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Department of Mathematics, Faculty of Electronic Engineering, University of Niš, 18000 Niš, Serbia
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A class of three-pointmethods for solving nonlinear equations of eighth order is constructed. These
methods are developed by combining two-point Ostrowski’s fourth-ordermethods and amodified
Newton’s method in the third step, obtained by a suitable approximation of the first derivative
using the product of three weight functions. The proposed three-step methods have order
eight costing only four function evaluations, which supports the Kung-Traub conjecture on the
optimal order of convergence. Two numerical examples for various weight functions are given to
demonstrate very fast convergence and high computational efficiency of the proposed multipoint
methods.

1. Introduction

Multipoint methods for solving nonlinear equations f(x) = 0, where f : D ⊂ R → R,
possess an important advantage since they overcome theoretical limits of one-point methods
concerning the convergence order and computational efficiency. More details may be found
in the book [1] and many papers published in the first decade of the 21st century. In this
paper we present a new family of three-point methods which employs Ostrowski’s method
in the first two steps and suitably chosen weight functions in the third step. The order of this
family is eight requiring four function evaluations.

We start with a three-step scheme (omitting iteration index for simplicity)

y = x − f(x)
f ′(x)

,

z = y − f
(
y
)

f ′(x)
· f(x)
f(x) − 2f

(
y
) ,

x̂ = z − f(z)
f ′(z)

,

(1.1)
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where x is a current approximation and x̂ is a new approximation to a simple real zero α of
f . Note that the first two steps form Ostrowski’s two-point method [2] of order four.

The iterative method (1.1) has order eight but it requires five function evaluations,
which is expensive from the computational point of view. To decrease this cost from 5 to 4
function evaluations, we want to approximate f ′(z) in the third step of (1.1) using available
data f(x), f ′(x), f(y), f(z). We are seeking this approximation in the form

f ′(z) ≈ f ′(x)φ(t)ψ(s)ω(v), (1.2)

where φ, ψ, and ω are sufficiently differentiable real-valued functions with the arguments

t =
f
(
y
)

f(x)
, s =

f(z)
f
(
y
) , v =

f(z)
f(x)

. (1.3)

Now the iterative scheme (1.1) becomes

y = x − f(x)
f ′(x)

,

z = y − f
(
y
)

f ′(x)
· f(x)
f(x) − 2f

(
y
) ,

x̂ = z − f(z)
f ′(x)φ(t)ψ(s)ω(v)

.

(1.4)

Functions φ, ψ, and ω should be determined in such a way that the iterative method
(1.4) attains the order eight. Such procedure will be presented in Section 2.

2. Construction and Convergence of New Three-Point Root Solvers

To find theweight functions φ, ψ, andω in (1.4) providing order eight, wewill use themethod
of undetermined coefficients and Taylor’s series about 0 since t → 0, s → 0, and v → 0when
x → 0. We have

φ(t) = φ(0) + φ′(0)t +
φ′′(0)
2!

t2 +
φ′′′(0)
3!

t3 + · · · ,

ψ(v) = ψ(0) + ψ ′(0)s + · · · ,
ω(w) = ω(0) +ω′(0)v + · · · .

(2.1)

The simplest method for finding the coefficients of the above Taylor expansions is the
use of symbolic computation by a computer algebra system and an interactive procedure
(comments C1–C4 in Algorithm 1), as already carried out for some of the previously
developed methods, see, for example, [3]. The corresponding program can always display
any desired formula or expression, although these expressions are cumbersome and only of
academic interest.
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fx=f1a∗(e+c2 e ̂ 2+c3 e ̂ 3+c4 e ̂ 4); f1x=D[fx,e];
ey=e-Series[fx/f1x,{e,0,8}];
fy=f1a∗(ey+c2 ey ̂ 2+c3 ey ̂ 3+c4 ey ̂ 4);
t=Series[fy/fx,{e,0,8}];
ez=ey-Series[1/(1−2t)∗fy/f1x,{e,0,8}];
fz=f1a∗(ez+c2 ez ̂ 2+c3 ez ̂ 3);
s=Series[fz/fy,{e,0,8}];
v=Series[fz/fx,{e,0,8}];
gt=t0+t10∗t+t20∗t ̂ 2/2+t30∗t ̂ 3/6;
gs=s0+s10∗s+s20∗s ̂ 2/2;
gv=v0+v10∗v+v20∗v ̂ 2/2;
f1z=f1x∗gt∗gs∗gv;
e1=ez-Series[fz/f1z,{e,0,8}]//Simplify
C1: “Out[a4]= c2(c22 − c3)(-1+t0 s0 v0)/(t0 s0 v0)”
t0=1; s0=1; v0=1; a5=Coefficient[e1,e ̂ 5] //Simplify
C2: “Out[a5] = c22(c22 − c3)(2 + t10)”
t10=−2; a6=Coefficient[e1,e ̂ 6]//Simplify

C3: “Out[a6] =
1
2
c2(c22 − c3)(−2c3 (1+s10) + c22(4 + t20 + 2v10))”

s10=−1; t20=-2; a7=Coefficient[e1,e ̂ 7]//Simplify

C4: “Out[a7] =
1
6
c22(c22 − c3)(−6c3(2+ v10) + c22(t30+6(2+v10)))”

v10=−2; t30=0; a8=Coefficient[e1,e ̂ 8]//Simplify

C5: “Out[a8] =
1
2
c2(c22 − c3)(2c2c4 + c32v20 + c24(4 + s20) − 2c22c3(4 + s20))e8 +O[e9]”

Algorithm 1: Program (written in Mathematica).

We introduce the following abbreviations:

ck= f (k)(α)/(k!f ′(α)), fx= f(x),

f1x= f ′(x), f1a= f ′(α), fy= f(y), fz= f(z),

e= x − α, ey= y − α, ez= z − α, e1= x̂ − α,
t0= ψ(0), t10= ψ ′(0), t20= p′′(0), t30= ψ ′′′(0),

s0= ψ(0), s10= ψ ′(0),

v0= ω(0), v10= ω′(0).

Comment 1. C1: from the expression of the error ε̂ = x̂ − αwe observe that ε̂ is of the form

ε̂ = a4ε4 + a5ε5 + a6ε6 + a7ε7 + a8ε8 +O
(
ε9
)
. (2.2)

The iterative three-point method (1.4) will have the order of convergence equal to eight if
we determine the coefficients of the developments appearing in (2.1) in such way that a4, a5,
a6, a7 (in (2.2)) all vanish. We find these coefficients equating shaded expressions in boxed
formulas to 0. First, from Out[a4] we have

−1 + φ(0)ψ(0)ω(0) = 0. (2.3)
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Without the loss of generality, we can take φ(0) = ψ(0) = ω(0) = 1 with the benefit that the
term φ(0)ψ(0)ω(0) becomes 1 simplifying subsequent expressions.

In what follows, equating coefficient a5, a6, a7 to 0, one obtains

C2: φ′(0) + 2 = 0 =⇒ φ′(0) = −2,

C3: ψ ′(0) + 1 = 0 ∧ φ′′(0) + 2ψ ′(0) + 4 = 0 =⇒ ψ ′(0) = −1, φ′′(0) = −2,

C4: ω′(0) + 2 = 0 ∧ φ′′′(0) + 6(ω′(0) + 2) = 0 =⇒ ω′(0) = −2, φ′′′(0) = 0.

Comment 2. C5: substituting the quantities φ(0), φ′(0), . . . , ω′(0) in the expression of ε̂, found
in the described interactive procedure, we obtain

ε̂ =
1
2
c2
(
c22 − c3

)[
2c2c4 + 4c42 − 8c22c3 + ψ

′′(0)
(
c23 + c

4
2 − 2c22c3

)]
e8 +O

(
ε9
)
. (2.4)

Observe from (2.4) that ψ ′′(0)must be bounded.
According to the above analysis we can state the following theorem.

Theorem 2.1. If x0 is a sufficiently close approximation to a zero α of f , then the family of three-point
methods

yk = xk −
f(xk)
f ′(xk)

,

zk = yk −
f
(
yk
)

f ′(xk)
· f(xk)
f(xk) − 2f

(
yk
) ,

xk+1 = zk −
f(zk)

f ′(xk)φ(tk)ψ(sk)ω(vk)
, tk =

f
(
yk
)

f(xk)
,

sk =
f(zk)
f
(
yk
) , vk =

f(zk)
f(xk)

,

(2.5)

has the order eight if sufficiently times differentiable functions φ, ψ, and ω are chosen so that the
following conditions are fulfilled:

φ(0) = 1, φ′(0) = 2, φ′′(0) = −2, φ′′′(0) = 0,

ψ(0) = 1, ψ ′(0) = −1, ∣∣ψ ′′(0)
∣∣ <∞, ω(0) = 1, ω′(0) = −2.

(2.6)

Values of higher order derivatives of φ, ψ, and ω, not explicitly given in (2.6), can be arbitrary at the
point 0.
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Weight functions φ, ψ, and ω should be chosen as simple as possible. One of the
simplest forms is that obtained by using the Taylor polynomials of these functions according
to (2.6), that is,

yk = xk −
f(xk)
f ′(xk)

,

zk = yk −
f
(
yk
)

f ′(xk)
· f(xk)
f(xk) − 2f

(
yk
) ,

xk+1=zk−
f(zk)

f ′(xk)
[
1 − 2f

(
yk
)
/f(xk) −

(
f
(
yk
)
/f(xk)

)2][1−f(zk)/f
(
yk
)][

1 − 2f(zk)/f(xk)
] .

(2.7)

Using the approximation 1/(1−aq) ≈ 1+aq for sufficiently small |q|, the last iterative formula
may be modified to the form

yk = xk −
f(xk)
f ′(xk)

,

zk = yk −
f
(
yk
)

f ′(xk)
· f(xk)
f(xk) − 2f

(
yk
) ,

xk+1 = zk −
f(zk)

[
1 + f(zk)/f

(
yk
)][

1 + 2f(zk)/f(xk)
]

f ′(xk)
[
1 − 2f

(
yk
)
/f(xk) −

(
f
(
yk
)
/f(xk)

)2] .

(2.8)

Some other simple forms of functions φ, ψ, and ω are

φ(t) =
1 − 4t2(1 − t)

(1 + t)2
,

φ(t) =
5 − 12t

5 − 2t + t2
,

ψ(s) =
(
1 − s

n

)n
, preferable ψ(s) =

(
1 − s

2

)2
for n = 2,

ψ(s) =
1 + as

1 + (a + 1)s
, a ∈ R, preferable ψ(s) =

1
1 + s

for a = 0,

ψ(s) =
1

1 + s + cs2
, c ∈ R,
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ω(v) =
(
1 − 2v

n

)n
, preferable ω(v) = (1 − v)2 for n = 2,

ω(v) =
1 + bv

1 + (b + 2)v
, b ∈ R, preferable ω(v) =

1
1 + 2v

for b = 0,

ω(v) =
1

1 + 2v + dv2
, d ∈ R.

(2.9)

It is interesting to note that functions ψ(s) = e−s and ω(v) = e−2v do satisfy the requested
conditions (2.6), but the calculation of exponential function increases computational cost, so
such choice is not acceptable.

3. Numerical Results

The family of three-point methods (2.5) has been tested on numerous nonlinear equations
along with some other methods of the same convergence rate. The programming package
Mathematica with multiprecision arithmetic (800 significant decimal digits) was employed
to provide very high accuracy. For comparison purposes, we have also tested the three-point
methods of optimal order eight given below.

Bi-Wu-Ren’s Family [4]

yk = xk −
f(xk)
f ′(xk)

,

zk = yk − h
(
μk
)f
(
yk
)

f ′(xk)
,

xk+1 = zk −
f(xk) + βf(zk)

f(xk) +
(
β − 2

)
f(zk)

· f(zk)
f
[
zk, yk

]
+ f[zk, xk, xk]

(
zk − yk

)
(
β ∈ R

)
,

(3.1)

where μk = f(yk)/f(xk), h(t) is a real-valued function and

f
[
z, y
]
=
f(z) − f(y)

z − y , f[z, x, x] =
f[z, x] − f ′(x)

z − x . (3.2)

Wehave tested twomethods belonging to the family (3.1), obtained by choosing two different
forms of the weight function h in the same way as in [4] (see Tables 1 and 2).
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Kung-Traub’s Method

Version 1 without derivatives [5]:

yk = xk −
γf(xk)2

f
(
xk + γf(xk)

) − f(xk)
,

zk = yk −
f
(
yk
)
f
(
xk + γf(xk)

)

(
f
(
xk + γf(xk)

) − f(yk
))
f
[
xk, yk

] , (k = 0, 1, . . .),

xk+1 = zk −
f
(
yk
)
f
(
xk + γf(xk)

)(
yk − xk + f(xk)/f[xk, zk]

)

(
f
(
yk
) − f(zk)

)(
f
(
xk + γf(xk)

) − f(zk)
) +

f
(
yk
)

f
[
yk, zk

] ,

(3.3)

where γ is a real parameter.

Kung-Traub’s Method

Version 2 with derivative [5]:

yk = xk −
f(xk)
f ′(xk)

,

zk = yk −
f(xk)2f

(
yk
)

f ′(xk)
(
f(xk) − f

(
yk
))2 , (k = 0, 1, . . .),

xk+1 = zk −
f(xk)2f

(
yk
)

Δ(k)
yz

⎡

⎢
⎣

1

Δ(k)
xz

(
xk − zk
Δ(k)
xz

− 1
f ′(xk)

)

− f
(
yk
)

f ′(xk)
(
Δ(k)
xy

)2

⎤

⎥
⎦,

(3.4)

where, for example,

Δ(k)
xz = f(xk) − f(zk). (3.5)

Liu-Wang’s Method [6]

yk = xk −
f(xk)
f ′(xk)

,

zk = xk −
f
(
yk
)

f ′(xk)
H

(
f
(
yk
)

f(xk)

)

,

xk+1 = zk −
f(zk)
f ′(xk)

[

U

(
f
(
yk
)

f(xk)

)

+ V

(
f(zk)
f
(
yk
)

)

+W
(
f(zk)
f(xk)

)]

(a ∈ R),

H(0) = 1, H ′(0) = 2, U(0) = 1 − V (0) −W(0), U′(0) = 2,

U′′(0) = 2 +H ′′(0), U′′′(0) = −24 + 6H ′′(0) +H ′′′(0), V ′(0) = 1, W ′(0) = 4.
(3.6)
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Table 1

f(x) = log(x2 + 1) + ex sinx, x0 = 0.3, α = 0
Methods |x1 − α| |x2 − α| |x3 − α| rc (3.8)
New IM (2.5) φ = 1 − 2t − t2, 3.92(−4) 1.04(−25) 2.52(−198) 7.9998
ψ = 1 − s, ω = 1 − 2v
new IM (2.5) φ = 1 − 2t − t2 − 5t4, 8.66(−5) 1.57(−30) 1.82(−236) 7.9999
ψ = 1 − s − s2, ω = 1 − 2v − v2

new IM (2.5) φ = 1 − 2t − t2 − 5t4, 7.44(−5) 6.56(−31) 2.37(−239) 8.0000
ψ = 1/(1 + s + 4s2), ω = 1/(1 + v)2

Bi-Wu-Ren’s IM (3.1), method 1 6.52(−5) 1.14(−32) 9.57(−255) 8.0000
Bi-Wu-Ren’s IM (3.1), method 2 4.08(−4) 2.44(−25) 3.52(−195) 8.0028
Kung-Traub’s IM (3.3) 8.13(−4) 2.16(−22) 5.45(−171) 7.9993
Kung-Traub’s IM (3.4) 7.84(−4) 1.56(−22) 3.96(−172) 7.9993
Liu-Wang’s IM (3.6) 5.74(−4) 4.59(−24) 7.81(−185) 7.9996

Table 2

f(x) = 1 + ex
3−x − cos(1 − x2) + x3, x0 = −1.65, α = −1

Methods |x1 − α| |x2 − α| |x3 − α| rc (3.8)
New IM (2.5) φ = 1 − 2t − t2, 3.04(−5) 1.81(−37) 2.85(−295) 8.0000
ψ = 1 − s, ω = 1 − 2v
new IM (2.5) φ = 1 − 2t − t2 − 5t4, 2.38(−5) 3.44(−38) 6.47(−301) 8.0000
ψ = 1 − s − s2, ω = 1 − 2v − v2

new IM (2.5) φ = 1 − 2t − t2 − 5t4, 8.31(−6) 3.12(−41) 1.24(−324) 8.0000
ψ = 1/(1 + s + 4s2), ω = 1/(1 + v)2

Bi-Wu-Ren’s IM (3.1), method 1 3.28(−5) 7.17(−38) 3.71(−299) 7.9999
Bi-Wu-Ren’s IM (3.1), method 2 3.16(−5) 1.66(−37) 9.59(−296) 8.0000
Kung-Traub’s IM (3.3) 9.10(−5) 2.28(−33) 3.60(−262) 8.0000
Kung-Traub’s IM (3.4) 2.85(−5) 1.75(−37) 3.54(−295) 8.0000
Liu-Wang’s IM (3.6) 3.64(−5) 2.59(−36) 1.73(−285) 8.0000

Remark 3.1. There are other three-point methods with optimal order eight, see, for instance,
[3, 7–15]. However, these methods produce results of approximately same quality so that did
not display them in Tables 1 and 2.

For demonstration, among many numerical experiments, we have selected the follow-
ing two functions:

f(x) = log
(
x2 + 1

)
+ ex sinx, x0 = 0.3, α = 0,

f(x) = 1 + ex
3−x − cos

(
1 − x2

)
+ x3, x0 = −1.65, α = −1.

(3.7)

The errors |xk − α| of approximations to the zeros are given in Tables 1 and 2, where A(−h)
denotes A × 10−h. These tables include the values of the computational order of convergence
rc calculated by the formula

rc =
log
∣∣f(xk)/f(xk−1)

∣∣

log
∣∣f(xk−1)/f(xk−2)

∣∣ , (3.8)

taking into consideration the last three approximations in the iterative process.
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