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By using determinantal representations of the𝑊-weighted Drazin inverse previously obtained by the author within the framework
of the theory of the column-row determinants, we get explicit formulas for determinantal representations of the 𝑊-weighted
Drazin inverse solutions (analogs of Cramer’s rule) of the quaternion matrix equations WAWX = D, XWBW = D, and
W
1
AW
1
XW
2
BW
2
= D.

1. Introduction

Throughout the paper, we denote the real number field byR,
the set of all𝑚 × 𝑛matrices over the quaternion algebra

H = {𝑎
0
+ 𝑎
1
𝑖 + 𝑎
2
𝑗 + 𝑎
3
𝑘 | 𝑖
2
= 𝑗
2
= 𝑘
2

= −1, 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
∈ R}

(1)

byH𝑚×𝑛, and the set of all𝑚×𝑛matrices overHwith a rank 𝑟

byH𝑚×𝑛
𝑟

. Let𝑀(𝑛,H) be the ring of 𝑛×𝑛 quaternionmatrices.
For A ∈ H𝑛×𝑚, the symbol A∗ stands for the conjugate
transpose (Hermitian adjoint) matrix of A. The matrix A =

(𝑎
𝑖𝑗
) ∈ H𝑛×𝑛 is Hermitian if A∗ = A.
For A ∈ H𝑚×𝑛, we denote by

R
𝑟
(A) = {y ∈ H𝑚 : y = Ax, x ∈ H𝑛} the column

right space of A;
N
𝑟
(A) = {y ∈ H𝑛 : Ax = 0} the right null space of A;

R
𝑙
(A) = {y ∈ H𝑛 : y = xA, x ∈ H𝑚} the column left

space of A;
N
𝑟
(A) = {y ∈ H𝑚 : xA = 0} the left null space of A.

In the past, researches into the quaternion skew field
had a more theoretical importance, but now a growing

number of investigations give wide practical applications of
quaternions. In particular through their attitude orientation,
the quaternions arise in various fields such as quaternionic
quantum theory [1], fluid mechanics and particle dynamics
[2, 3], computer graphics [4], aircraft orientation [5], robotic
systems [6], and life science [7, 8].

Research on quaternionmatrix equations and generalized
inverses, which are usefulness tools used to solve matrix
equations, has been actively ongoing for more recent years.
We mention only some recent papers. Yuan et al. [9] derived
solutions of the quaternion matrix equation 𝐴𝑋 = 𝐵 and
their applications in color image restoration. Wang et al.
[10] studied extreme ranks of real matrices in solution of
the quaternion matrix equation 𝐴𝑋𝐵 = 𝐶. Yuan et al. [11]
obtained the expressions of least squares Hermitian solution
with minimum norm of the quaternion matrix equation
(𝐴𝑋𝐵, 𝐶𝑋𝐷) = (𝐸, 𝐹). Feng and Cheng [12] gave a clear
description of the solution set to the quaternion matrix
equation𝐴𝑋−𝑋𝐵 = 0. Jiang andWei [13] derived the explicit
solution of the quaternion matrix equation 𝑋 − 𝐴𝑋̃𝐵 = 𝐶.
Caiqin et al. [14] obtained the expressions of the explicit
solutions of quaternionmatrix equations𝑋𝐹−𝐴𝑋 = 𝐵𝑌 and
𝑋𝐹 − 𝐴𝑋̃ = 𝐵𝑌. Yuan and Wang [15] gave the expressions
of the least squares 𝜂-Hermitian solution with the least norm
of the quaternion matrix equation 𝐴𝑋𝐵 + 𝐶𝑋𝐷 = 𝐸. Zhang
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et al. derived [16] the expressions of the minimal norm least
squares solution, the pure imaginary least squares solution,
and the real least squares solution for the quaternion matrix
equation 𝐴𝑋 = 𝐵.

The definitions of the generalized inverse matrices have
been extended to quaternion matrices as follows.

The Moore-Penrose inverse of A ∈ H𝑚×𝑛, denoted by
A†, is the unique matrix X ∈ H𝑛×𝑚 satisfying the following
equations:

AXA = A; (2)

XAX = X; (3)

(AX)
∗
= AX; (4)

(XA)
∗
= XA. (5)

For A ∈ H𝑛×𝑛 with 𝑘 = IndA being the smallest positive
number such that rankA𝑘+1 = rankA𝑘, the Drazin inverse of
A, denoted by A𝐷, is defined to be the unique matrix X that
satisfies (3) and the equations

AX = XA;

A𝑘+1X = A𝑘.
(6)

In particular, when IndA = 1, then X is called the group
inverse of A and is denoted by X = A𝑔. If IndA = 0, then
A is nonsingular, and A𝐷 ≡ A† = A−1.

Cline and Greville [17] extended the Drazin inverse of
squarematrix to rectangularmatrix that has been generalized
to the quaternion algebra as follows.

For A ∈ H𝑚×𝑛 and W ∈ H𝑛×𝑚, the 𝑊-weighted Drazin
inverse of A with respect to W is the unique solution to the
following equations:

(AW)
𝑘+1 XW = (AW)

𝑘
;

XWAWX = X;

AWX = XWA,

(7)

where 𝑘 = max{Ind(AW), Ind(WA)}.
TheDrazin inverse andweightedDrazin inverse have sev-

eral important applications such as applications in singular
differential and difference equations [18], signal processing
[19], Markov chains and statistic problems [20, 21], descriptor
continuous-time systems [22], numerical analysis and Kro-
necker product systems [23], solving singular fuzzy linear
system [24, 25], constrained linear systems [26], and so forth.

Cramer’s rule for the 𝑊-weighted Drazin inverse solu-
tions, in particular, has been derived in [27] for singular
linear equations and in [26] for a class of restricted matrix
equations. Recently, within the framework of the theory of
the column-row determinants, Song [28] has first obtained
a determinantal representation of the 𝑊-weighted Drazin
inverse and Cramer’s rule of a class of restricted matrix
equations over the quaternion algebra. But in obtaining, he
has used auxiliary matrices other than that are given. In [29],
we have obtained new determinantal representations of the

𝑊-weighted Drazin inverse over the quaternion skew field
without any auxiliary matrices.

An important application of determinantal representa-
tions of generalized inverses is the Cramer rule for general-
ized inverse solutions of matrix equations.

But when is there a need for a 𝑊-weighted Drazin
inverse solution? Consider, for example, the following matrix
equation: A

1
X = D. Let A

1
be rectangular and we can

represent it as A
1
= WAW, whereWA and AW are quadratic

and singular. Furthermore, we have the following restrictions:
R
𝑟
(X) ⊂ R

𝑟
((AW)

𝑘
), N
𝑙
(X) ⊃ N

𝑙
((WA)

𝑘
). Then its 𝑊-

weighted Drazin inverse solution is needed.
In the paper we investigate analogs of Cramer’s rule

for 𝑊-weighted Drazin inverse solutions of the following
quaternion matrix equations:

WAWX = D, (8)

XWBW = D, (9)

W
1
AW
1
XW
2
BW
2
= D. (10)

The paper is organized as follows. We start with intro-
ducing of the row-column determinants and determinantal
representations of the Moore-Penrose and Drazin inverses
for a quaternion matrix obtained by them in Section 2.1.
Determinantal representations of the 𝑊-weighted Drazin
inverse and its properties were considered in Section 2.2.
In Section 3.1, we give the background of the problem of
Cramer’s rule for the𝑊-weighted Drazin inverse solution. In
Section 3.2 we obtain explicit representation formulas of the
𝑊-weighted Drazin inverse solutions (analogs of Cramer’s
rule) of the quaternion matrix equation (10). Consequently,
we get both similar and special determinantal representation
formulas of the 𝑊-weighted Drazin inverse solutions of (8)
and (9). In Section 4, we give numerical examples to illustrate
the main result.

2. Preliminaries

2.1. Determinantal Representations of the Moore-Penrose and
Drazin Inverses by the Column and Row Determinants. The
theory of the row-column determinants over the quaternion
skew field has been introduced in [30–32], and later it has
been applied to research generalized inverses and gener-
alized inverse solutions of matrix equations. In particular,
determinantal representations of the Moore-Penrose [33, 34]
and explicit representation formulas for the minimum norm
least squares solutions of some quaternion matrix equations
[35] and determinantal representations of the Drazin [36]
and𝑊-weighted Drazin inverses [29] have been obtained by
the author. Song derived determinantal representation of the
generalized inverse𝐴2

𝑇,𝑆
[37], theBott-Duffin inverse [38], the

Cramer rule for the solutions of restricted matrix equations
[39], the generalized Stein quaternion matrix equation [40],
and so forth.

For A = (𝑎
𝑖𝑗
) ∈ 𝑀(𝑛,H) we define 𝑛 row determinants

and 𝑛 column determinants as follows.
Suppose that 𝑆

𝑛
is the symmetric group on the set 𝐼

𝑛
=

{1, . . . , 𝑛}.
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Definition 1. The 𝑖th row determinant of A = (𝑎
𝑖𝑗
) ∈ 𝑀(𝑛,H)

is defined for all 𝑖 = 1, 𝑛 by putting

rdet
𝑖
A = ∑

𝜎∈𝑆
𝑛

(−1)
𝑛−𝑟

⋅ 𝑎
𝑖𝑖
𝑘
1

𝑎
𝑖
𝑘
1

𝑖
𝑘
1
+1

⋅ ⋅ ⋅ 𝑎
𝑖
𝑘
1
+𝑙
1

𝑖
⋅ ⋅ ⋅ 𝑎
𝑖
𝑘𝑟
𝑖
𝑘𝑟+1

⋅ ⋅ ⋅ 𝑎
𝑖
𝑘𝑟+𝑙𝑟
𝑖
𝑘𝑟

,

𝜎 = (𝑖𝑖
𝑘
1

𝑖
𝑘
1
+1

⋅ ⋅ ⋅ 𝑖
𝑘
1
+𝑙
1

)

⋅ (𝑖
𝑘
2

𝑖
𝑘
2
+1

⋅ ⋅ ⋅ 𝑖
𝑘
2
+𝑙
2

) ⋅ ⋅ ⋅ (𝑖
𝑘
𝑟

𝑖
𝑘
𝑟
+1

⋅ ⋅ ⋅ 𝑖
𝑘
𝑟
+𝑙
𝑟

) ,

(11)

with conditions 𝑖
𝑘
2

< 𝑖
𝑘
3

< ⋅ ⋅ ⋅ < 𝑖
𝑘
𝑟

and 𝑖
𝑘
𝑡

< 𝑖
𝑘
𝑡
+𝑠
for 𝑡 = 2, 𝑟

and 𝑠 = 1, 𝑙
𝑡
.

Definition 2. The 𝑗th column determinant of A = (𝑎
𝑖𝑗
) ∈

𝑀(𝑛,H) is defined for all 𝑗 = 1, 𝑛 by putting

cdet
𝑗
A = ∑

𝜏∈𝑆
𝑛

(−1)
𝑛−𝑟

⋅ 𝑎
𝑗
𝑘𝑟
𝑗
𝑘𝑟+𝑙𝑟

⋅ ⋅ ⋅ 𝑎
𝑗
𝑘𝑟+1
𝑖
𝑘𝑟

⋅ ⋅ ⋅ 𝑎
𝑗𝑗
𝑘
1
+𝑙
1

⋅ ⋅ ⋅ 𝑎
𝑗
𝑘
1
+1
𝑗
𝑘
1

𝑎
𝑗
𝑘
1

𝑗
,

𝜏 = (𝑗
𝑘
𝑟
+𝑙
𝑟

⋅ ⋅ ⋅ 𝑗
𝑘
𝑟
+1
𝑗
𝑘
𝑟

) ⋅ ⋅ ⋅ (𝑗
𝑘
2
+𝑙
2

⋅ ⋅ ⋅ 𝑗
𝑘
2
+1
𝑗
𝑘
2

)

⋅ (𝑗
𝑘
1
+𝑙
1

⋅ ⋅ ⋅ 𝑗
𝑘
1
+1
𝑗
𝑘
1

𝑗) ,

(12)

with conditions 𝑗
𝑘
2

< 𝑗
𝑘
3

< ⋅ ⋅ ⋅ < 𝑗
𝑘
𝑟

and 𝑗
𝑘
𝑡

< 𝑗
𝑘
𝑡
+𝑠
for 𝑡 = 2, 𝑟

and 𝑠 = 1, 𝑙
𝑡
.

Suppose that A𝑖𝑗 denotes the submatrix of A obtained
by deleting both the 𝑖th row and the 𝑗th column. Let a

⋅𝑗
be

the 𝑗th column and let a
𝑖⋅
be the 𝑖th row of A. Suppose that

A
⋅𝑗
(b) denotes thematrix obtained fromA by replacing its 𝑗th

column with the column b and thatA
𝑖⋅
(b) denotes the matrix

obtained from A by replacing its 𝑖th row with the row b.
The following theorem has a key value in the theory of the

column and row determinants.

Theorem 3 (see [30]). If A = (𝑎
𝑖𝑗
) ∈ 𝑀(𝑛,H) is Hermitian,

then rdet
1
A = ⋅ ⋅ ⋅ = rdet

𝑛
A = cdet

1
A = ⋅ ⋅ ⋅ = cdet

𝑛
A ∈ R.

Since all column and row determinants of a Hermitian
matrix over H are equal, we can define the determinant of
a Hermitian matrix A ∈ 𝑀(𝑛,H). By definition, we put
detA fl rdet

𝑖
A = cdet

𝑖
A, for all 𝑖 = 1, 𝑛. The determinant

of a Hermitian matrix has properties similar to a usual
determinant. They are completely explored in [30, 31] by
its row and column determinants. In particular, within the
framework of the theory of the column-row determinants,
we have the determinantal representation of the inverse
matrix over H by analogs of classical adjoint matrix. Further,
we consider determinantal representations of generalized
inverses obtained by the column-row determinants.

We will use the following notations. Let 𝛼 fl
{𝛼
1
, . . . , 𝛼

𝑘
} ⊆ {1, . . . , 𝑚} and 𝛽 fl {𝛽

1
, . . . , 𝛽

𝑘
} ⊆ {1, . . . , 𝑛}

be subsets of the order 1 ≤ 𝑘 ≤ min{𝑚, 𝑛}. By A𝛼
𝛽
denote

the submatrix of A determined by the rows indexed by
𝛼 and the columns indexed by 𝛽. Then A𝛼

𝛼
denotes the

principal submatrix determined by the rows and columns
indexed by 𝛼. If A ∈ 𝑀(𝑛,H) is Hermitian, then by
|A𝛼
𝛼
| denote the corresponding principal minor of detA.

For 1 ≤ 𝑘 ≤ 𝑛, the collection of strictly increasing
sequences of 𝑘 integers chosen from {1, . . . , 𝑛} is denoted by
𝐿
𝑘,𝑛

fl {𝛼 : 𝛼 = (𝛼
1
, . . . , 𝛼

𝑘
), 1 ≤ 𝛼

1
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑘
≤ 𝑛}. For fixed

𝑖 ∈ 𝛼 and 𝑗 ∈ 𝛽, let 𝐼
𝑟,𝑚

{𝑖} fl {𝛼 : 𝛼 ∈ 𝐿
𝑟,𝑚

, 𝑖 ∈ 𝛼}, 𝐽
𝑟,𝑛
{𝑗} fl

{𝛽 : 𝛽 ∈ 𝐿
𝑟,𝑛
, 𝑗 ∈ 𝛽}.

Denote by a∗
⋅𝑗
and a∗
𝑖⋅
the 𝑗th column and the 𝑖th row ofA∗

and by a(𝑚)
⋅𝑗

and a(𝑚)
𝑖⋅

the 𝑗th column and the 𝑖th row of A𝑚,
respectively.

The following theorem gives determinantal representa-
tions of the Moore-Penrose inverse over the quaternion skew
field H.

Theorem 4 (see [32]). If A ∈ H𝑚×𝑛
𝑟

, then the Moore-
Penrose inverse A+ = (𝑎

+

𝑖𝑗
) ∈ H𝑛×𝑚 possesses the following

determinantal representations:

𝑎
+

𝑖𝑗
=

∑
𝛽∈𝐽
𝑟,𝑛
{𝑖}
cdet
𝑖
((A∗A)

⋅𝑖
(a∗
⋅𝑗
))
𝛽

𝛽

∑
𝛽∈𝐽
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
(A∗A)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨

(13)

or

𝑎
+

𝑖𝑗
=

∑
𝛼∈𝐼
𝑟,𝑚
{𝑗}

rdet
𝑗
((AA∗)

𝑗⋅
(a∗
𝑖⋅
))
𝛼

𝛼

∑
𝛼∈𝐼
𝑟,𝑚

󵄨󵄨󵄨󵄨(AA∗)
𝛼

𝛼

󵄨󵄨󵄨󵄨

(14)

for all 𝑖 = 1, 𝑛 and 𝑗 = 1,𝑚.

Proposition 5 (see [20]). If Ind(A) = 𝑘, then A𝐷 =

A𝑘(A2𝑘+1)+A𝑘.

Denote by â
⋅𝑠
and ǎ

𝑡⋅
the 𝑠th column of (A2𝑘+1)∗A𝑘 š

Â = (𝑎̂
𝑖𝑗
) ∈ H𝑛×𝑛 and the 𝑡th row of A𝑘(A2𝑘+1)∗ š Ǎ =

(𝑎̌
𝑖𝑗
) ∈ H𝑛×𝑛, respectively, for all 𝑠, 𝑡 = 1, 𝑛. Using the

determinantal representations of the Moore-Penrose inverse
(13) and (14) and Proposition 5, the following determinantal
representations of the Drazin inverse for an arbitrary square
matrix over H have been obtained in [33].

Theorem 6 (see [33]). If A ∈ 𝑀(𝑛,H) with IndA = 𝑘 and
rankA𝑘+1 = rankA𝑘 = 𝑟, then theDrazin inverseA𝐷 possesses
the following determinantal representations:

𝑎
𝐷

𝑖𝑗

=

∑
𝑛

𝑡=1
𝑎
(𝑘)

𝑖𝑡
∑
𝛽∈𝐽
𝑟,𝑛
{𝑡}
cdet
𝑡
((A2𝑘+1)

∗

(A2𝑘+1)
⋅𝑡
(â
⋅𝑗
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
(A2𝑘+1)∗ (A2𝑘+1)𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑎
𝐷

𝑖𝑗

=

∑
𝑛

𝑠=1
(∑
𝛼∈𝐼
𝑟,𝑛
{𝑠}
rdet
𝑠
((A2𝑘+1 (A2𝑘+1)

∗

)
⋅𝑠

(ǎ
𝑖⋅
))

𝛼

𝛼

) 𝑎
(𝑘)

𝑠𝑗

∑
𝛼∈𝐼
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
(A2𝑘+1 (A2𝑘+1)∗)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

.

(15)

In the special case, when A ∈ 𝑀(𝑛,H) is Hermitian, we can
obtain simpler determinantal representations of the Drazin
inverse.
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Theorem 7 (see [33]). If A ∈ 𝑀(𝑛,H) is Hermitian with
IndA = 𝑘 and rankA𝑘+1 = rankA𝑘 = 𝑟, then the
Drazin inverse A𝐷 = (𝑎

𝐷

𝑖𝑗
) ∈ H𝑛×𝑛 possesses the following

determinantal representations:

𝑎
𝐷

𝑖𝑗
=

∑
𝛽∈𝐽
𝑟,𝑛
{𝑖}
cdet
𝑖
((A𝑘+1)

⋅𝑖
(a𝑘
⋅𝑗
))
𝛽

𝛽

∑
𝛽∈𝐽
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
(A𝑘+1)𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨

(16)

or

𝑎
𝐷

𝑖𝑗
=

∑
𝛼∈𝐼
𝑟,𝑛
{𝑗}

rdet
𝑗
((A𝑘+1)

𝑗⋅
(a(𝑘)
𝑖⋅

))

𝛼

𝛼

∑
𝛼∈𝐼
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨
(A𝑘+1)𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨

. (17)

2.2. Determinantal Representations of the𝑊-Weighted Drazin
Inverse. We introduce some mathematical background from
the theory of the𝑊-weighted Drazin inverse [27, 41, 42] that
can be generalized to H.

Lemma 8. Let A ∈ H𝑚×𝑛 and W ∈ H𝑛×𝑚 with 𝑘 =

max{Ind(AW), Ind(WA)}. Then one has

(a) A
𝑑,W = A((WA)

𝐷
)
2
= ((AW)

𝐷
)
2A;

(b) A
𝑑,WW = (AW)

𝐷
;WA
𝑑,W = (WA)

𝐷;

(c) A
𝑑,W = {(AW)

𝑘
[(AW)

2𝑘+1
]
+
(AW)

𝑘
}W+; A

𝑑,W =

W+{(WA)
𝑘
[(WA)

2𝑘+1
]
+
(WA)

𝑘
};

(d) WAWA
𝑑,W = P

R
𝑟
((WA)𝑘),N

𝑟
((WA)𝑘); A𝑑,WWAW =

P
R
𝑙
((AW)𝑘),N

𝑙
((AW)𝑘),

where P
R
𝑟
((WA)𝑘),N

𝑟
((WA)𝑘) is the projector on R

𝑟
((WA)

𝑘
)

along N
𝑟
((WA)

𝑘
) and 𝑃

R
𝑙
((AW)𝑘),N

𝑙
((AW)𝑘) is the projector on

R
𝑙
((AW)

𝑘
) alongN

𝑙
((AW)

𝑘
).

In particular, the point (a) of Lemma 8 due to Cline and
Greville [17] is generalized [28] to H. Using this proposition,
we have obtained [29] the following determinantal represen-
tations of𝑊-weighted Drazin inverse.

Denote WA š U = (𝑢
𝑖𝑗
) ∈ H𝑛×𝑛 and AW š V = (V

𝑖𝑗
) ∈

H𝑚×𝑚.
Due to Theorem 6, we denote an entry of the Drazin

inverse U𝐷 by

𝑢
𝐷,1

𝑖𝑗

=

∑
𝑛

𝑡=1
𝑢
(𝑘)

𝑖𝑡
∑
𝛽∈𝐽
𝑟,𝑛
{𝑡}
cdet
𝑡
((U2𝑘+1)

∗

(U2𝑘+1)
⋅𝑡
(û
⋅𝑗
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
(U2𝑘+1)∗ (U2𝑘+1)𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨

(18)

or

𝑢
𝐷,2

𝑖𝑗

=

∑
𝑛

𝑠=1
(∑
𝛼∈𝐼
𝑟,𝑛
{𝑠}
rdet
𝑠
((U2𝑘+1 (U2𝑘+1)

∗

)
⋅𝑠

(ǔ
𝑖⋅
))

𝛼

𝛼

) 𝑢
(𝑘)

𝑠𝑗

∑
𝛼∈𝐼
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
(U2𝑘+1 (U2𝑘+1)∗)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

,

(19)

where û
⋅𝑠
and ǔ

𝑡⋅
are the 𝑠th column of (U2𝑘+1)∗U𝑘 š Û =

(𝑢̂
𝑖𝑗
) ∈ H𝑛×𝑛 and the 𝑡th row of U𝑘(U2𝑘+1)∗ š Ǔ = (𝑢̌

𝑖𝑗
) ∈

H𝑛×𝑛, respectively, for all 𝑠, 𝑡 = 1, 𝑛, and 𝑟 = rankU𝑘+1 =

rankU𝑘.
Then we have the following determinantal representa-

tions of A
𝑑,W = (𝑎

𝑑,W
𝑖𝑗

) ∈ H𝑚×𝑛:

𝑎
𝑑,W
𝑖𝑗

=

𝑛

∑

𝑞=1

𝑎
𝑖𝑞
(𝑢
𝐷

𝑞𝑗
)
(2)

, (20)

where

(𝑢
𝐷

𝑞𝑗
)
(2)

=

𝑛

∑

𝑝=1

𝑢
𝐷,𝑙

𝑞𝑝
𝑢
𝐷,𝑓

𝑝𝑗 (21)

for all 𝑙, 𝑓 = 1, 2 and 𝑢
𝐷,1

𝑖𝑗
from (18) and 𝑢

𝐷,2

𝑖𝑗
from (19).

Similarly using V = (V
𝑖𝑗
) ∈ H𝑚×𝑚,

𝑎
𝑑,W
𝑖𝑗

=

𝑚

∑

𝑞=1

(V𝐷
𝑖𝑞
)
(2)

𝑎
𝑞𝑗
, (22)

where the first factor is one of the following four possible
equations:

(V𝐷
𝑖𝑞
)
(2)

=

𝑚

∑

𝑝=1

V𝐷,𝑙
𝑖𝑝
V𝐷,𝑓
𝑝𝑞 (23)

for all 𝑙, 𝑓 = 1, 2, and an entry of the Drazin inverse V𝐷 is
denoted by

V𝐷,1
𝑖𝑗

=

∑
𝑚

𝑡=1
V(𝑘)
𝑖𝑡

∑
𝛽∈𝐽
𝑟,𝑚
{𝑡}
cdet
𝑡
((V2𝑘+1)

∗

(V2𝑘+1)
⋅𝑡
(k̂
⋅𝑗
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑟,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨
(V2𝑘+1)∗ (V2𝑘+1)𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨

(24)

or

V𝐷,2
𝑖𝑗

=

∑
𝑚

𝑠=1
(∑
𝛼∈𝐼
𝑟,𝑚
{𝑠}
rdet
𝑠
((V2𝑘+1 (V2𝑘+1)

∗

)
⋅𝑠

(ǩ
𝑖⋅
))

𝛼

𝛼

) V(𝑘)
𝑠𝑗

∑
𝛼∈𝐼
𝑟,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨
(V2𝑘+1 (V2𝑘+1)∗)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

,

(25)

where k̂
⋅𝑠
and ǩ

𝑡⋅
are the 𝑠th column of (V2𝑘+1)∗V𝑘 š V̂ =

(V̂
𝑖𝑗
) ∈ H𝑚×𝑚 and the 𝑡th row of V𝑘(V2𝑘+1)∗ š V̌ = (V̌

𝑖𝑗
) ∈

H𝑚×𝑚, respectively, for all 𝑠, 𝑡 = 1,𝑚; 𝑟 = rankV𝑘+1 =

rankV𝑘.
The point (c) of Lemma 8 due to [23] has been generalized

to H in [33]. Using this proposition, we have obtained
the following two determinantal representations of the 𝑊-
weighted Drazin inverse.

Theorem 9 (see [29]). Let A ∈ H𝑚×𝑛 and W ∈ H𝑛×𝑚
𝑟
1

with
𝑘 = Ind(AW) and 𝑟 = rank(AW)

𝑘+1
= rank(AW)

𝑘. Then the
𝑊-weightedDrazin inverse ofAwith respect toW possesses the
following determinantal representations:
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𝑎
𝑑,W
𝑖𝑗

=

∑
𝑚

𝑡=1
∑
𝛼∈𝐼
𝑟,𝑚
{𝑡}
rdet
𝑡
((V2𝑘+1 (V2𝑘+1)

∗

)
𝑡⋅

(ǩ
𝑖⋅
))

𝛼

𝛼

∑
𝛼∈𝐼
𝑟
1
,𝑛
{𝑗}

rdet
𝑗
((WW∗)

𝑗⋅
(w̌
𝑡⋅
))
𝛼

𝛼

∑
𝛼∈𝐼
𝑟,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨
(V2𝑘+1 (V2𝑘+1)∗)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨
∑
𝛼∈𝐼
𝑟
1
,𝑛

󵄨󵄨󵄨󵄨(WW∗)𝛼
𝛼

󵄨󵄨󵄨󵄨

, (26)

𝑎
𝑑,W
𝑖𝑗

=

∑
𝑛

𝑡=1
∑
𝛽∈𝐽
𝑟
1
,𝑚
{𝑖}
cdet
𝑖
((W∗W)

⋅𝑡
(ŵ
⋅𝑡
))
𝛽

𝛽
∑
𝛽∈𝐽
𝑟,𝑛
{𝑡}
cdet
𝑡
(((U2𝑘+1)

∗

U2𝑘+1)
⋅𝑡

(û
⋅𝑗
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑟
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨
(W∗W)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨
∑
𝛽∈𝐽
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((U2𝑘+1)∗U2𝑘+1)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (27)

where V̌ = V𝑘(V2𝑘+1)∗, W̌ = V𝑘W∗ and Û = (U2𝑘+1)∗U𝑘,
Ŵ = W∗U𝑘.

In the special cases, when AW ∈ H𝑚×𝑚 and WA ∈

H𝑛×𝑛 are Hermitian, we can obtain simpler determinantal
representations of the𝑊-weighted Drazin inverse.

Theorem 10 (see [29]). If A ∈ H𝑚×𝑛, W ∈ H𝑛×𝑚, and AW ∈

H𝑚×𝑚 are Hermitian with 𝑘 = max{Ind(AW), Ind(WA)} and
rank(AW)

𝑘+1
= rank(AW)

𝑘
= 𝑟, then the𝑊-weighted Drazin

inverse A
𝑑,𝑊

= (𝑎
𝑑,𝑊

𝑖𝑗
) ∈ H𝑚×𝑛 with respect toW possesses the

following determinantal representations:

𝑎
𝑑,𝑊

𝑖𝑗
=

∑
𝛽∈𝐽
𝑟,𝑚
{𝑖}
cdet
𝑖
((AW)

𝑘+2

⋅𝑖
(k
⋅𝑗
))
𝛽

𝛽

∑
𝛽∈𝐽
𝑟,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((AW)

𝑘+2
)
𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (28)

where k
⋅𝑗
is the 𝑗th column of V = (AW)

𝑘A for all 𝑗 = 1,𝑚.

Theorem 11 (see [29]). If A ∈ H𝑚×𝑛, W ∈ H𝑛×𝑚, and WA ∈

H𝑛×𝑛 are Hermitian with 𝑘 = max{Ind(AW), Ind(WA)} and
rank(WA)

𝑘+1
= rank(WA)

𝑘
= 𝑟, then the𝑊-weighted Drazin

inverse A
𝑑,𝑊

= (𝑎
𝑑,𝑊

𝑖𝑗
) ∈ H𝑚×𝑛 with respect toW possesses the

following determinantal representations:

𝑎
𝑑,𝑊

𝑖𝑗
=

∑
𝛼∈𝐼
𝑟,𝑛
{𝑗}

rdet
𝑗
((WA)

𝑘+2

𝑗⋅
(u(𝑘)
𝑖⋅

))
𝛼

𝛼

∑
𝛼∈𝐼
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
((WA)

𝑘+2
)
𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

, (29)

where u
𝑖⋅
is the 𝑖th row ofU = A(WA)

𝑘 for all 𝑖 = 1, 𝑛.

3. Cramer’s Rule for the 𝑊-Weighted Drazin
Inverse Solution

3.1. Background of the Problem. In [27] Wei has established
Cramer’s rule for solving of a general restricted equation:

WAWx = b, x ∈ R [(AW)
𝑘
1] , (30)

where A ∈ C𝑚×𝑛 and W ∈ C𝑛×𝑚 with Ind(AW) =

𝑘
1
, Ind(WA) = 𝑘

2
and rank(AW)

𝑘
1 = 𝑟
1
, rank(WA)

𝑘
2 = 𝑟
2
.

He proved if b ∈ R[(W)
𝑘
2A] and 𝑟

1
= 𝑟
2
, then (30) has a

unique solution, x = A
𝑑,𝑊

b, which can be presented by the
following Cramer rule:

𝑥
𝑗
=

det(WAW(𝑗→b) U
1

V
1(𝑗→0) 0

)

det (WAW U
1

V
1
0
)

, (31)

where U
1

∈ C
𝑛×𝑛−𝑟

2

𝑛−𝑟
2

and V∗
1

∈ C
𝑚×𝑚−𝑟

1

𝑚−𝑟
1

are matrices
whose columns form bases for N((WA)

𝑘
2) and N((AW)

𝑘
∗

1 ),
respectively.

Recently, within the framework of a theory of the col-
umn and row determinants, Song [28] has considered the
characterization of the 𝑊-weighted Drazin inverse over the
quaternion skew andpresented aCramer rule of the restricted
matrix equation:

W
1
AW
1
XW
2
BW
2
= D, (32)

R
𝑟
(X) ⊂ R

𝑟
((AW

1
)
𝑘
1

) ,

N
𝑟
(X) ⊃ N

𝑟
((W
2
B)𝑘2) ,

R
𝑙
(X) ⊂ R

𝑙
((BW

2
)
𝑘
2

) ,

N
𝑙
(X) ⊃ N

𝑙
((W
1
A)
𝑘
1

) ,

(33)

where A ∈ H𝑚×𝑛, W
1

∈ H𝑛×𝑚, B ∈ H𝑝×𝑞, W
2

∈ H𝑞×𝑝,
and D ∈ H𝑛×𝑝 with 𝑘

1
= max{Ind(AW

1
), Ind(W

1
A)},

𝑘
2

= max{Ind(BW
2
), Ind(W

2
B)}, and rank(AW

1
)
𝑘
1 = 𝑠

1
,

rank(BW
2
)
𝑘
2 = 𝑠
2
.

He proved that if

R
𝑟
(D) ∈ R

𝑟
((W
1
A)
𝑘
1

, (W
2
B)𝑘2) ,

R
𝑙
(D) ∈ R

𝑙
((AW

1
)
𝑘
1

, (BW
2
)
𝑘
2

)

(34)

and there exist auxiliary matrices of full column rank, L
1
∈

H
𝑛×𝑛−𝑠

1

𝑛−𝑠
1

, M∗
1

∈ H
𝑚×𝑚−𝑠

1

𝑚−𝑠
1

, L
2

∈ H
𝑞×𝑞−𝑠

2

𝑞−𝑠
2

, and M∗
2

∈ H
𝑝×𝑝−𝑠

2

𝑝−𝑠
2

with additional terms of their ranges and null spaces, then
the restricted matrix equation (32) has a unique solution:

X = A
𝑑,W
1

DB
𝑑,W
2

. (35)

Using auxiliary matrices, L
1
,M
1
, L
2
, andM

2
, Song presented

its Cramer’s rule by analogy to (31).
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In this paper we have avoided such approach and have
obtained explicit formulas for determinantal representations
of the 𝑊-weighted Drazin inverse solutions of matrix equa-
tions by using only given matrices.

3.2. Cramer’s Rules for the 𝑊-Weighted Drazin Inverse Solu-
tions of Some Matrix Equations. Consider the matrix equa-
tion (32) with constraints (33). Denote ADB š D̃ = (𝑑̃

𝑙𝑓
) ∈

H𝑚×𝑞 and VDU š D = (𝑑
𝑙𝑓
) ∈ H𝑚×𝑞, where V fl (AW

1
)
𝑘
1A

and U fl B(W
2
B)𝑘2 .

Theorem 12. Suppose that D ∈ H𝑛×𝑝, A ∈ H𝑚×𝑛, and
W
1

∈ H𝑛×𝑚
𝑟
1

with 𝑘
1

= max{Ind(AW
1
), Ind(W

1
A)}, where

rank(AW
1
)
𝑘
1 = 𝑠

1
, and B ∈ H𝑝×𝑞, W

2
∈ H𝑞×𝑝
𝑟
2

with 𝑘
2

=

max{Ind(BW
2
), Ind(W

2
B)}, rank(BW

2
)
𝑘
2 = 𝑠
2
. If R

𝑟
(D) ∈

R
𝑟
((W
1
A)
𝑘
1 , (W
2
B)𝑘2), R

𝑙
(D) ∈ R

𝑙
((AW

1
)
𝑘
1 , (BW

2
)
𝑘
2),

then the restricted matrix equation (32) has a unique solution:

X = A
𝑑,W
1

DB
𝑑,W
2

, (36)

which possesses the following determinantal representations for
all 𝑖 = 1,𝑚 and 𝑗 = 1, 𝑞.

(i) Consider

𝑥
𝑖𝑗
=

𝑚

∑

𝑙=1

𝑞

∑

𝑓=1

(V𝐷
𝑖𝑙
)
(2)

𝑑̃
𝑙𝑓
(𝑢
𝐷

𝑓𝑗
)
(2)

, (37)

where (V𝐷
𝑖𝑙
) = V𝐷 is the Drazin inverse ofV = AW

1
and (V𝐷

𝑖𝑙
)
(2)

can be obtained by (23) and (𝑢
𝐷

𝑓𝑗
) = U𝐷 is the Drazin inverse

of U = W
2
B and (𝑢

𝐷

𝑞𝑗
)
(2) can be obtained by (21).

(ii) If AW
1
∈ H𝑚×𝑚 andW

2
B ∈ H𝑞×𝑞 are Hermitian, then

𝑥
𝑖𝑗

=

∑
𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}
cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(dB
⋅𝑗
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑠
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝛼∈𝐼
𝑠
2
,𝑞

󵄨󵄨󵄨󵄨󵄨󵄨
((W
2
B)𝑘2+2)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

(38)

or
𝑥
𝑖𝑗

=

∑
𝛼∈𝐼
𝑠
2
,𝑞
{𝑗}

rdet
𝑗
((W
2
B)𝑘2+2
𝑗⋅

(dA
𝑖⋅
))

𝛼

𝛼

∑
𝛽∈𝐽
𝑠
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝛼∈𝐼
𝑠
2
,𝑞

󵄨󵄨󵄨󵄨󵄨󵄨
((W
2
B)𝑘2+2)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

,

(39)

where

dB
⋅𝑗
= ( ∑

𝛼∈𝐼
𝑠
2
,𝑞
{𝑗}

rdet
𝑗
((W
2
B)𝑘2+2
𝑗⋅

(d
𝑡⋅
))

𝛼

𝛼

) ∈ H
𝑛×1

,

𝑡 = 1, 𝑛

(40)

dA
𝑖⋅
= ( ∑

𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}

cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(d
⋅𝑙
))

𝛽

𝛽

) ∈ H
1×𝑞

,

𝑙 = 1, 𝑞

(41)

are the column vector and the row vector, respectively. d
𝑖⋅
and

d
⋅𝑗
are the 𝑖th row and the 𝑗th column of D for all 𝑖 = 1, 𝑛 and

𝑗 = 1, 𝑝.

Proof. The existence and uniqueness of solution (36) can be
proved similarly as in [28], Theorem 5.2.

(i) To derive a Cramer rule (37) we use the point (a) from
Lemma 8. Then we obtain

X = ((AW
1
)
𝐷

)
2

ADB ((W
2
B)𝐷)
2

. (42)

Denote ADB š D̃ = (𝑑̃
𝑙𝑓
) ∈ H𝑚×𝑞, V fl AW

1
, and U fl

W
2
B. Then (42) will be written componentwise as follows:

𝑥
𝑖𝑗
=

𝑝

∑

𝑠=1

𝑛

∑

𝑡=1

(𝑎
𝑑,𝑊
1

𝑖𝑡
) 𝑑
𝑡𝑠
(𝑏
𝑑,𝑊
2

𝑠𝑗
)

=

𝑝

∑

𝑠=1

𝑛

∑

𝑡=1

(

𝑚

∑

𝑙=1

(V𝐷
𝑖𝑙
)
(2)

𝑎
𝑙𝑡
)𝑑
𝑡𝑠
(

𝑞

∑

𝑓=1

𝑏
𝑠𝑓
(𝑢
𝐷

𝑓𝑗
)
(2)

) .

(43)

By changing the order of summation, from here it follows
(37).

(ii) If A ∈ H𝑚×𝑛
𝑟
1

and B ∈ H𝑝×𝑞
𝑟
2

and AW
1
∈ H𝑚×𝑚 and

W
2
B ∈ H𝑞×𝑞 are Hermitian, then by Theorems 10 and 11 the

𝑊-weighted Drazin inverses A
𝑑,𝑊
1

= (𝑎
𝑑,𝑊
1

𝑖𝑗
) ∈ H𝑚×𝑛 and

B
𝑑,𝑊
2

= (𝑏
𝑑,𝑊
2

𝑖𝑗
) ∈ H𝑞×𝑝 possess the following determinantal

representations, respectively:

𝑎
𝑑,𝑊
1

𝑖𝑗
=

∑
𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}
cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(k
⋅𝑗
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑟,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (44)

where k
⋅𝑗
is the 𝑗th column of V = (AW1)

𝑘
1A for all 𝑗 = 1,𝑚

and

𝑏
𝑑,𝑊
2

𝑖𝑗
=

∑
𝛼∈𝐼
𝑠
2
,𝑞
{𝑗}

rdet
𝑗
((W
2
B)𝑘2+2
𝑗⋅

(u
𝑖⋅
))

𝛼

𝛼

∑
𝛼∈𝐼
𝑠
2
,𝑞

󵄨󵄨󵄨󵄨󵄨󵄨
((W
2
B)𝑘2+2)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

, (45)

where u
𝑖⋅
is the 𝑖th row of U = B(W2B)

𝑘
2 for all 𝑖 = 1, 𝑝.

By componentwise writing of (36) we obtain

𝑥
𝑖𝑗
=

𝑝

∑

𝑠=1

(

𝑛

∑

𝑡=1

𝑎
𝑑,𝑊
1

𝑖𝑡
𝑑
𝑡𝑠
) ⋅ 𝑏
𝑑,𝑊
2

𝑠𝑗
. (46)
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Denote by d̂
⋅𝑠
the 𝑠th column of VD = (AW

1
)
𝑘
1AD š

D̂ = (𝑑̂
𝑖𝑗
) ∈ H𝑚×𝑝 for all 𝑠 = 1, 𝑝. It follows from ∑

𝑡
v
⋅𝑡
𝑑
𝑡𝑠

=

d̂
⋅𝑠
that

𝑛

∑

𝑡=1

𝑎
𝑑,𝑊
1

𝑖𝑡
𝑑
𝑡𝑠

=

𝑛

∑

𝑡=1

∑
𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}
cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(k
⋅𝑡
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑠
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ 𝑑
𝑡𝑠

=

∑
𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}

∑
𝑛

𝑡=1
cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(k
⋅𝑡
))

𝛽

𝛽

⋅ 𝑑
𝑡𝑠

∑
𝛽∈𝐽
𝑠
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

∑
𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}
cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(d̂
⋅𝑠
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑠
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(47)

Suppose that e
𝑠⋅
and e
⋅𝑠
are, respectively, the unit row vector

and the unit column vector whose components are 0, except
the 𝑠th components, which are 1. Substituting (47) and (45)
into (46), we obtain

𝑥
𝑖𝑗
=

𝑝

∑

𝑠=1

∑
𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}
cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(d̂
⋅𝑠
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑠
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝛼∈𝐼
𝑠
2
,𝑞
{𝑗}

rdet
𝑗
((W
2
B)𝑘2+2
𝑗⋅

(u
𝑠⋅
))

𝛼

𝛼

∑
𝛼∈𝐼
𝑠
2
,𝑞

󵄨󵄨󵄨󵄨󵄨󵄨
((W
2
B)𝑘2+2)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

. (48)

Since

d̂
⋅𝑠
=

𝑛

∑

𝑡=1

e
⋅𝑡
𝑑
𝑡𝑠
,

u
𝑠⋅
=

𝑞

∑

𝑙=1

𝑢
𝑠𝑙
e
𝑙⋅
,

𝑝

∑

𝑠=1

𝑑
𝑡𝑠
𝑢
𝑠𝑙
= 𝑑
𝑡𝑙
,

(49)

then we have

𝑥
𝑖𝑗
=

∑
𝑝

𝑠=1
∑
𝑛

𝑡=1
∑
𝑞

𝑙=1
∑
𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}
cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(e
⋅𝑡
))

𝛽

𝛽

𝑑
𝑡𝑠
𝑢s𝑙∑𝛼∈𝐼

𝑠
2
,𝑞
{𝑗}

rdet
𝑗
((W
2
B)𝑘2+2
𝑗⋅

(e
𝑙⋅
))

𝛼

𝛼

∑
𝛽∈𝐽
𝑠
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝛼∈𝐼
𝑠
2
,𝑞

󵄨󵄨󵄨󵄨󵄨󵄨
((W
2
B)𝑘2+2)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

=

∑
𝑛

𝑡=1
∑
𝑞

𝑙=1
∑
𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}
cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(e
⋅𝑡
))

𝛽

𝛽

𝑑
𝑡𝑙
∑
𝛼∈𝐼
𝑠
2
,𝑞
{𝑗}

rdet
𝑗
((W
2
B)𝑘2+2
𝑗⋅

(e
𝑙⋅
))

𝛼

𝛼

∑
𝛽∈𝐽
𝑠
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝛼∈𝐼
𝑠
2
,𝑞

󵄨󵄨󵄨󵄨󵄨󵄨
((W
2
B)𝑘2+2)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

.

(50)

Denote by

𝑑
A
𝑖𝑙
fl ∑

𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}

cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(d
⋅𝑙
))

𝛽

𝛽

=

𝑛

∑

𝑡=1

∑

𝛽∈𝐽s
1
,𝑚
{𝑖}

cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(e
⋅𝑡
))

𝛽

𝛽

𝑑
𝑡𝑙

(51)

the 𝑙th component of a row vector dA
𝑖⋅

= (𝑑
A
𝑖1
, . . . , 𝑑

A
𝑖𝑞
) for all

𝑙 = 1, 𝑞. Substituting it into (50), we have

𝑥
𝑖𝑗

=

∑
𝑞

𝑙=1
𝑑
A
𝑖𝑙
∑
𝛼∈𝐼
𝑠
2
,𝑞
{𝑗}

rdet
𝑗
((W
2
B)𝑘2+2
𝑗⋅

(e
𝑙⋅
))

𝛼

𝛼

∑
𝛽∈𝐽
𝑠
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((AW
1
)
𝑘
1
+2

)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝛼∈𝐼
𝑠
2
,𝑞

󵄨󵄨󵄨󵄨󵄨󵄨
((W
2
B)𝑘2+2)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

.

(52)

Since ∑𝑞
𝑙=1

𝑑
A
𝑖𝑙
e
𝑙⋅
= dA
𝑖⋅
, then it follows (39).
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If we denote by

𝑑
B
𝑡𝑗
fl
𝑞

∑

𝑙=1

𝑑
𝑡𝑙

∑

𝛼∈𝐼
𝑠
2
,𝑞
{𝑗}

rdet
𝑗
((W
2
B)𝑘2+2
𝑗⋅

(e
𝑙⋅
))

𝛼

𝛼

= ∑

𝛼∈𝐼
𝑠
2
,𝑞
{𝑗}

rdet
𝑗
((W
2
B)𝑘2+2
𝑗⋅

(d
𝑡⋅
))

𝛼

𝛼

(53)

the 𝑡th component of a column vector dB
⋅𝑗

= (𝑑
B
1𝑗
, . . . , 𝑑

B
𝑛𝑗
)
𝑇

for all 𝑡 = 1, 𝑛 and substituting it into (50), we obtain

𝑥
𝑖𝑗
=

∑
𝑛

𝑡=1
∑
𝛽∈𝐽
𝑠
1
,𝑚
{𝑖}
cdet
𝑖
((AW

1
)
𝑘
1
+2

⋅𝑖
(e
⋅𝑡
))

𝛽

𝛽

𝑑
B
𝑡𝑗

∑
𝛽∈𝐽
𝑟
1
,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
(A∗A)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨
∑
𝛼∈𝐼
𝑟
2
,𝑝

󵄨󵄨󵄨󵄨(BB∗)
𝛼

𝛼

󵄨󵄨󵄨󵄨

. (54)

Since ∑𝑛
𝑡=1

e
⋅𝑡
𝑑
B
𝑡𝑗
= dB
⋅𝑗
, then it follows (38).

Remark 13. To establish a Cramer rule of (32) we will not
use the determinantal representations (28) and (28) for (36)
because the corresponding determinantal representations of

its solution will be too cumbersome. But they are suitable in
the following corollaries.

Corollary 14. Suppose that the following restricted matrix
equation is given:

WAWX = D, (55)

R
𝑟
(X) ⊂ R

𝑟
((AW)

𝑘
) ,

N
𝑙
(X) ⊃ N

𝑙
((WA)

𝑘
) ,

(56)

where A ∈ H𝑚×𝑛 and W ∈ H𝑛×𝑚
𝑟
1

with 𝑘 = max{Ind(AW),
Ind(WA)} and D ∈ H𝑛×𝑝. If R

𝑟
(D) ⊂ R

𝑟
((AW)

𝑘
) and

N
𝑙
(D) ⊃ N

𝑙
((WA)

𝑘
), then the restrictedmatrix equation (55)-

(56) has a unique solution:

X = A
𝑑,𝑊

D, (57)

which possess the following determinantal representations for
all 𝑖 = 1,𝑚 and 𝑗 = 1, 𝑝.

(i) Consider

𝑥
𝑖𝑗
=

∑
𝑛

𝑡=1
∑
𝛽∈𝐽
𝑟
1
,𝑚
{𝑖}
cdet
𝑖
((W∗W)

⋅𝑡
(ŵ
⋅𝑡
))
𝛽

𝛽
∑
𝛽∈𝐽
𝑟,𝑛
{𝑡}
cdet
𝑡
(((U2𝑘+1)

∗

U2𝑘+1)
⋅𝑡

(d̂
⋅𝑗
))

𝛽

𝛽

∑
𝛽∈𝐽
𝑟
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨
(W∗W)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨
∑
𝛽∈𝐽
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((U2𝑘+1)∗U2𝑘+1)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (58)

where U = WA, d̂
⋅𝑗
is the 𝑗th column of D̂ = ÛD =

(U2𝑘+1)∗U𝑘D, Ŵ = W∗U𝑘, and 𝑟 = rank(WA)
𝑘+1

=

rank(WA)
𝑘.

(ii) Consider

𝑥
𝑖𝑗
=

𝑚

∑

𝑞=1

(V𝐷
𝑖𝑞
)
(2)

𝑟
𝑞𝑗
, (59)

where (V𝐷
𝑖𝑞
)
(2) can be obtained by (23) and AD = R = (𝑟

𝑞𝑗
) ∈

H𝑚×𝑝.

(iii) If AW ∈ H𝑚×𝑚 is Hermitian, then

𝑥
𝑖𝑗
=

∑
𝛽∈𝐽
𝑟,𝑚
{𝑖}
cdet
𝑖
((AW)

𝑘+2

⋅𝑖
(f
⋅𝑗
))
𝛽

𝛽

∑
𝛽∈𝐽
𝑟,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((AW)

𝑘+2
)
𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (60)

where f
⋅𝑗
is the 𝑗th column of F = VD = (AW)

𝑘AD.

Proof. To derive a Cramer rule (58), we use the determinantal
representation (27) for A

𝑑,𝑊
. Then

𝑥
𝑖𝑗
=

𝑝

∑

𝑠=1

𝑎
𝑑,W
𝑖𝑠

𝑑
𝑠𝑗
=

𝑝

∑

𝑠=1

[
[

[

∑
𝑛

𝑡=1
∑
𝛽∈𝐽
𝑟
1
,𝑚
{𝑖}
cdet
𝑖
(W∗W)

⋅𝑡
(ŵ
⋅𝑡
)
𝛽

𝛽
∑
𝛽∈𝐽
𝑟,𝑛
{𝑡}
cdet
𝑡
((U2𝑘+1)

∗

U2𝑘+1)
⋅𝑡

(û
⋅𝑠
)
𝛽

𝛽

∑
𝛽∈𝐽
𝑟
1
,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨
(W∗W)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨
∑
𝛽∈𝐽
𝑟,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((U2𝑘+1)∗U2𝑘+1)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]
]

]

𝑑
𝑠𝑗
. (61)

Denote D̂ = ÛD = (U2𝑘+1)∗U𝑘D, where D̂ = (𝑑̂
𝑠𝑗
) ∈ H𝑛×𝑝.

Since
𝑝

∑

𝑠=1

û
⋅𝑠
𝑑
𝑠𝑗
= d̂
⋅𝑗
, (62)

where d̂
⋅𝑗
is the 𝑗th column ofD, then (58) follows from (61).

Cramer’s rule (59) and (60) immediately follows from
Theorem 12 by puttingW

1
= W andW

2
B = I.

Remark 15. In the complex case, that is, A ∈ C𝑚×𝑛, W ∈

C𝑛×𝑚
𝑟
1

, and D ∈ C𝑛×𝑝, we substitute usual determinants for

all corresponding row and column determinants in (58), (59),
and (60).

Note that in case (iii), the condition AW ∈ C𝑚×𝑚 being
Hermitian is not necessary; then in the complex case (60) will
have the form

𝑥
𝑖𝑗
=

∑
𝛽∈𝐽
𝑟,𝑚
{𝑖}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((AW)

𝑘+2

⋅𝑖
(f
⋅𝑗
))
𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝛽∈𝐽
𝑟,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((AW)

𝑘+2
)
𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (63)

where f
⋅𝑗
is the 𝑗th column of F = VD = (AW)

𝑘AD.
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Corollary 16. Suppose that the following restricted matrix
equation is given:

XWBW = D,

R
𝑙
(X) ⊂ R

𝑙
((BW)

𝑘
) ,

N
𝑟
(X) ⊃ N

𝑟
((BA)

𝑘
) ,

(64)

where B ∈ H𝑝×𝑞 and W ∈ H𝑞×𝑝
𝑟
1

with 𝑘 = max{Ind(AW),
Ind(WB)} and D ∈ H𝑛×𝑝. If R

𝑙
(D) ⊂ R

𝑙
((BW)

𝑘
) and

N
𝑟
(D) ⊃ N

𝑟
((WB)𝑘), then the restrictedmatrix equation (64)

has a unique solution:

X = DB
𝑑,𝑊

, (65)

which possesses the following determinantal representations for
𝑖 = 1, 𝑛 and 𝑗 = 1, 𝑞.

(i) Consider

𝑥
𝑖𝑗
=

∑
𝑝

𝑙=1
∑
𝛼∈𝐼
𝑟,𝑝
{𝑙}
rdet
𝑙
((V2𝑘+1 (V2𝑘+1)

∗

)
𝑙⋅

(ď
𝑖⋅
))

𝛼

𝛼

∑
𝛼∈𝐼
𝑟
1
,𝑞
{𝑗}

rdet
𝑗
((WW∗)

𝑗⋅
(w̌
𝑙⋅
))
𝛼

𝛼

∑
𝛼∈𝐼
𝑟,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨
(V2𝑘+1 (V2𝑘+1)∗)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨
∑
𝛼∈𝐼
𝑟
1
,𝑛

󵄨󵄨󵄨󵄨(WW∗)𝛼
𝛼

󵄨󵄨󵄨󵄨

, (66)

where V = BW, ď
𝑖⋅
is the 𝑖th row of Ď = DV̌ = DV𝑘(V2𝑘+1)∗,

w̌
𝑙⋅
is the 𝑙th row of W̌ = V𝑘W∗, and 𝑟 = rank(BW)

𝑘+1
=

rank(BW)
𝑘.

(ii) Consider

𝑥
𝑖𝑗
=

𝑞

∑

𝑡=1

𝑙
𝑖𝑡
(𝑢
𝐷

𝑡𝑗
)
(2)

, (67)

where (𝑢
𝐷

𝑡𝑗
)
(2) can be obtained by (21) and DB = L = (𝑙

𝑖𝑡
) ∈

H𝑛×𝑞.
(iii) IfWB ∈ H𝑞×𝑞 is Hermitian, then

𝑥
𝑖𝑗
=

∑
𝛼∈𝐼
𝑟,𝑞
{𝑗}

rdet
𝑗
((WB)𝑘+2

𝑗⋅
(g
𝑖⋅
))
𝛼

𝛼

∑
𝛼∈𝐼
𝑟,𝑞

󵄨󵄨󵄨󵄨󵄨󵄨
((WB)𝑘+2)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

, (68)

where g
𝑖⋅
is the 𝑖th row of G = DB(WB)𝑘 for all 𝑖 = 1, 𝑛.

Proof. The proof is similar to the proof of Corollary 14 in the
point (i) and follows from Theorem 12 by putting W

2
= W

and AW
1
= I.

Remark 17. In the complex case, that is, B ∈ C𝑝×𝑞, W ∈

C𝑞×𝑝
𝑟
1

, and D ∈ C𝑛×𝑝, we substitute usual determinants for
all corresponding row and column determinants in (66),
(67), and (68). Herein the condition WB ∈ C𝑛×𝑛 being
Hermitian is not necessary; then in the complex case (68) can
be represented as follows:

𝑥
𝑖𝑗
=

∑
𝛼∈𝐼
𝑟,𝑞
{𝑗}

󵄨󵄨󵄨󵄨󵄨󵄨
((WB)𝑘+2

𝑗⋅
(g
𝑖⋅
))
𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝛼∈𝐼
𝑟,𝑞

󵄨󵄨󵄨󵄨󵄨󵄨
((WB)𝑘+2)

𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

, (69)

where g
𝑖⋅
is the 𝑖th row of G = DB(WB)𝑘 for all 𝑖 = 1, 𝑛.

4. Examples

In this section, we give examples to illustrate our results.
(1) Let us consider the matrix equation

WAWX = D (70)

with the restricted conditions (56), where

A = (

0 𝑖 0

𝑘 1 𝑖

1 0 0

1 −𝑘 −𝑗

),

W = (

𝑘 0 𝑖 0

−𝑗 𝑘 0 1

0 1 0 −𝑘

) ,

D = (

𝑘 𝑖

𝑖 −𝑗

1 −𝑖

) .

(71)

Then

V = AW = (

−𝑘 −𝑗 0 𝑖

−1 − 𝑗 𝑖 + 𝑘 𝑗 1 + 𝑗

𝑘 0 𝑖 0

−𝑖 + 𝑘 1 − 𝑗 𝑖 𝑖 − 𝑘

),

U = WA = (

𝑖 𝑗 0

0 𝑘 0

0 0 0

) ,

(72)

and rankW = 3, rankV = 3, rankV3 = rankV2 = 2, and
rankU2 = rankU = 2. So, IndV = 2, IndU = 1, and 𝑘 =

max{Ind(AW), Ind(WA)} = 2.
We will find the 𝑊-weighted Drazin inverse solution of

(70) by its determinantal representation (58). We have

U2 = (

−1 𝑖 + 𝑘 0

0 −1

0 0 0

) ,
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U5 = (

𝑖 2 + 3𝑗 0

0 𝑘

0 0 0

) ,

(U5)
∗

= (

−𝑖 0 0

2 − 3𝑗 −𝑘

0 0 0

) ,

(U5)
∗

U5 = (

1 −2𝑖 − 3𝑘 0

2𝑖 + 3𝑘 14

0 0 0

) ,

D̂ = (U5)
∗

U2D

= (

𝑖 − 𝑗 − 𝑘 −𝑗

1 + 3𝑖 + 6𝑗 − 2𝑘 4𝑖 − 2𝑘

0 0

) ,

W∗ = (

−𝑘 𝑗 0

0 −𝑘 1

−𝑖 0 0

0 1 𝑘

),

W∗W = (

2 𝑖 −𝑗 𝑗

−𝑖 2 0 −2𝑘

𝑗 0 1 0

−𝑗 2𝑘 0 2

),

Ŵ = W∗U2 = (

−𝑘 1 − 2𝑗 0

0 𝑖 + 𝑘 0

𝑖 1 + 𝑗 0

0 −1 0

).

(73)

Since by (58)

𝑥
11

=

∑
3

𝑡=1
∑
𝛽∈𝐼
3,4
{1}

cdet
1
((W∗W)

⋅1
(ŵ
⋅𝑡
))
𝛽

𝛽
∑
𝛽∈𝐽
2,3
{𝑡}
cdet
𝑡
(((U5)

∗

U5)
⋅𝑡

(d̂
⋅1
))

𝛽

𝛽

∑
𝛽∈𝐽
3,4

󵄨󵄨󵄨󵄨󵄨󵄨
(W∗W)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨
∑
𝛽∈𝐽
2,3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((U5)∗U5)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (74)

where

∑

𝛽∈𝐼
3,4
{1}

cdet
1
((W∗W)

⋅1
(ŵ
⋅1
))
𝛽

𝛽

= cdet
1
(

𝑘 𝑖 −𝑗

0 2 0

𝑖 0 1

) + cdet
1
(

𝑘 𝑖 𝑗

0 2 −2𝑘

0 2𝑘 1

)

+ cdet
1
(

𝑘 −𝑗 𝑗

𝑖 1 0

0 0 2

) = 0,

∑

𝛽∈𝐼
3,4
{1}

cdet
1
((W∗W)

⋅1
(ŵ
⋅2
))
𝛽

𝛽
= −2𝑗,

∑

𝛽∈𝐼
3,4
{1}

cdet
1
((W∗W)

⋅1
(ŵ
⋅3
))
𝛽

𝛽
= 0,

∑

𝛽∈𝐽
3,4

󵄨󵄨󵄨󵄨󵄨󵄨
(W∗W)

𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨
= 2,

∑

𝛽∈𝐽
2,3
{1}

cdet
1
(((U5)

∗

U5)
⋅1

(d̂
⋅1
))

𝛽

𝛽

= cdet
1
(

𝑖 − 𝑗 − 𝑘 −2𝑖 − 3𝑘

1 + 3𝑖 + 6𝑗 − 2𝑘 14
)

+ cdet
1
(

𝑖 − 𝑗 − 𝑘 0

0 0
) = −2𝑖 − 𝑗 − 𝑘,

∑

𝛽∈𝐽
2,3
{2}

cdet
2
(((U5)

∗

U5)
⋅2

(d̂
⋅1
))

𝛽

𝛽

= 𝑗,

∑

𝛽∈𝐽
2,3
{3}

cdet
3
(((U5)

∗

U5)
⋅3

(d̂
⋅1
))

𝛽

𝛽

= 0,

∑

𝛽∈𝐽
2,3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((U5)
∗

U5)
𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 1,

(75)

then

𝑥
11

=
0 ⋅ (−2𝑖 − 𝑗 − 𝑘) + (−2𝑗) ⋅ 𝑗 + 0 ⋅ 0

2 ⋅ 1
= 1.

𝑥
12

=
0 ⋅ (−2 + 2𝑗) + (−2𝑗) ⋅ 𝑖 + 0 ⋅ 0

2 ⋅ 1
= 𝑘,

𝑥
21

=
2𝑗 ⋅ (−2𝑖 − 𝑗 − 𝑘) + (10𝑖 − 4𝑘) ⋅ 𝑗 + 0 ⋅ 0

2 ⋅ 1

= 1 + 𝑖 + 7𝑘,

𝑥
22

=
2𝑗 ⋅ (−2 + 2𝑗) + (10𝑖 − 4𝑘) ⋅ 𝑖 + 0 ⋅ 0

2 ⋅ 1

= −7 − 4𝑗,

𝑥
31

=
10𝑖 ⋅ (−2𝑖 − 𝑗 − 𝑘) + 𝑗 ⋅ 𝑗 + 0 ⋅ 0

2 ⋅ 1
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= 9.5 + 5𝑗 − 5𝑘,

𝑥
32

=
10𝑖 ⋅ (−2 + 2𝑗) + 𝑗 ⋅ 𝑖 + 0 ⋅ 0

2 ⋅ 1
= −10𝑖 + 9.5𝑘,

(76)

We finally get

X = (

1 𝑘

1 + 𝑖 + 7𝑘 −7 − 4𝑗

9.5 + 5𝑗 − 5𝑘 −10𝑖 + 9.5𝑘

) . (77)

(2) Let now us consider the matrix equation

W
1
AW
1
XW
2
BW
2
= D, (78)

with constraints (33), where

A = (

𝑘 0 𝑖 0

−𝑗 𝑘 0 1

0 1 0 −𝑘

) ,

W
1
= (

𝑘 −𝑗 0

0 𝑘 1

𝑖 0 0

0 1 −𝑘

),

W
2
= (

𝑘 −𝑖

𝑗 0

0 1

) ,

B = (

𝑘 𝑗 0

𝑗 0 1
) ,

D = (

𝑖 −1

𝑘 0

0 𝑗

−1 0

).

(79)

Since the following matrices are Hermitian:

V = AW
1
= (

−2 𝑖 0

−𝑖 −1 0

0 0 0

) ,

U = W
2
B = (

0 −𝑖 −𝑖

𝑖 −1 0

𝑖 0 −1

) ,

(80)

then we can find the 𝑊-weighted Drazin inverse solution of
(78) by its determinantal representation (38).

We have

𝑘
1
= max {Ind (AW

1
) , Ind (W

1
A)} = 1,

𝑘
2
= max {Ind (BW

2
) , Ind (W

2
B)} = 1,

(81)

and 𝑠
1
= rank(AW

1
) = 2 and 𝑠

2
= rank(W

2
B) = 2. Since

(AW
1
)
3

= (

−13 8𝑖 0

−8𝑖 −5 0

0 0 0

) ,

(W
2
B)3 = (

0 −3𝑖 −3𝑖

3𝑖 −3 0

3𝑖 0 3

) ,

(82)

then

∑

𝛽∈𝐽
2,3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((AW

1
)
3

)
𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1,

∑

𝛼∈𝐼
2,3

󵄨󵄨󵄨󵄨󵄨󵄨
((W
2
B)3)
𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨
= −27.

(83)

We have

D = AW
1
ADBW

2
B

= (

2𝑖 + 𝑗 −7 + 𝑘 −5 + 2𝑘

−1 + 𝑘 −5𝑖 − 𝑗 −4𝑖 − 2𝑗

0 0 0

) .

(84)

By (40), we can get

dB
⋅1
= (

36𝑖 − 9𝑗

−27 − 9𝑘

0

) ,

dB
⋅2
= (

−27

−18𝑖

0

) ,

dB
⋅3
= (

9 − 9𝑘

9𝑖 + 3𝑗

0

) .

(85)

Since

(AW
1
)
3

⋅1
(dB
⋅1
) = (

36𝑖 − 9𝑗 8𝑖 0

−27 − 9𝑘 −5 0

0 0 4

) , (86)

then finally we obtain

𝑥
11

=

∑
𝛽∈𝐽
2,3
{1}

cdet
1
((AW

1
)
3

⋅1
(dB
⋅1
))
𝛽

𝛽

∑
𝛽∈𝐽
2,3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((AW

1
)
3

)
𝛽

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
𝛼∈𝐼
2,3

󵄨󵄨󵄨󵄨󵄨󵄨
((W
2
B)3)
𝛼

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨

=
36𝑖 − 27𝑗

−27
=

−4𝑖 + 3𝑗

3
.

(87)
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Similarly,

𝑥
12

=
cdet
1
(
−27 8𝑖

−18𝑖 −5
)

−27
=

1

3
,

𝑥
13

=

cdet
1
(
9−9𝑘 8𝑖

9𝑖−3𝑗 −5 )

−27
=

−9 − 7𝑘

9
,

𝑥
21

=

cdet
2
(
−13 36𝑖−9𝑗

−8𝑖 −27−9𝑘
)

−27
=

−7 − 5𝑘

3
,

𝑥
22

=
cdet
2
(
−13 −27

−8𝑖 −18𝑖
)

−27
=

−2𝑖

3
,

𝑥
23

=

cdet
2
(
−13 −9−9𝑘

−8𝑖 9𝑖+3𝑗 )

−27
=

15𝑖 − 11𝑗

9
,

𝑥
31

= 𝑥
32

= 𝑥
33

= 0.

(88)

So, the𝑊-weighted Drazin inverse solution of (78) is

X =
1

9
(

−12𝑖 + 9𝑗 3 −9 − 7𝑘

−21 − 15𝑘 −6𝑖 15𝑖 − 11𝑗

0 0 0

) . (89)

Note that we used Maple with the package CLIFFORD in the
calculations.
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