.69° with 16-dimensional features based on HOG and LBP).
Huang et al. [67] also take the same approach and review
several feature types (LOG, LBP, HOG, and mHOG) and
regression components (kNN, RE, GP, and SVR). They report
that random forests (RF) combined with multilevel HOG
(mHOG) features prove to be the most efficient combination
(3.17° error) in a very challenging scenario (i.e., tablet com-
puters), with free head movements.

Lately, convolutional neural networks (CNNs) are very
popular in computer vision research, and Zhang et al. [13]
are the first to use them for gaze tracking. CNN methods
generally require a large dataset, and in their work they also
present their dataset [68] which contains more than 200,000
images. They calculate features using a CNN and combine
these features with the head pose information to build the
complete feature vector. After testing with several regression
functions (random forests, kNN, ALR, and SVR), the best
accuracy they achieve is around 6°.

3.2.4. Others. Ferhat et al. [30] use the segmented iris area
to calculate their proposed features. In their feature vector
(which contains 192 dimensions for an eye image of size

Computational Intelligence and Neuroscience

128 x 64), a given feature dimension holds the number of
segmented pixels in the corresponding row or column of the
iris segmentation image. Their system makes use of GP for
regression and has an accuracy of 2.23° (combined).

3.3. Model-Based Methods. The models used in model-based
gaze estimation methods are roughly divided into two: iris
contour models (also known as one-circle algorithm), where
an ellipse is fitted around the iris region, and eyeball models,
where the main objective is to estimate the location of the
eyeball center.

3.3.1 Iris Contour Models. The direct least squares method
for fitting ellipses onto a set of points [69] is influential in the
development of iris contour models for gaze estimation. This
method, complemented with the observation that the circular
iris boundary appears as an ellipse in camera images, has
enabled the development of several gaze tracking techniques.

Wang et al. [32, 70] develop the one-circle algorithm
where they use edge detection to find pixels belonging to the
iris boundary, and they fit an ellipse to this set of locations.
Then, the ellipse is back-projected to the 3D space to find the
iris contour circle, and its normal vector is used as the gaze
vector. Their system has an average error of around 1°.

Hansen and Pece [71, 72] use an active contour method to
track the iris edges over time, and (probably) using the one-
circle method, their system estimates the gaze with around 4°
accuracy.

Wau et al. [73] propose an extension with their two-circle
algorithm, where they assume the elliptic iris contours for
both eyes lie on the same plane or on parallel planes in
3D. With this assumption, they are able to estimate the gaze
direction without the need for camera calibration.

Huang et al. [74] use randomized Hough transformation
for iris contour fitting, whereas Zhang et al. [75] propose an
improved RANSAC algorithm. The reported that accuracy
for the latter work is 0.8” in a single direction.

Fukuda et al. [76] propose subpixel methods for iris
contour estimation in low resolution images, achieving a
combined average error of 3.35°. Mohammadi and Raie [77]
train a support vector machine (SVM) to filter out the
unrelated edge segments before applying the ellipse fitting,
yielding an accuracy of 3.48°.

Wood and Bulling [12] detect the edges belonging to
the iris from the image’s radial derivative. After fitting the
ellipse using the RANSAC method, the gaze estimation has
an accuracy of 6.88".

3.3.2. Eyeball Models. Eyeball model-based techniques try to
infer the eyeball center position and calculate the gaze vector
as the line connecting this point with the iris center.

Ishikawa et al. [34] use an AAM to track the face and use
the eye corner positions and the scale of the face to infer the
anatomical constants for the user (i.e., eye geometry). This
calibration is followed by iris detection by template matching
and edge-based iris refinement to calculate the center of the
iris. The geometrically calculated gaze has an average error of
3.2°.

Wu et al. [40] track the iris contours and the eyelids
with a particle filter (PF) and use several appearance metrics
to calculate the likelihood of a given particle (candidate).
Experimental results show the mean error to be greater than
3.5

Xie and Lin [78] infer the position of the eyeball center
and other personal parameters using a simple one-target
calibration. They calculate the gaze geometrically by using
the iris center and eye corner positions on the image, with
2° accuracy in a single direction.

Chen and Ji [33] use a generic face model that includes
several facial anchor points (nostrils, inner and outer eye
corners) and one of the eyeball centers. After calibrating for
the personal parameters, they track the facial points and fit
the 3D model to estimate the gaze with 2.7° accuracy.

Yamazoe et al. [19, 79] segment the eye image pixels into
three classes: skin, sclera, and iris. Using the segmentation
results, they calculate the most possible eye pose by minimiz-
ing the projection errors for a given candidate. The accuracy
of the system is reported to be around 9°.

Reale et al. [41] use the detected iris contours to calculate
the eyeball center, and after calibrating for the visual axis-
optical axis shift and the eyeball radius, they estimate the gaze
direction. Finally, the most recent work in this category is
from Heyman et al. [80], who employ canonical correlation
analysis (CCA) to estimate the head pose in a similar manner
to AAMs. They calibrate the eyeball radius during initial-
ization and estimate the iris center using a segmentation
method. Their system estimates the gaze direction with 5.64°
accuracy.

4. Calibration Strategies

Traditionally, calibration of the eye trackers consists of asking
the subject to look at several targets in known positions. In
this way, either the personal parameters (e.g., angle between
visual and optical axis of the eye, eyeball radius) or the camera
parameters (e.g., focal length, position with respect to the
display) are learned.

Several papers that we analyze in this work present novel
techniques to make this process easier for the subject using
the tracker. Yamazoe et al. [19, 79] employ a transparent
calibration process, where the user does not need to be aware
at all. They track the face over time to construct the 3D model
of the face and eyes and start calculating the gaze when the
calibration is ready. Alnajar et al. [50] use other users” gaze
patterns to help estimate the current user’s patterns. Sugano
et al. [10] completely remove the need for training data and
estimate the gaze in a probabilistic manner using computed
saliency maps.

Another approach to collecting the training data without
needing special actions from the user is to let the user operate
the computer normally and take samples during mouse clicks
[13, 46, 47]. This method is based on the assumption that the
user looks around the mouse pointer while clicking.

Head movements constitute a challenge for eye tracker
calibration, and even small movements may cause large errors
in the estimations of a calibrated tracker. This holds true
especially for appearance-based gaze trackers. Valenti et al.

8 Computational Intelligence and Neuroscience
TABLE 2: Publicly available datasets for remote, natural light gaze tracking.

Year # subjects # targets # head poses Calibration ~ Resolution Dataset size References
UUIm 2007 20 2-9 19 Yes 1600 x 1200 2,200 imgs. [103, 104]
HPEG 2009 10 Continuous 2 Yes 640 x 480 20 videos (~6.6 kimgs.) [102, 105]
Gi4E 2012 103 12 1 No 800 x 600 1,236 imgs. [106-108]
CAVE 2013 56 21 5 Yes 5184 x 3456 5,880 imgs. [81,100]
CvC 2013 12 12-15 4 Yes 1280 x 720 48 videos (~20 kimgs.) [9, 98]
EYEDIAP 2014 16 Continuous Continuous Yes 1920 x 1080 94 videos [109, 110]
Multiview 2014 50 160 8 (+synthesized) Yes 1280 x 1024 64,000 imgs. (+synth.) [51, 99]
MPIIGaze 2015 15 Continuous Continuous No 1280 x 720 213,659 imgs. (13, 68]
OMEG 2015 50 10 Continuous No 1280 x 1024 44,827 imgs. [111]
TabletGaze 2015 51 35 Continuous No 1280 x 720 816 videos (~120 kimgs.) [67,101]

[56] solve this problem by retargeting the calibration targets’
positions to user’s new field of view and calibrating the system
again. Lu et al. [7, 29] require the user to record 5-second
video clips while moving her/his head and use these to correct
errors caused by head movements. Xie and Lin [78] require
just a single target calibration, where the user keeps looking
at the same position on the screen and moves her/his head
around. Zhang et al. [13] take an approach based on large
datasets and use other people’s training data to calibrate a
more accurate tracker.

Making the calibration process transparent for the user
and collecting the required large amount of data are two
conflicting objectives. In order to use the available training
data to full extent, Williams et al. and Liang et al. [11, 14]
use partially labeled data and annotate some of the unlabeled
samples automatically. Ono et al. [45] create new samples
by adding shifts while cropping the eye images, and in this
way they can model the resulting appearance change and
compensate for it while searching local samples. Lu et al.
[48, 49] create synthetic training data by modeling the pixel
flow around the eyes, whereas Sugano et al. [51] use 8 cameras
to model a large part of the face in 3D and to generate training
samples from previously unobserved head poses.

5. Dealing with Head Pose

Model-based visible light gaze tracking methods are normally
invariant to head movements, assuming the preprocessing
steps such as eye localization or model fitting do not fail.
However, the same does not hold for the appearance-based
and feature-based systems. As Lu et al. [29] demonstrate,
the head movement not only adds a shift to the gaze angle,
but also makes the calibration invalid by distorting the eye
appearance for appearance-based methods.

The naive approach to solving the problem of head
movements is adding more training data. Nguyen et al. [37,
53] propose repeating the calibration up to 10 times, while
Lai et al. [8] require 34,000 training samples per user.

Zhang et al. [13] use a large dataset of previously collected
images to train a feature-based gaze tracker. Here, training
data collected from many subjects can be used in estimating
the gaze for another person. Head pose invariance is achieved
by incorporating the head pose angles into the feature set.

In other approaches [46, 47], the multipose training
data is grouped according to head pose, and only a subset
corresponding to the most similar head pose is used in the
active calibration. To reduce the need for additional training
data, Lu et al. [48] synthetically generate training samples for
unseen head poses.

Instead of pouring more data into the system, another
option is to apply compensations or small fixes to keep the
current calibration working. Lu et al. [63] propose an eye
image alignment scheme to undo the deformation in these
images. In their other works [7, 29], they train regression
for this task and combine it with a compensation for head
rotation.

Valenti et al. [56] keep the calibration targets in a flexible
representation and retarget these to the display coordinates
whenever the head pose is changed and recalibrate their
system.

Cheung and Peng [18] assume the PC-EC feature is
completely invariant to head pose and apply only head
rotation compensation in their system.

6. Available Datasets

Several papers that we analyzed contain a summary of
publicly available datasets for visible light gaze tracking
[13, 51, 81]. However, they are mostly for the purpose of
comparison with the presented datasets in the mentioned
work and thus may lack some pieces of related information.

In Table 2, we bring together all the datasets mentioned in
these works (with several more recently published additions),
in an attempt to provide a reference for future research in the
field.

One of the datasets [82] cited in the previous reviews has
been removed, as it provided data for a head mounted setup.

7. Gaze Tracking as a Service

While visible light gaze tracking has become a hot topic in the
academia in recent years (as can be observed in Figure 2), the
industry is not trailing far behind either. Here, we talk about
several companies already providing gaze tracking service
based on regular cameras found on consumer devices.

Computational Intelligence and Neuroscience

1995 2000 2005 2010 2015

B Model-based
[0 Feature-based
B Appearance-based

FIGURE 2: Number of works from different categories of eye trackers
according to the publication year.

GazeHawk [83] (now closed) was enabling its customers
to convey remote eye tracking studies inside the user’s
browser. xLabs [84] is another similar service, which is
also available as a Chrome extension. With the extension,
several demos (including continuous calibration by an ant
smashing game) can be tried. Lastly, Sticky [85] also provides
aJavaScript-based service, suggesting use cases such as online
ad placement and web page optimization. As the only service
with detailed specifications, their eye tracker provides an
average accuracy of 2.4°.

Other possible clients for this type of eye tracker are the
game or application developers. SentiGaze [86] provides an
SDK for developers targeting the Windows platform. Face-
Track from Visage Technologies [87] provides a similar C++
SDK for developers, with augmented reality, view control in
gaming, and view-dependent rendering suggested as possible
use cases. The SDK provides detailed information such as
mouth contour, chin pose, and eye openness, in addition to
the gaze information. InSight SDK [88] takes one step further
and combines the gaze information with mood, age, and
gender estimation.

With the transition from desktop programs to mobile
apps in recent years, two companies see a possibility for gaze
tracking on this platform. Snapdragon [89] provides an SDK
for Android apps, whereas Umoove [90] has a product on
both iOS and Android platforms.

8. Open Source Projects

A few works that we analyze in this paper have released their
source code with an open source license. In this section, we
list these options so that new projects in the field will have a
starting point for the codebase. Table 3 shows a summary of
the listed projects.

Opengazer [91] is an eye tracker from Cambridge Uni-
versity, which is unfortunately no longer maintained. It uses
Gaussian process regression with eye images as features,
which is similar to the technique described by Nguyen et al.

TABLE 3: Open source gaze trackers and the related publications.

Language Platform License References
Opengazer C/C++ Linux/Mac GPLv2 [91]
NetGazer C++/C# Windows GPLv2 [92]
CVCET C/C++ Linux/Mac ~ GPLv2 [9, 30, 93]
NNET Objective C H{ON] GPLv3 [43, 44, 94]
EyeTab Python/C++ Windows MIT (12, 95]
TurkerGaze JavaScript All MIT [31, 96]
Camgaze Python All ? [97]

[37]. NetGazer [92] is the port of Opengazer for the Windows
platform and is not maintained anymore either.

In the recent years, a fork of Opengazer project, named
CVC Eye Tracker [93], was made available and is main-
tained actively by researchers from Universitat Autonoma de
Barcelona. This project is the basis for two works analyzed in
our review [9, 30].

Neural Network Eye Tracker (NNET) [94] is the NN-
based eye tracker implementation for iPad devices, which
is presented in two articles [43, 44]. EyeTab [95] is another
open source codebase for tablet computers, which uses the
iris contour model-based method described by Wood and
Bulling [12].

Recently, the TurkerGaze project [31, 96] was made
available on GitHub. This application is totally implemented
in JavaScript (JS), which makes it platform independent (with
possible extension to the mobile). The library has a polished
interface for calibration and verification and comes with a
small application for analyzing the gaze patterns recorded
during conducted experiments. Although its proposed usage
area is to enable crowdsourcing eye tracking tasks on plat-
forms similar to Amazon Mechanical Turk, we believe it will
have a larger impact on both academic works and web-based
applications.

One last open source application is Camgaze [97], which
is written in Python and calculates binocular gaze estima-
tions.

9. Summary and Conclusions

In this work, we have tried to present a review of the state
of the art in remote, natural light gaze trackers. Although in
recent years many great works were published in the field,
and the accuracy gap to reach the infrared-based trackers
is closing, many open problems and unexplored approaches
still remain.

Apart from the accuracy, the biggest challenges to these
trackers are (a) making the calibration less painful for the user
and (b) allowing free head movements. As we analyzed in the
previous sections dedicated to these two problems, the field
witnessed amazing works recently. Some open lines of work
that we have identified in these areas are the following:

(i) Maintaining Personal Calibration. Most of the works
we analyzed require some sort of calibration, be
it for personal parameters for the user, for camera
properties, or simply for training the gaze mapping

10

component. Although some techniques may already
allow it (without stating explicitly), reusing the cal-
ibration information for the subsequent sessions of
the same user is still pending extensive analysis. With
such a technique, calibration before each session can
be simplified or removed altogether.

(ii) Using Calibration Data from Other Users. Despite
being explored in a few papers [13, 50], we believe
the accumulation (or collection) of training data
from people other than the current user will receive
more focus in the coming years. This is analogous
to training classifiers or detectors in other computer
vision tasks, and it will let us make better use of the
large datasets that we have begun to build.

(iii) Other Ways of Collecting Data. Collecting calibration
samples each time the user clicks the mouse enabled
us to create very large datasets for the first time [13,
46, 47]. Especially with the advent of JavaScript-based
eye trackers [31], other possibilities such as remotely
crowdsourcing data collection will emerge. Larger
data will eventually let us explore previously impos-
sible ideas, a trend which is common in computer
vision.

These lines of work are mostly around the topic of data
collection and calibration, and they will help solve the large
data needs of training for different head poses.

Most of the recent high-performing techniques [11, 14, 28,
63] are using feature-based gaze estimation, which shows the
promise of this category over appearance- or model-based
methods. Figure 2 also shows this tendency, and the increase
in feature-based methods can be observed clearly. Over the
next years, we will probably see more examples of similar
work with the following focus points:

(i) Different Features. The PC-EC vector, pixel intensity
and color, and other standard features (such as HOG
and LBP) have been used so far. New feature repre-
sentations that may be better suited to the problem at
hand will greatly improve the eye tracking accuracy.
The desired characteristics of such features are (a)
invariance to head pose, (b) invariance to intensity
changes, and (c) invariance to personal appearance
differences.

(ii) Migrating Proven Ideas from Other CV Fields. Use of
convolutional neural networks (CNNs) [13], features
such as HOG and LBP, and in general the computer
vision (CV) pipeline [36] are changing our approach
to the gaze tracking problem. These ideas were already
commonplace in other areas of CV, and we believe our
community will keep transferring insights which have
been proven to work for other problems.

Apart from these technical challenges and lines of work,
as a society, our biggest problems are related to transparency
and letting others build on our work.

Firstly, only very few of these works report their accuracy
on publicly available datasets or publish the dataset they
use. This is a must in other computer vision areas so that

Computational Intelligence and Neuroscience

the results from techniques can be compared and verified.
Moreover, standardization of the processing pipeline will
immediately follow (as it depends on the training data
structure) and will foster our progress.

Our second problem is that only few works make their
source code available. This prevents other researchers from
standing on the shoulders of giants and hinders the rate of our
progress. We believe that, by releasing our source code, we
can create stronger ties and cooperation in the field.

In conclusion, the amount and quality of the recent work
in the field are promising and signal even faster progress in
the coming years. With this map of the current state of the art
that you are holding in your hands (or gazing at through an
electronic display), we hope to provide a reference point for
all these amazing works we cannot wait to see.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the Spanish Gov. Grants
MICINN TIN2009-10435 and Consolider 2010 MIPRCYV,
Univ. Autonoma de Barcelona grants, and the Google Faculty
Award.

References

[1] Tobii eye-trackers, October 2015, http://www.tobii.com/.

[2] SensoMotoric Instruments GmbH, October 2015, http://www
.smivision.com/.

[3] The Eye Tribe, October 2015, http://theeyetribe.com/.

[4] Gaze Tracking Library, October 2015, http://sourceforge.net/
projects/gazetrackinglib/.

[5] C. H. Morimoto and M. R. M. Mimica, “Eye gaze tracking
techniques for interactive applications;,” Computer Vision and
Image Understanding, vol. 98, no. 1, pp. 4-24, 2005.

[6] D. W. Hansen and Q. Ji, “In the eye of the beholder: a survey of
models for eyes and gaze,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, no. 3, pp. 478-500, 2010.

[7] E Lu, T. Okabe, Y. Sugano, and Y. Sato, “A head pose-free
approach for appearance-based gaze estimation,” in Proceedings
of the 22nd British Machine Vision Conference (BMVC ’11), pp.
126.1-126.11, September 2011.

[8] C.-C. Lai, Y.-T. Chen, K.-W. Chen, S.-C. Chen, S.-W. Shih, and
Y.-P. Hung, “Appearance-based gaze tracking with free head
movement,” in Proceedings of the 22nd International Conference
on Pattern Recognition (ICPR ’14), pp. 1869-1873, Stockholm,
Sweden, August 2014.

[9] O. Ferhat, E Vilarifio, and E J. Sdnchez, “A cheap portable eye-
tracker solution for common setups,” Journal of Eye Movement
Research, vol. 7, no. 3, article 2, 2014.

[10] Y. Sugano, Y. Matsushita, and Y. Sato, “Appearance-based gaze
estimation using visual saliency;” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 2, pp. 329-341,
2013.

K. Liang, Y. Chahir, M. Molina, C. Tijus, and E Jouen,
“Appearance-based gaze tracking with spectral clustering and

(11

Computational Intelligence and Neuroscience

(12]

(14]

(15]

(16]

(17]

(20]

(21]

(22]

(23

(25]

(26]

semi-supervised Gaussian process regression,” in Proceedings of
the Conference on Eye Tracking South Africa (ETSA ’13), vol. 1,
pp- 17-23, ACM, Cape Town, South Africa, August 2013.

E. Wood and A. Bulling, “EyeTab: model-based gaze estimation
on unmodified tablet computers,” in Proceedings of the 8th
Symposium on Eye Tracking Research and Applications (ETRA
’14), P. Qvarfordt and D. W. Hansen, Eds., pp. 207-210, ACM,
Safety Harbor, Fla, USA, March 2014.

X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-
based gaze estimation in the wild,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
’15), pp. 4511-4520, Boston, Mass, USA, June 2015.

O. Williams, A. Blake, and R. Cipolla, “Sparse and semi-
supervised visual mapping with the S3GP;” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR °06), pp. 230-237, June 2006.

P. Viola and M.]. Jones, “Robust real-time face detection,”
International Journal of Computer Vision, vol. 57, no. 2, pp. 137-
154, 2004.

R. Stiefelhagen, J. Yang, and A. Waibel, Tracking Eyes and
Monitoring Eye Gaze, 1997.

E. Skodras, V. G. Kanas, and N. D. Fakotakis, “On visual gaze
tracking based on a single low cost camera,” Signal Processing:
Image Communication, vol. 36, pp. 29-42, 2015.

Y.-M. Cheung and Q. Peng, “Eye gaze tracking with a web cam-
era in a desktop environment,” IEEE Transactions on Human-
Machine Systems, vol. 45, no. 4, pp. 419-430, 2015.

H. Yamazoe, A. Utsumi, T. Yonezawa, and S. Abe, “Remote gaze
estimation with a single camera based on facial-feature tracking
without special calibration actions,” in Proceedings of the Eye
Tracking Research and Applications Symposium (ETRA ’08), pp.
245-250, Santa Barbara, Calif, USA, March 2008.

D. W. Hansen, J. P. Hansen, M. A. Nielsen, A. S. Johansen,
and M. B. Stegmann, “Eye typing using Markov and active
appearance models,” in Proceedings of the 6th IEEE Workshop
on Applications of Computer Vision (WACV ’02), pp. 132-136,
Orlando, FL, USA, 2002.

D. Béck, Neural network gaze tracking using web camera [Ph.D.
dissertation], Linkoping University, Linkoping, Sweden, 2005.
J. Zhu and J. Yang, “Subpixel eye gaze tracking,” in Proceedings
of the 5th IEEE International Conference on Automatic Face
Gesture Recognition, pp. 131-136, IEEE, Washington, DC, USA,
May 2002.

D. Torricelli, M. Goffredo, S. Conforto, M. Schmid, and T.
D’Alessio, “A novel neural eye gaze tracker,” in Proceedings of
the 2nd International Workshop on Biosignal Processing and
Classification—Biosignals and Sensing for Human Computer
Interface (BPC °06), pp. 86-95, 2006.

R. Valenti, N. Sebe, and T. Gevers, “Simple and efficient
visual gaze estimation,” in Workshop on Multimodal Interactions
Analysis of Users in a Controlled Environment (MIAUCE), ICM],
no. 3, 2008.

N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR
’05), pp. 886-893, IEEE, San Diego, Calif, USA, June 2005.

E Martinez, A. Carbone, and E. Pissaloux, “Gaze estimation
using local features and non-linear regression,” in Proceedings
of the 19th IEEE International Conference on Image Processing
(ICIP ’12), vol. 1, pp. 1961-1964, IEEE, Orlando, Fla, USA,

October 2012.

(27]

(31]

(32]

(33]

[34]

[37]

(38]

1

T. Ojala, M. Pietikdinen, and D. Harwood, “A comparative
study of texture measures with classification based on featured
distributions,” Pattern Recognition, vol. 29, no. 1, pp. 51-59, 1996.

E Lu, Y. Sugano, T. Okabe, and Y. Sato, “Inferring human gaze
from appearance via adaptive linear regression,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV
’11), D. N. Metaxas, L. Quan, A. Sanfeliu, and L. J. V. Gool, Eds.,
pp- 153-160, IEEE, Barcelona, Spain, November 2011.

E Lu, T. Okabe, Y. Sugano, and Y. Sato, “Learning gaze biases
with head motion for head pose-free gaze estimation,” Image
and Vision Computing, vol. 32, no. 3, pp. 169-179, 2014.

O. Ferhat, A. Llanza, and E Vilarifio, “A feature-based gaze
estimation algorithm for natural light scenarios,” in Pattern
Recognition and Image Analysis, R. Paredes, J. S. Cardoso, and X.
M. Pardo, Eds., vol. 9117 of Lecture Notes in Computer Science,
pp. 569-576, 2015.

P. Xu, K. A. Ehinger, Y. Zhang, A. Finkelstein, S. R. Kulkarni,
and J. Xiao, “TurkerGaze: crowdsourcing saliency with webcam
based eye tracking,” http://arxiv.org/abs/1504.06755.

J.-G. Wang, E. Sung, and R. Venkateswarlu, “Eye gaze estima-
tion from a single image of one eye,” in Proceedings of the 9th
IEEE International Conference on Computer Vision (ICCV "03),
pp- 136-143, IEEE, October 2003.

J. Chen and Q. Ji, “3D gaze estimation with a single camera
without IR illumination,” in Proceedings of the 19th International
Conference on Pattern Recognition (ICPR °08), pp. 1-4, IEEE,
December 2008.

T. Ishikawa, S. Baker, I. Matthews, and T. Kanade, “Passive
driver gaze tracking with active appearance models,” in Pro-
ceedings of the 11th World Congress on Intelligent Transportation
Systems (ITS '04), vol. 3, Nagoya, Japan, October 2004.

S. Baluja and D. Pomerleau, “Non-intrusive gaze tracking using
artificial neural networks,” in Proceedings of the Advances in
Neural Information Processing Systems (NIPS °94), pp. 1-14,
January 1994.

Y. Zhang, A. Bulling, and H. Gellersen, “Towards pervasive eye
tracking using low-level image features,” in Proceedings of the
Symposium on Eye Tracking Research and Applications (ETRA
’12), C. H. Morimoto, H. O. Istance, S. N. Spencer, J. B. Mulligan,
and P. Qvarfordt, Eds., pp. 261-264, ACM, Santa Barbara, Calif,
USA, March 2012.

B. L. Nguyen, Y. Chahir, M. Molina, C. Tijus, and F. Jouen,
“Eye gaze tracking with free head movements using a single
camera,” in Proceedings of the Symposium on Information and
Communication Technology (SoICT ’10), N. T. Giang, N. T. Hai,
and H. Q. Thang, Eds., vol. 449 of ACM International Conference
Proceeding Series, pp. 108-113, ACM, Hanoi, Vietnam, August
2010.

K.-H. Tan, D. J. Kriegman, and N. Ahuja, “Appearance-based
eye gaze estimation,” in Proceedings of the Sixth IEEE Workshop
on Applications of Computer Vision (WACV ’02), pp. 191-195,
IEEE Computer Society, 2002.

L. Sesma, A. Villanueva, and R. Cabeza, “Evaluation of pupil
center-eye corner vector for gaze estimation using a web cam,”
in Proceedings of the Symposium on Eye Tracking Research and
Applications (ETRA ’12), C. H. Morimoto, H. O. Istance, S. N.
Spencer, J. B. Mulligan, and P. Qvarfordt, Eds., pp. 217-220,
ACM, Santa Barbara, Calif, USA, March 2012.

H. Wy, Y. Kitagawa, T. Wada, T. Kato, and Q. Chen, “Tracking
iris contour with a 3D eye model for gaze estimation,” in Com-
puter Vision—ACCV 2007: 8th Asian Conference on Computer
Vision, Tokyo, Japan, November 18-22, 2007, Proceedings, Part

12

(48]

(50]

[51

I Y. Yagi, S. B. Kang, I.-S. Kweon, and H. Zha, Eds., vol. 4843
of Lecture Notes in Computer Science, pp. 688-697, Springer,
Berlin, Germany, 2007.

M. Reale, T. Hung, and L. Yin, “Viewing direction estimation
based on 3D eyeball construction for HRIL, in Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition—Workshops (CVPRW ’10), pp. 24-31, IEEE,
San Francisco, Calif, USA, June 2010.

L.-Q. Xu, D. Machin, and P. Sheppard, “A novel approach to real-
time non-intrusive gaze finding,” in Proceedings of the British
Machine Vision Conference, J. N. Carter and M. S. Nixon, Eds.,
British Machine Vision Association, Southampton, UK, 1998.

W. Sewell and O. Komogortsev, “Real-time eye gaze tracking
with an unmodified commodity webcam employing a neural
network;” in Proceedings of the Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’10), E. D. Mynatt, D.
Schoner, G. Fitzpatrick, S. E. Hudson, W. K. Edwards, and T.
Rodden, Eds., pp. 3739-3744, ACM, Atlanta, Ga, USA, April
2010.

C. Holland and O. V. Komogortsev, “Eye tracking on unmodi-
fied common tablets: challenges and solutions,” in Proceedings
of the Symposium on Eye Tracking Research and Applications
(ETRA ’12), C. H. Morimoto, H. O. Istance, S. N. Spencer, J.
B. Mulligan, and P. Qvarfordt, Eds., pp. 277-280, ACM, Santa
Barbara, Calif, USA, March 2012.

Y. Ono, T. Okabe, and Y. Sato, “Gaze estimation from low
resolution images,” in Advances in Image and Video Technology,
L.-W. Chang and W.-N. Lie, Eds., vol. 4319 of Lecture Notes in
Computer Science, pp. 178-188, Springer, 2006.

Y. Sugano, Y. Matsushita, Y. Sato, and H. Koike, “An incre-
mental learning method for unconstrained gaze estimation,”
in Computer Vision—ECCV 2008, vol. 5304 of Lecture Notes
in Computer Science, pp. 656-667, Springer, Berlin, Germany,
2008.

Y. Sugano, Y. Matsushita, Y. Sato, and H. Koike, “Appearance-
based gaze estimation with online calibration from mouse
operations,” IEEE Transactions on Human-Machine Systems,
vol. 45, no. 6, pp. 750-760, 2015.

E Lu, Y. Sugano, T. Okabe, and Y. Sato, “Head pose-free
appearance-based gaze sensing via eye image synthesis,” in
Proceedings of the 21st IEEE International Conference on Pattern
Recognition (ICPR ’12), pp. 1008-1011, Tsukuba, Japan, Novem-

ber 2012.

E Lu, Y. Sugano, T. Okabe, and Y. Sato, “Gaze estimation
from eye appearance: a head pose-free method via eye image
synthesis,” IEEE Transactions on Image Processing, vol. 24, no.
11, pp. 3680-3693, 2015.

E Alnajar, T. Gevers, R. Valenti, and S. Ghebreab, “Calibration-
free gaze estimation using human gaze patterns,” in Proceedings
of the 14th IEEE International Conference on Computer Vision
(ICCV ’13), pp. 137-144, IEEE, Sydney, Australia, December
2013.

Y. Sugano, Y. Matsushita, and Y. Sato, “Learning-by-synthesis
for appearance-based 3D gaze estimation,” in Proceedings of
the 27th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’14), pp. 1821-1828, IEEE, Columbus, Ohio,
USA, June 2014.

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning, MIT Press, Cambridge, Mass, USA, 2006.

(53]

(54]

(58]

(59]

[60]

[61]

[62]

[63]

(64]

[65]

Computational Intelligence and Neuroscience

B. L. Nguyen, “Eye gaze tracking,” in Proceedings of the IEEE-
RIVF International Conference on Computing and Communica-
tion Technologies (RIVF 09), pp. 1-4, IEEE, Da Nang, Vietnam,
July 2009.

D. W. Hansen, M. Nielsen, J. P. Hansen, A. S. Johansen, and M. B.
Stegmann, “Tracking eyes using shape and appearance;” in Pro-
ceedings of the IAPR Workshop on Machine Vision Applications
(MVA °02), pp. 201-204, December 2002.

R. Valenti, J. Staiano, N. Sebe, and T. Gevers, “Webcam-based
visual gaze estimation,” in Image Analysis and Processing—
ICIAP 2009, P. Foggia, C. Sansone, and M. Vento, Eds., vol. 5716
of Lecture Notes in Computer Science, pp. 662-671, Springer,
2009.

R. Valenti, N. Sebe, and T. Gevers, “Combining head pose and
eye location information for gaze estimation,” IEEE Transac-
tions on Image Processing, vol. 21, no. 2, pp. 802-815, 2012.

S.-J. Baek, K.-A. Choi, C. Ma, Y.-H. Kim, and S.-]. Ko, “Eyeball
model-based iris center localization for visible image-based
eye-gaze tracking systems,” IEEE Transactions on Consumer
Electronics, vol. 59, no. 2, pp. 415-421, 2013.

D. Torricelli, S. Conforto, M. Schmid, and T. D’Alessio, “A
neural-based remote eye gaze tracker under natural head
motion,” Computer Methods and Programs in Biomedicine, vol.
92, no. 1, pp. 66-78, 2008.

L. E Ince and J. W. Kim, “A 2D eye gaze estimation system with
low-resolution webcam images,” EURASIP Journal on Advances
in Signal Processing, vol. 2011, article 40, 2011.

P. Nguyen, J. Fleureau, C. Chamaret, and P. Guillotel,
“Calibration-free gaze tracking using particle filter; in
Proceedings of the IEEE International Conference on Multimedia
and Expo (ICME ’13), pp. 1-6, IEEE, San Jose, Calif, USA, July
2013.

T. Judd, K. Ehinger, E Durand, and A. Torralba, “Learning
to predict where humans look,” in Proceedings of the 12th
International Conference on Computer Vision (ICCV °09), pp.
2106-2113, Kyoto, Japan, October 2009.

A. Wojciechowski and K. Fornalczyk, “Exponentially smoothed
interactive gaze tracking method,” in Computer Vision and
Graphics: International Conference, ICCVG 2014, Warsaw,
Poland, September 15-17, 2014. Proceedings, L. J. Chmielewski,
R. Kozera, B.-S. Shin, and K. W. Wojciechowski, Eds., vol. 8671
of Lecture Notes in Computer Science, pp. 645-652, Springer,
Berlin, Germany, 2014.

E Lu, Y. Sugano, T. Okabe, and Y. Sato, “Adaptive linear regres-
sion for appearance-based gaze estimation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36, no. 10, pp.
2033-2046, 2014.

D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60, no.
2, pp. 91-110, 2004.

M. Heikkil, M. Pietikinen, and C. Schmid, “Description of
interest regions with center-symmetric local binary patterns,”
in Computer Vision, Graphics and Image Processing: 5th Indian
Conference, ICVGIP 2006, Madurai, India, December 13-16,
2006. Proceedings, P. K. Kalra and S. Peleg, Eds., vol. 4338 of
Lecture Notes in Computer Science, pp. 58-69, Springer, Berlin,
Germany, 2006.

T. Schneider, B. Schauerte, and R. Stiefelhagen, “Manifold
alignment for person independent appearance-based gaze esti-
mation,” in Proceedings of the 22nd International Conference on
Pattern Recognition (ICPR ’14), pp. 1167-1172, IEEE, Stockholm,
Sweden, August 2014.

Computational Intelligence and Neuroscience

[67] Q. Huang, A. Veeraraghavan, and A. Sabharwal, “TabletGaze:
unconstrained appearance-based gaze estimation in mobile
tablets,” http://arxiv.org/abs/1508.01244.

[68] MPIIGaze Dataset, October 2015, https://www.mpi-inf.mpg
.de/departments/computer-vision-and-multimodal-computing/
research/gaze-based-human-computer-interaction/appearance-
based-gaze-estimation-in-the-wild/.

[69] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least
squares fitting of ellipses,” in Proceedings of the 13th International
Conference on Pattern Recognition (ICPR ’96), pp. 253-257,
IEEE, Vienna, Austria, August 1996.

[70] J.-G. Wang, E. Sung, and R. Venkateswarlu, “Estimating the eye
gaze from one eye,” Computer Vision and Image Understanding,
vol. 98, no. 1, pp. 83-103, 2005.

[71] D. W. Hansen and A. E. C. Pece, “Eye typing off the shelf]
in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR "04), vol. 2, pp.
159-164, June-July 2004.

[72] D. W. Hansen and A. E. C. Pece, “Eye tracking in the wild,
Computer Vision and Image Understanding, vol. 98, no. 1, pp.
155-181, 2005.

[73] H. Wu, Q. Chen, and T. Wada, “Conic-based algorithm for
visual line estimation from one image,” in Proceedings of the
Sixth IEEE International Conference on Automatic Face and
Gesture Recognition, pp. 260-265, IEEE, May 2004.

[74] S.-C. Huang, Y.-L. Wu, W.-C. Hung, and C.-Y. Tang, “Point-of-
regard measurement via iris contour with one eye from single
image,” in Proceedings of the IEEE International Symposium on
Multimedia (ISM °10), pp. 336-341, IEEE, Taichung, Taiwan,
December 2010.

[75] W. Zhang, T.-N. Zhang, and S.-J. Chang, “Gazing estimation
and correction from elliptical features of one iris,” in Proceedings
of the 3rd International Congress on Image and Signal Processing
(CISP’10), pp. 1647-1652, Yantai, China, October 2010.

[76] T. Fukuda, K. Morimoto, and H. Yamana, “Model-based eye-
tracking method for low-resolution eye-images,” in Proceedings
of the 2nd Workshop on Eye Gaze in Intelligent Human Machine
Interaction, Palo Alto, Calif, USA, 2011.

[77] M. R. Mohammadi and A. Raie, “Robust pose-invariant eye
gaze estimation using geometrical features of iris and pupil
images,” in Proceedings of the 20th Iranian Conference on
Electrical Engineering (ICEE ’12), pp. 593-598, Tehran, Iran, May
2012.

[78] J. Xie and X. Lin, “Gaze direction estimation based on natural
head movements,” in Proceedings of the Fourth International
Conference on Image and Graphics (ICIG 07), pp. 672-677,
Sichuan, China, August 2007.

[79] H. Yamazoe, A. Utsumi, T. Yonezawa, and S. Abe, “Remote
and head-motion-free gaze tracking for real environments
with automated head-eye model calibrations,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW °08), pp. 1-6,
Anchorage, Alaska, USA, June 2008.

[80] T.Heyman, V. Spruyt, and A. Ledda, “3D Face tracking and gaze
estimation using a monocular camera,” in Proceedings of the 2nd
International Conference on Positioning and Context-Awareness
(PoCA ’I1), pp. 23-28, Brussels, Belgium, 2011.

[81] B. A.Smith, Q. Yin, S. K. Feiner, and S. K. Nayar, “Gaze locking:
passive eye contact detection for human-object interaction,”
in Proceedings of the 26th Annual ACM Symposium on User
Interface Software and Technology (UIST ’13), pp. 271-280, ACM,
2013.

13

[82] C. D. McMurrough, V. Metsis, D. Kosmopoulos, I. Maglogian-
nis, and F. Makedon, “A dataset for point of gaze detection
using head poses and eye images,” Journal on Multimodal User
Interfaces, vol. 7, no. 3, pp. 207-215, 2013.

[83] GazeHawk, October 2015, http://www.gazehawk.com/.

[84] xLabs eye, gaze and head tracking, October 2015, http://xlabsgaze
.com/.

[85] Sticky, 2015, http://www.sticky.ad/technical-details.html.

[86] SentiGaze SDK, October 2015, http://www.neurotechnology
.com/sentigaze.html.

[87] FaceTrack—Visage Technologies, 2015, https://visagetechnolo-
gies.com/products-and-services/visagesdk/facetrack/.

[88] InSight SDK, October 2015, http://sightcorp.com/insight/.

[89] Snapdragon SDK for Android, October 2015, https://developer
.qualcomm.com/software/snapdragon-sdk-android.

[90] Umoove, 2015, http://www.umoove.me/.

[91] Opengazer: open-source gaze tracker for ordinary webcams
(software), October 2015, http://www.inference.phy.cam.ac.uk/
opengazer/.

[92] NetGazer, 2015, http://sourceforge.net/projects/netgazer/.

[93] CVC Eye Tracker, October 2015, https://github.com/tiendan/
OpenGazer.

[94] Neural Network Eye Tracker (NNET), October 2015, http://
cs.txstate.edu/~okll/nnet.html.

[95] EyeTab, October 2015, https://github.com/errollw/EyeTab/.

[96] TurkerGaze, October 2015, https://github.com/PrincetonVision/
TurkerGaze.

[97] Camgaze, 2015, https://github.com/wallarelvo/camgaze.

[98] CVC Eye Tracking DB, October 2015, http://mv.cvc.uab.es/pro-
jects/eye-tracker/cvceyetrackerdb.

[99] Multi-View Gaze Dataset, October 2015, http://www.hci.iis
.u-tokyo.ac.jp/datasets/.

[100] Columbia Gaze Data Set, October 2015, http://www.cs.co-
lumbia.edu/CAVE/databases/columbia_gaze/.

[101] Rice TabletGaze Dataset, October 2015, http://sh.rice.edu/
tablet_gaze html.

[102] Head Pose and Eye Gaze (HPEG) Dataset, October 2015, http://
sspnet.eu/2010/02/head-pose-and-eye-gaze-hpeg-dataset/.

[103] UUlm Head Pose and Gaze Database, 2015, https://www.uni-ulm
.de/in/neuroinformatik/mitarbeiter/g-layher/image-databases.
html.

[104] U. Weidenbacher, G. Layher, P.-M. Strauss, and H. Neumann, “A
comprehensive head pose and gaze database,” in Proceedings of
the 3rd IET International Conference on Intelligent Environments
(IE °07), pp. 455-458, September 2007.

[105] S. Asteriadis, D. Soufleros, K. Karpouzis, and S. Kollias, “A
natural head pose and eye gaze dataset,” in Proceedings of the
International Workshop on Affective-Aware Virtual Agents and
Social Robots (AFFINE *09), pp. 1:1-1:4, ACM, Cambridge, Mass,
USA, November 2009.

[106] Gi4E Database, October 2015, http://gi4e.unavarra.es/data-
bases/gide/.

[107] V. Ponz, A. Villanueva, and R. Cabeza, “Dataset for the evalu-
ation of eye detector for gaze estimation,” in Proceedings of the
ACM Conference on Ubiquitous Computing (UbiComp ’12), pp.
681-684, Pittsburgh, Pa, USA, September 2012.

[108] A. Villanueva, V. Ponz, L. Sesma-Sanchez, M. Ariz, S. Porta,
and R. Cabeza, “Hybrid method based on topography for robust
detection of iris center and eye corners,” ACM Transactions on
Multimedia Computing, Communications and Applications, vol.
9, no. 4, article 25, 2013.

14

[109]

[110]

[111]

EYEDIAP Dataset, October 2015, http://www.idiap.ch/dataset/
eyediap.

K. A. Funes Mora, E Monay, and J.-M. Odobez, “EYEDIAP: a
database for the development and evaluation of gaze estimation
algorithms from RGB and RGB-D cameras,” in Proceedings of
the 8th Symposium on Eye Tracking Research and Applications
(ETRA ’14), pp. 255-258, ACM, March 2014.

Q. He, X. Hong, X. Chai et al., “OMEG: Oulu multi-pose eye
gaze dataset,” in Proceedings of the 19th Scandinavian Conference
on Image Analysis (SCIA ’15), Copenhagen, Denmark, June 2015,
R. R. Paulsen and K. S. Pedersen, Eds., vol. 9127 of Lecture Notes
in Computer Science, pp. 418-427, Springer, 2015.

Computational Intelligence and Neuroscience

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

o

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
jomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

