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Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns
are given by experts’ evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction
costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns.
In the proposed mean-variance-entropy model, the uncertain mean value of the return is used to measure investment return, the
uncertain variance of the return is used to measure investment risk, and the entropy is used to measure diversification degree of
portfolio. In order to solve the proposed model, a modified artificial bee colony (ABC) algorithm is designed. Finally, a numerical
example is given to illustrate the modelling idea and the effectiveness of the proposed algorithm.

1. Introduction

Portfolio selection deals with the problem of how to allo-
cate investor’s wealth among different assets such that the
investment goal can be achieved. Markowitz [1] originally
proposed the mean-variance (M-V) model for portfolio
selection in 1952, which has played an important role in the
development of modern portfolio selection theory. The key
principle of the M-V model is to use the expected return of a
portfolio as the investment return and to use the variance (or
standard deviation) of the expected returns of the portfolio
as the investment risk. Markowitz’s M-V model for portfolio
selection problems can be formulated mathematically in
two ways: minimizing risk under prescribing a minimum
acceptable expected return level and maximizing expected
return under prescribing a maximum acceptable risk level.
Since then, a number of scholars, including Sharp [2],Merton
[3], Pang [4], Perold [5], Best and Grauer [6], Konno and
Yamazaki [7], and Best andHlouskova [8], proposed different
mathematical methods for the development of portfolio
models. All the above-mentioned researches assume that
the security returns are random variables with probability
distributions. In probability theory, probability density and
probability distribution functions of a random variable are
usually derived from historical data. However, in the real

securities market, market imperfections make the security
returns present vagueness and ambiguity so that sometimes
security returns cannot be well reflected by historical data.
Therefore, the prediction of security returns is determined
largely by experts’ estimation and contains much subjective
imprecision rather than randomness. With the extensive
application of fuzzy set theory [9], many researchers, such as
Tanaka and Guo [10], Carlsson et al. [11], Vercher et al. [12],
Zhang et al. [13], Chen et al. [14], Tsaur [15], and Gupta et al.
[16], have investigated the portfolio selection problem in
fuzzy environment.

An important assumption for the above fuzzy portfolio
problems is that security returns are fuzzy variables.However,
as we research the problem deeper, we find that paradoxes
will appear if fuzzy set is employed. For example, if a security
return is regarded as a fuzzy variable, then we may assign
it a membership function, suppose it is a triangular fuzzy
variable 𝜉 = (−0.02, 0.03, 0.08). Based on the membership
function, the possibility theorywill immediately conclude the
following three propositions: (a) the return is exactly 0.03
with possibility measure 1; (b) the return is not 0.03 with
possibility measure 1; and (c) “return is exactly 0.03” and
“return is not exactly 0.03” are equally likely. However, it is
doubtless that the belief degree of “return is exactly 0.03”
is almost zero. On the other hand, “return is exactly 0.03”
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and “return is not exactly 0.03” have the same belief degree
in possibility measure, which implies that the two events
will happen equally likely. It seems that no human being
can accept this conclusion. This paradox shows that those
imprecise quantities like security returns cannot be quantified
by possibility measure and then they are not fuzzy concepts.
To avoid paradox, Liu [17] founded the uncertainty theory
based on an axiomatic system of normality, self-duality,
countable subadditivity, and product uncertain measure.
Based on the uncertainty theory, much work has been done
on the development of theoretical and practical work. Peng
and Iwamura [18] proved a sufficient and necessary condition
of uncertainty distribution. Chen and Liu [19] proved the
existence and uniqueness theorem for uncertain differential
equations. Gao [20] investigated the 𝛼-shortest path and
the shortest path problem in uncertain networks. Ding and
Gao [21] assumed that demand is uncertain variable and
formulated an optimal (𝜎, 𝑆) policy for uncertain multiprod-
uct newsboy problem. In the area of uncertain portfolio
selection problems, Zhu [22] solved an uncertain optimal
control problem and applied it to a portfolio selection model.
Taking semiabsolute deviation as a risk measure, Liu and Qin
[23] presented three mean semiabsolute deviation models
under the assumption that security returns are uncertain
variables. Huang [24] proposed two new mean-variance
and mean-semivariance models in which security returns
are given subject to experts’ estimations. Later, Huang [25]
defined a new risk measurement, that is, a risk index, and
further proposed a newmean-risk index selectionmethod for
portfolio selection based on the new riskmeasurement.Other
portfolio selection methods based on uncertainty theory can
be found in [26].

Artificial bee colony (ABC) algorithm is a fairly new
metaheuristic proposed by Karaboga [27], which is based on
simulating the foraging behavior of honey bee swarms. Based
on some classic benchmark functions, the performance of
the ABC algorithm was compared with that of some other
population-based algorithms such as genetic algorithm (GA),
differential evolution (DE), and particle swarm optimization
(PSO) in [28–31]. Their research results demonstrated that
the ABC algorithm is competitive to other population-based
algorithms with an advantage of employing fewer control
parameters. Recently, ABC algorithm has captured much
attention and has been applied to many practical opti-
mization problems including resource constrained project
scheduling problem [32], reliability redundancy allocation
problem [33], job shop scheduling problem [34], mechanical
design problem [35], and traveling salesman problem [36]. A
survey about applications of ABC algorithm is provided by
Karaboga et al. in [37].

The purposes of this paper are to propose an uncertain
portfolio adjustingmodel under the assumption that security
returns are given mainly by experts’ estimations, in which
four criteria, namely, return, risk, transaction cost, and
diversification degree of portfolio, are considered, and to
develop a modified ABC algorithm for solving the proposed
portfolio problem. The rest of the paper is organized as fol-
lows. For better understanding of the paper, some necessary
knowledge about uncertain variable will be introduced in

Section 2. In Section 3, we will propose an uncertain mean-
variance-entropy model for portfolio selection. In Section 4,
we develop a modified ABC algorithm to solve the proposed
model. After that, an example is given to illustrate the pro-
posed model and the effectiveness of the proposed algorithm
in Section 5. Finally, some concluding remarks are given in
Section 6.

2. Preliminary

Next, we will introduce some fundamental concepts and
properties of uncertainty theory, which will be used through-
out this paper.

Definition 1 (Liu [17]). Let Γ be a nonempty set and letL be
a 𝜎-algebra over Γ. Each element Λ ∈L is called an event. A
set functionM{Λ} is called an uncertainmeasure if it satisfies
the following three axioms.

Axiom 1 (normality axiom):M{Γ} = 1.
Axiom 2(duality axiom):M{Λ} +M{Λ𝑐} = 1.
Axiom 3 (subadditivity axiom): for every countable
sequence of events {Λ

𝑖
}, we have

M{
∞

⋃
𝑖=1

Λ
𝑖
} ≤
∞

∑
𝑖=1

M {Λ
𝑖
} . (1)

The triplet (Γ,L,M) is called an uncertainty space. In order
to obtain an uncertainmeasure of compound event, a product
uncertain measure was defined by Liu [38], thus producing
the fourth axiom of uncertainty theory as follows.

Axiom 4 (product axiom): let (Γ
𝑘
,L
𝑘
,M
𝑘
) be uncer-

tainty spaces for 𝑘 = 1, 2, . . ..Then the product uncer-
tain measureM is an uncertain measure satisfying

M{
∞

∏
𝑘=1

Λ
𝑘
} =
∞

⋀
𝑘=1

M
𝑘
{Λ
𝑘
} . (2)

Definition 2 (Liu [17]). An uncertain variable is a measurable
function 𝜉 from an uncertainty space (Γ,L,M) to the set of
real numbers; that is, for any Borel set 𝐵 of real numbers, the
set

{𝜉 ∈ 𝐵} = {𝛾 ∈ Γ | 𝜉 (𝛾) ∈ 𝐵} (3)

is an event.

In order to describe an uncertain variable, a concept of
uncertainty distribution is defined as follows.

Definition 3 (Liu [17]). The uncertainty distribution of an
uncertain variable 𝜉 is defined by

Φ (𝑥) =M {𝜉 ≤ 𝑥} , (4)

for any real number 𝑥.
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Let 𝜉 be an uncertain variable with continuous uncer-
tainty distributionΦ. Then the inverse functionΦ−1 is called
the inverse uncertainty distribution of 𝜉.

Theorem4 (Liu [39]). Let 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
be independent uncer-

tain variables with uncertainty distributions Φ
1
, Φ
2
, . . . , Φ

𝑛
,

respectively. If 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is strictly increasing with

respect to 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
and strictly decreasing with respect to

𝑥
𝑚+1

, 𝑥
𝑚+2

, . . . , 𝑥
𝑛
, then 𝜉 = 𝑓(𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
) is an uncertain

variable with an inverse uncertainty distribution:

Ψ
−1

(𝛼) = 𝑓 (Φ
−1

1
(𝛼) , . . . , Φ

−1

𝑚
(𝛼) , Φ

−1

𝑚+1
(1 − 𝛼) , . . . ,

Φ
−1

𝑛
(1 − 𝛼)) .

(5)

Based on the uncertain measure, the definitions of the
expected value and variance of an uncertain variable can be
given as follows.

Definition 5 (Liu [17]). Let 𝜉 be an uncertain variable. Then
the expected value of 𝜉 is defined by

𝐸 [𝜉] = ∫
+∞

0

M {𝜉 ≥ 𝑥} − ∫
0

−∞

M {𝜉 ≤ 𝑥} (6)

provided that at least one of the two integrals is finite.

As a useful representation of expected value, it has been
proved by Liu [17] that

𝐸 [𝜉] = ∫
1

0

Ψ
−1

(𝛼) 𝑑𝛼, (7)

whereΨ−1 is the inverse uncertainty distribution of uncertain
variable 𝜉.

Definition 6 (Liu [17]). Let 𝜉 be an uncertain variable with
finite expected value 𝑒. Then the variance of 𝜉 is defined by

𝑉 [𝜉] = 𝐸 [(𝜉 − 𝑒)
2

] . (8)

Let 𝜉 be an uncertain variable with expected value 𝑒. If we
only know its uncertainty distributionΨ, then the variance is

𝑉 [𝜉] = ∫
+∞

0

M {(𝜉 − 𝑒)
2

≥ 𝑥} 𝑑𝑥

= ∫
+∞

0

M {(𝜉 ≥ 𝑒 + √𝑥) ∪ (𝜉 ≤ 𝑒 − √𝑥)} 𝑑𝑥

≤ ∫
+∞

0

(M {𝜉 ≥ 𝑒 + √𝑥} +M {𝜉 ≤ 𝑒 − √𝑥}) 𝑑𝑥

= ∫
+∞

0

(1 − Ψ (𝑒 + √𝑥) + Ψ (𝑒 − √𝑥)) 𝑑𝑥

= 2∫
+∞

0

𝑥 (1 − Ψ (𝑒 + 𝑥) + Ψ (𝑒 − 𝑥)) 𝑑𝑥.

(9)

In this case, it is always assumed that the variance is

𝑉 [𝜉] = 2∫
+∞

0

𝑥 (1 − Ψ (𝑒 + 𝑥) + Ψ (𝑒 − 𝑥)) 𝑑𝑥. (10)

The expected value and variance of an uncertain variable
satisfy the following properties.

Theorem 7 (Liu [38]). Let 𝜉 and 𝜂 be independent uncertain
variables with finite expected values.Then for any real numbers
𝑎 and 𝑏, one has

𝐸 [𝑎𝜉 + 𝑏𝜂] = 𝑎𝐸 [𝜉] + 𝑏𝐸 [𝜂] ,

𝑉 [𝑎𝜉 + 𝑏] = 𝑎
2

𝑉 [𝜉] .
(11)

3. Uncertain Portfolio Selection Model

Suppose that an investor starts with an existing portfolio and
considers to reallocate his/her wealth among 𝑛 securities.
In order to describe the problem conveniently, we use the
following notations.

𝑥
𝑗
: the proportion invested in security 𝑗,

𝑟
𝑗
: the return rate of security 𝑗,

𝑙
𝑗
: the lower bound constraint on security 𝑗,
𝑢
𝑗
: the upper bound constraint on security 𝑗,

𝑘
𝑗
: the constant rate of transaction cost for the

security 𝑗,
𝑗 = 1, 2, . . . , 𝑛.

Transaction cost is an important factor considered by
investors in financial markets. Arnott and Wanger [40]
suggested that ignoring transaction costs would lead to an
inefficient portfolio, whereas Sadjadi et al. [41] showed that
adding transaction costs would assist decision makers to
better understand the behavior of an efficient frontier. Similar
to the researches in [42] and others, we assume that the
transaction cost is aV-shaped function of differences between
a new portfolio x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) and the existing portfolio

x0 = (𝑥0
1
, 𝑥0
2
, . . . , 𝑥0

𝑛
). That is to say, the transaction cost of 𝑗th

security can be expressed as

𝑐
𝑗
= 𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨 , 𝑗 = 1, 2, . . . , 𝑛. (12)

Hence, the total transaction cost of the shift from x0 to x is
𝐶(x; x0) = ∑𝑛

𝑗=1
𝑘
𝑗
|𝑥
𝑗
− 𝑥0
𝑗
|.

Furthermore, the net return on the portfolio after paying
transaction costs is given by

𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗
−
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨 . (13)

For a new investor, it can be taken that 𝑥0
𝑗
= 0, 𝑗 = 1, 2, . . . , 𝑛.

Barak et al. [43] pointed out that very small weighting
of an asset will have no distinct influence on the portfolio’s
return, but the administrative and monitoring costs will be
increased. Similarly, very high weighting in any asset will
cause investors to suffer from a larger risk. Thus, quantity
constraints have to be included in the portfolio model.
Specifically, a minimum 𝑙

𝑗
and a maximum 𝑢

𝑗
for each asset

𝑗 are given, and we impose that either 𝑥
𝑗
= 0 or 𝑙

𝑗
≤ 𝑥
𝑗
≤ 𝑢
𝑗
.
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In addition, one of the shortcomings of Markowitz’s model is
that the portfolios are often extremely concentrated on a few
assets, which is a contradiction to the notion of diversification
[44]. As a result, some researchers, such as Jana et al. [44],
Fang et al. [45], Kapur [46], andZhang et al. [47], have applied
the entropy measure proposed by Shannon [48] to infer how
much the portfolio is diversified. In this paper, we also employ
entropy to measure the diversification degree of portfolio.
That is to say, we maximize the entropy function:

𝑆 (𝑥) = −
𝑛

∑
𝑗=1

𝑥
𝑗
ln𝑥
𝑗
. (14)

Assume that the objective of the investor wants to mini-
mize the portfolio risk, and to maximize both the portfolio
return after paying the transaction costs and the diversi-
fication degree of portfolio. Thus, the portfolio selection
problem can be formulated as the following three-objective
programming problem:

min 𝑉[

[

𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗
−
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

max 𝐸[

[

(
𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗
) −
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

max −
𝑛

∑
𝑗=1

𝑥
𝑗
ln𝑥
𝑗

s.t.
𝑛

∑
𝑗=1

𝑥
𝑗
= 1,

𝑙
𝑗
≤ 𝑥
𝑗
≤ 𝑢
𝑗
, 𝑗 = 1, 2, . . . , 𝑛,

𝑥
𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

(15)

where 𝑉 denotes the variance operators and 𝐸 denotes the
expected value operator.

There are many methods to solve the above multiob-
jective optimization problem (15). One basic method is
to transfer the multiobjective optimization problem into a
single-objective optimization problem. We can divide these
methods into two different types. The first alternative is
to construct only one evaluation function for optimization
by weighting the multiple objective functions. Initial work
on the weighted-sum method can be found in [49] with
many subsequent applications and citations. Rao and Roy
proposed a method for determining weights based on fuzzy
set theory [50]. Marler and Arora provided insight into
how the weighted-sum method works and have explored the
significance of the weights with respect to preferences, the
Pareto optimal set, and the objective-function values [51].The
second alternative is to select one important objective func-
tion as the objective function to optimize, while the rest of
objective functions are defined as constrained conditions. For
example, Marglin developed the 𝜀-constraint method, where

one individual objective function isminimized with an upper
level constraint imposed on the other objective functions
[52]. Ehrgott and Ruzika presented two modifications by
first including slack variables in the formulation and second
elasticizing the constraints and including surplus variables
[53]. More researches for the multiobjective optimization
methods can be found in [54–57]. In this paper, based on the
secondmethod, the problem (15) can be transformed into the
following optimization problem:

min 𝑉[

[

𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗
−
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

s.t. 𝐸 [

[

(
𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗
) −
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

≥ 𝜇
0
,

−
𝑛

∑
𝑗=1

𝑥
𝑗
ln𝑥
𝑗
≥ ℎ
0
,

𝑛

∑
𝑗=1

𝑥
𝑗
= 1,

𝑙
𝑗
≤ 𝑥
𝑗
≤ 𝑢
𝑗
, 𝑗 = 1, 2, . . . , 𝑛,

𝑥
𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

(16)

where 𝜇
0
is a required rate of return of portfolio and ℎ

0
is the

minimum entropy level the investors can tolerate.
In order to apply model (16) in a practical investment

problem, we need to estimate security returns. The favored
method is to regard security returns as random variables
and then according to the historical observation take the
arithmetic mean as the expected returns. However, since the
security returns, especially short term security returns, are
sensitive to various economic and noneconomic factors, it is
found in reality that sometimes the historical data can hardly
reflect the future security returns. In this situation, security
returns have to be given mainly by experts’ judgements
and estimations rather than historical data. As is mentioned
before, uncertainty theory provides a new tool to deal
with subjective or empirical data. In this paper, we employ
uncertain variables to describe the security returns. For the
sake of simplicity, throughout this paper, the uncertain return
𝑟
𝑗
is a zigzag uncertain variable 𝑟

𝑗
∼ Z(𝑎

𝑗
, 𝑏
𝑗
, 𝑐
𝑗
), 𝑗 =

1, 2, . . . , 𝑛. 𝑟
𝑗
can be described with the following uncertainty

distribution:

Φ
𝑗
(𝑟) =

{{{{{{{{
{{{{{{{{
{

0, if 𝑟 ≤ 𝑎
𝑗
,

(𝑟 − 𝑎)

2 (𝑏 − 𝑎)
, if 𝑎

𝑗
≤ 𝑟 ≤ 𝑏

𝑗
,

(𝑟 + 𝑐 − 2𝑏)

2 (𝑐 − 𝑏)
, if 𝑏

𝑗
≤ 𝑟 ≤ 𝑐

𝑗
,

1, if 𝑟 ≥ 𝑐
𝑗
,

(17)

where 𝑎
𝑗
< 𝑏
𝑗
< 𝑐
𝑗
.
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According to Definitions 5 and 6, the expected value and
the variance of the zigzag uncertain variable 𝜉 ∼ Z(𝑎, 𝑏, 𝑐)
are given as

𝐸 [𝜉] =
𝑎 + 2𝑏 + 𝑐

4
,

𝑉 [𝜉] =
33𝛼3 + 21𝛼2𝛽 + 11𝛼𝛽2 − 𝛽3

384𝛼
,

(18)

where 𝛼 = max{𝑏 − 𝑎, 𝑐 − 𝑏} and 𝛽 = min{𝑏 − 𝑎, 𝑐 − 𝑏}.

Theorem 8 (Liu [38]). Assume that 𝜉
1
and 𝜉

2
are indepen-

dent zigzag uncertain variablesZ(𝑎
1
, 𝑏
1
, 𝑐
1
) andZ(𝑎

2
, 𝑏
2
, 𝑐
2
),

respectively. Then the sum 𝜉
1
+ 𝜉
2
is also a zigzag uncertain

variableZ(𝑎
1
+ 𝑎
2
, 𝑏
1
+ 𝑏
2
, 𝑐
1
+ 𝑐
2
); that is,

Z (𝑎
1
, 𝑏
1
, 𝑐
1
) +Z (𝑎

2
, 𝑏
2
, 𝑐
2
) =Z (𝑎

1
+ 𝑎
2
, 𝑏
1
+ 𝑏
2
, 𝑐
1
+ 𝑐
2
) .

(19)

The product of a zigzag uncertain variable Z(𝑎, 𝑏, 𝑐) and a
scalar number 𝑘 > 0 is also a zigzag uncertain variable
Z(𝑘𝑎, 𝑘𝑏, 𝑘𝑐); that is,

𝑘 ⋅Z (𝑎, 𝑏, 𝑐) =Z (𝑘𝑎, 𝑘𝑏, 𝑘𝑐) . (20)

Therefore, for any real numbers 𝑥
𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, the

total uncertain return is still a zigzag uncertain variable in the
form of

𝑟
𝑝
=
𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗

∼Z(
𝑛

∑
𝑗=1

𝑎
𝑗
𝑥
𝑗
,
𝑛

∑
𝑗=1

𝑏
𝑗
𝑥
𝑗
,
𝑛

∑
𝑗=1

𝑐
𝑗
𝑥
𝑗
) .

(21)

Furthermore, according to Theorem 7, the net uncertain
expected return of the portfolio after paying transaction costs
is given as

𝐸 [𝑟
𝑝
− 𝐶 (𝑥)] = 𝐸[

[

𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗
−
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

= 𝐸[

[

𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗

]

]

−
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨

=
1

4

𝑛

∑
𝑗=1

(𝑎
𝑗
+ 2𝑏
𝑗
+ 𝑐
𝑗
) 𝑥
𝑗
−
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨 ,

(22)

and the uncertain variance of the portfolio after paying
transaction costs is

𝑉[𝑟
𝑝
− 𝐶 (𝑥)] = 𝑉[

[

𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗
−
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

= 𝑉[

[

𝑛

∑
𝑗=1

𝑟
𝑗
𝑥
𝑗

]

]

=
33𝑀3 + 21𝑀2𝑚 + 11𝑀𝑚2 − 𝑚3

384𝑀

=
11𝑀2

128
+
7𝑀𝑚

128
+
11𝑚2

384
−

𝑚3

384𝑀
,

(23)

where

𝑀 = max
{
{
{

𝑛

∑
𝑗=1

(𝑏
𝑗
− 𝑎
𝑗
) 𝑥
𝑗
,
𝑛

∑
𝑗=1

(𝑐
𝑗
− 𝑏
𝑗
) 𝑥
𝑗

}
}
}

,

𝑚 = min
{
{
{

𝑛

∑
𝑗=1

(𝑏
𝑗
− 𝑎
𝑗
) 𝑥
𝑗
,
𝑛

∑
𝑗=1

(𝑐
𝑗
− 𝑏
𝑗
) 𝑥
𝑗

}
}
}

.

(24)

To simplify the portfolio selection model, it seems
reasonable to choose the securities in such a way that
𝑏
𝑗
− 𝑎
𝑗
≤ 𝑐
𝑗
− 𝑏
𝑗
, 𝑗 = 1, 2, . . . , 𝑛. Therefore, model (16) can be

converted into the following crisp form:

min 11

128
(
𝑛

∑
𝑗=1

(𝑐
𝑗
− 𝑏
𝑗
) 𝑥
𝑗
)

2

+
7

128
(
𝑛

∑
𝑗=1

(𝑐
𝑗
− 𝑏
𝑗
) 𝑥
𝑗
)

× (
𝑛

∑
𝑗=1

(𝑏
𝑗
− 𝑎
𝑗
) 𝑥
𝑗
) +

11

384
(
𝑛

∑
𝑗=1

(𝑏
𝑗
− 𝑎
𝑗
) 𝑥
𝑗
)

2

−
(∑
𝑛

𝑗=1
(𝑏
𝑗
− 𝑎
𝑗
) 𝑥
𝑗
)
3

384 (∑
𝑛

𝑗=1
(𝑐
𝑗
− 𝑏
𝑗
) 𝑥
𝑗
)

s.t. 1

4

𝑛

∑
𝑗=1

(𝑎
𝑗
+ 2𝑏
𝑗
+ 𝑐
𝑗
) 𝑥
𝑗
−
𝑛

∑
𝑗=1

𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥
0

𝑗

󵄨󵄨󵄨󵄨󵄨 ≥ 𝜇0,

−
𝑛

∑
𝑗=1

𝑥
𝑗
ln𝑥
𝑗
≥ ℎ
0
,

𝑛

∑
𝑗=1

𝑥
𝑗
= 1,

𝑙
𝑗
≤ 𝑥
𝑗
≤ 𝑢
𝑗

, 𝑗 = 1, 2, . . . , 𝑛,

𝑥
𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(25)

It should be noted that the proposed uncertain portfolio
model (25) is different from the Markowitz M-V model
because it is based on the different theories. That is to say,
if the security returns are characterized as random variables
with probability distributions, we can study portfolio selec-
tion problems by probability theory, while if security returns
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are regarded as uncertain variables with uncertainty distribu-
tions, we can apply uncertainty theory to do researches on the
relevant problems.

4. Modified ABC Algorithm

4.1. Standard ABC Algorithm. Artificial bee colony (ABC)
algorithm is a new swarm intelligence method which sim-
ulates intelligent foraging behavior of honey bees and it is
initially proposed by Karaboga [27]. In the ABC algorithm,
there are three types of bees: the employed bee, the onlooker
bee, and the scout bee. Each of them plays different roles in
the process: the employed bees stay on a food source and
provide the neighborhood of the source in its memory; the
onlooker bee gets the information of food sources from the
employed bees in the hive and selects one of the food sources
to gather the nectar; and the scout bee is responsible for
finding a new food source.

In each successful algorithm, a robust search process,
including exploitation and exploration process, must be
implemented effectively. In the ABC algorithm, the employed
bees and onlookers execute the exploitation process in the
search space, while the scout bees execute the exploration
process. There is only one employed bee around each food
source. In other words, the number of employed bees is
equal to the number of food sources around the hive. The
positions of food sources represent possible solutions to
the optimization problem and the nectar amount of a food
source corresponds to the quality or fitness of the associated
solution. The number of the employed bees or the onlooker
bees is equal to the number of solutions in the population.

At the first step, the ABC generates a randomly dis-
tributed initial population 𝑃 of 𝑆𝑁 solutions (food source
positions), where 𝑆𝑁 denotes the size of population. Each
solution 𝑋

𝑖
(𝑖 = 1, 2, . . . , 𝑆𝑁) is a 𝐷-dimensional vector.

Here, 𝐷 is the number of optimization parameters. After
initialization, the population is subjected to repeated cycles
of four major steps: updating feasible solutions by employed
bees, selection of feasible solutions by onlooker bees, updat-
ing feasible solutions by onlooker bees, and avoidance of
suboptimal solutions by scout bees.

Updating Feasible Solutions by Employed Bees. In order to
produce a new feasible food source from the old one in
memory, the ABC uses the following expression:

V
𝑖𝑗
= 𝑥
𝑖𝑗
+ 𝜙
𝑖𝑗
(𝑥
𝑖𝑗
− 𝑥
𝑘𝑗
) , (26)

where 𝑘 ∈ 1, 2, . . . , 𝑆𝑁 and 𝑗 ∈ 1, 2, . . . , 𝐷 are randomly
chosen indexes. Although 𝑘 is determined randomly, it has
to be different from 𝑖. 𝜙

𝑖𝑗
is a random number in [−1, 1].

If a new food source 𝑉
𝑖
is better than an old food source

𝑋
𝑖
, the old food source is replaced by the new food source.

Otherwise, the old one is retained.

Selection of Feasible Solutions by Onlooker Bees. After all
employed bees complete the search process, they share the
information about their food sources with onlooker bees. An
onlooker bee evaluates the nectar information obtained from

(1) Initialize the population
(2) set cycle = 1
(3) while cycle ≤MCN do
(4) Update feasible solutions by employed bees
(5) Select feasible solutions by onlooker bees
(6) Update feasible solutions by onlooker bees
(7) Avoid suboptimal solutions by scout bees
(8) set cycle = cycle + 1
(9) end while

Algorithm 1: The framework of the standard ABC algorithm.

all employed bees and chooses a food source depending on
the probability value 𝑝

𝑖
associated with that food source:

𝑝
𝑖
=

fit
𝑖

∑
𝑆𝑁

𝑛=1
fit
𝑛

, (27)

where fit
𝑖
is the fitness value of the solution 𝑖 which is

proportional to nectar amount of the food source in the
position 𝑖.

Updating Feasible Solutions by Onlooker Bees. Based on the
information obtained from the employed bees, the onlooker
bees select their feasible food sources. The selected food
sources are then updated using (26); that is, an old food
source is replaced by a new food source if the new food source
is of a better quality.

Avoidance of Suboptimal Solutions by Scout Bees. If a position
cannot be improved further through a predetermined num-
ber of cycles called limit, then employed bees will abandon
the food source positions and become scout bees. This helps
avoid suboptimal solutions. Assume that the abandoned
source is 𝑋

𝑖
and 𝑗 ∈ 1, 2, . . . , 𝐷; then the scout discovers a

new food source by using the equation below:

𝑥
𝑖,𝑗
= 𝑥
𝑗

min + rand (0, 1) (𝑥𝑗max − 𝑥
𝑗

min) , (28)

where 𝑗 is determined randomly; it should be noticed that it
has to be different from 𝑖.

The main steps of the standard ABC algorithm are given
in Algorithm 1.

4.2. Modified Artificial Bee Colony Algorithm

4.2.1. Chaotic Initialization. Generally speaking, diversity in
initial population helps escape from local optima and good-
quality initial solutions accelerate convergence speed in an
evolutionary algorithm. If no information about the solution
is available, then random initialization is the most commonly
used method to initialize the population. However, this
method may affect the algorithm performance on the con-
vergence speed and the quality of the final solution. Recently,
chaotic maps with ergodicity, irregularity, and the stochastic
property have been adopted to initialize the population, and
some good results have been shown in many applications
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(1) set population size SN and dimension of solution𝐷
// Randomly generate the initial value of chaotic variable 𝑐𝑥

𝑖,𝑗

(2) for 𝑗 = 1 to𝐷 do
(3) 𝑐𝑥

1,𝑗
= rand(0, 1)

(4) while 𝑐𝑥
1,𝑗
∈ {0, 0.25, 0.5, 0.75, 1} do

(5) 𝑐𝑥
1,𝑗
= rand(0, 1)

(6) end while
(7) end for

// The iterative process of chaotic initialization
(8) for 𝑖 = 1 to SN do
(9) for 𝑗 = 1 to𝐷 do
(10) 𝑥

𝑖,𝑗
= 𝑥
𝑗

min + 𝑐𝑥𝑖,𝑗 (𝑥
𝑗

max − 𝑥
𝑗

min)

(11) 𝑐𝑥
𝑖+1,𝑗

= 4𝑐𝑥
𝑖,𝑗
(1 − 𝑐𝑥

𝑖,𝑗
)

(12) end for
(13) end for

Algorithm 2: Chaotic initialization.

[58, 59]. In this paper, chaos-based initialization method is
employed to increase the population diversity and improve
the global convergence.

A simplest chaotic map is logistic map, whose equation is
the following:

𝑥
𝑛+1

= 𝜇𝑥
𝑛
(1 − 𝑥

𝑛
) , (29)

where 𝜇 is a control parameter and 𝑥
𝑛
is the 𝑛th chaotic

number, where 𝑛 denotes the iteration number. Obviously,
𝑥
𝑛
∈ (0, 1) under the conditions that the initial 𝑥

0
∈ (0, 1).

In particular, 𝑥
𝑛
behaves as chaotic dynamics when 𝜇 = 4

and 𝑥
0
∉ {0, 0.25, 0.5, 0.75, 1}.

The pseudocode of the proposed chaotic initialization is
given in Algorithm 2.

4.2.2. New Search Mechanism. The employed bee and
onlooker bee produce a new feasible food source according to
(26).However, the convergence performance of the algorithm
is not good in some cases.Therefore, we proposed a modified
search method to produce new solutions, in which forgetting
factor and neighborhood factor are considered. This opera-
tion can be defined as follows:

V
𝑖,𝑗
= 𝜑𝑥
𝑖,𝑗
+ 𝜓𝜙
𝑖𝑗
(𝑥
𝑖,𝑗
− 𝑥
𝑘,𝑗
) , (30)

where 𝜑 is the forgetting factor, which expresses the memory
strength for current food source, and it is decreased gradually.
In addition, the quality of the neighborhood food source 𝑋

𝑘

also affects the convergence speed and quality of the final
solution. Thus, the neighborhood factor 𝜓 is introduced to
accelerate the convergence speed by adjusting the radius of
the search for new candidates. The 𝜑 and 𝜓 are defined as
follows:

𝜑 = 𝜔max −
iteration
MCN

(𝜔max − 𝜔min) ,

𝜓 = 𝜔min +
iteration
MCN

(𝜔max − 𝜔min) ,

(31)

where the values of 𝜔max and 𝜔min represent the maximum
and minimum percentage of the position adjustment for the

Table 1: The zigzag uncertain returns of 8 securities.

Security 1 2 3 4 5 6 7 8
𝑎
𝑗

0.006 −0.017 0.085 0.050 0.163 −0.035 0.095 0.116
𝑏
𝑗

0.011 −0.035 0.103 0.062 0.172 −0.082 0.161 0.235
𝑐
𝑗

0.028 0.013 0.128 0.095 0.193 0.022 0.232 0.527
𝑥0
𝑗

0.05 0.07 0.15 0.06 0.15 0.22 0.13 0.17
𝑘
𝑗

0.002 0.005 0.003 0.001 0.004 0.002 0.005 0.003
𝑙
𝑗

0.1 0.05 0.09 0.06 0.07 0.05 0.06 0.06
𝑢
𝑗

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

employed bees or onlooker bees. With these selected values,
the value of 𝜑 will linearly decrease and the value of 𝜓 will
linearly increase.

Moreover, in the scout bee phase, if the food source
is abandoned, then the scouts produce a new food source
by (28). However, to some extent, it has the defects of
prematurity and stagnation. Therefore, the chaotic search
technique is used to get out of the local optima and is
specifically illustrated in Algorithm 3.

4.2.3. The Proposed Method. Based on the above discussions,
the modified ABC algorithm can be well balanced between
the exploration and exploitation. The pseudocode of the
proposed algorithm is given in Algorithm 4.

5. Numerical Example

In this section, we give a numerical example to illustrate the
application of the uncertain mean-variance-entropy model
with transaction costs and the effectiveness of the proposed
algorithm. In the example, security returns cannot be well
reflected by the historical data and are given by experts’
evaluations. The investor wants to select portfolios from 8
individual securities. Thus, we assume that the return of
security 𝑗 is a zigzag uncertain variable 𝑟

𝑗
∼ Z(𝑎

𝑗
, 𝑏
𝑗
, 𝑐
𝑗
), 𝑗 =

1, 2, . . . , 8. The uncertainty distributions of security returns
are given in Table 1. And other related portfolio parameters
are also listed in Table 1.
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(1) Set the maximum number of chaotic iteration 𝐾 = 100 and iterative variable 𝑘 = 1
// The variable 𝑐𝑥

𝑘,𝑗
denotes the 𝑗th chaotic variable in the 𝑘th iteration

(2) for 𝑗 = 1 to𝐷 do
(3) 𝑐𝑥

𝑘,𝑗
= (𝑥
𝑖,𝑗
− 𝑥
𝑗

min)/(𝑥
𝑗

max − 𝑥
𝑗

min)

(4) end for
(5) while 𝑘 < 𝐾 do
(6) for 𝑗 = 1 to𝐷 do
(7) 𝑐𝑥

𝑘+1,𝑗
= 4𝑐𝑥

𝑘,𝑗
(1 − 𝑐𝑥

𝑘,𝑗
)

// 𝑉 = [V
1
, . . . , V

𝐷
] represents a candidate solution

(8) V
𝑗
= 𝑥
𝑗

min + 𝑐𝑥𝑘+1,𝑗(𝑥
𝑗

max − 𝑥
𝑗

min)

(9) end for
// Greedy selection is applied between {𝑉,𝑋

𝑖
}

(10) if 𝑓(𝑉) > 𝑓(𝑥
𝑖
)

(11) Replace solution𝑋
𝑖
with candidate solution 𝑉

(12) Set 𝑡𝑟𝑖𝑎𝑙 = 0
(13) Break
(14) else
(15) Set 𝑡𝑟𝑖𝑎𝑙(𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑖) + 1
(16) end if
(17) Set 𝑘 = 𝑘 + 1
(18) end while

Algorithm 3: Chaotic search for scout bees.

(1) Set population size SN, the number of maximum cycles MCN and the control parameter limit
(2) Perform Algorithm 2 to fulfill the chaotic initialization
(3) while iteration ≤MCN do

// The employed bees phase
(4) for 𝑖 = 1 to SN do
(5) Produce a new candidate food source 𝑉

𝑖
corresponding to food source𝑋

𝑖
using (29)

(6) if (𝑓(𝑉
𝑖
) > 𝑓(𝑋

𝑖
)) Then 𝑡𝑟𝑖𝑎𝑙(𝑖) = 0

(7) else 𝑡𝑟𝑖𝑎𝑙(𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑖) + 1
(8) end if
(9) end for
(10) Calculate the fitness values of all food source and the probability values 𝑝

𝑖
by using (27)

// The onlooker bees phase
(11) Set 𝑡 = 0, 𝑖 = 1
(12) while 𝑡 < SN do
(13) if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝑝

𝑖
then

(14) Set 𝑡 = 𝑡 + 1
(15) Produce a new candidate food source 𝑉

𝑖
for the onlooker bee

(16) if 𝑓(𝑉
𝑖
) > 𝑓(𝑋

𝑖
) then 𝑡𝑟𝑖𝑎𝑙(𝑖) = 0

(17) else 𝑡𝑟𝑖𝑎𝑙(𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑖) + 1
(18) end if
(19) Set 𝑖 = 𝑖 + 1
(20) if 𝑖 > SN then Set 𝑖 = 1
(21) end if
(22) end while

// The scout bees phase
(23) for 𝑖 = 1 to SN do
(24) if 𝑡𝑟𝑖𝑎𝑙(𝑖) ≥ SN then
(25) Perform Algorithm 3 to implement chaotic search
(26) end if
(27) end for
(28) Set 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1
(29) end while

Algorithm 4: Modified ABC algorithm.
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Table 2: The efficient portfolios with ℎ
0
= 1.8.

Security 𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑥
8

Risk
𝜇
0
= 0.07 0.349 0.050 0.137 0.072 0.222 0.050 0.060 0.060 0.0002236

𝜇
0
= 0.09 0.309 0.050 0.090 0.098 0.283 0.050 0.060 0.060 0.0002255

𝜇
0
= 0.11 0.136 0.063 0.212 0.068 0.350 0.050 0.060 0.060 0.0002406

Table 3: The efficient portfolios under different transaction costs (𝜇
0
= 0.08, ℎ

0
= 1.7).

Security 𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑥
8

TC
𝑘
5
= 0 0.341 0.050 0.090 0.060 0.289 0.050 0.060 0.060 0.00188

𝑘
5
= 0.004 0.350 0.050 0.102 0.060 0.268 0.050 0.060 0.060 0.00234

𝑘
5
= 0.008 0.332 0.050 0.096 0.060 0.292 0.050 0.060 0.060 0.00298

𝑘
5
= 0.015 0.322 0.050 0.105 0.060 0.293 0.050 0.060 0.060 0.00394

Table 4: Robustness analysis for the modified ABC algorithm (𝑢
0
=

0.08, ℎ
0
= 1.8).

SN MCN Limit Objective value Relative error (%)
10 1500 50 2.2474𝐸 − 4 0
20 2000 100 2.2445𝐸 − 4 0.13
20 1500 150 2.2424𝐸 − 4 0.22
30 2500 150 2.2469𝐸 − 4 0.02
30 2000 100 2.2369𝐸 − 4 0.47
40 3000 200 2.2384𝐸 − 4 0.4
40 1500 100 2.2406𝐸 − 4 0.3
50 1500 100 2.2372𝐸 − 4 0.45
60 2000 150 2.2371𝐸 − 4 0.46
70 2000 50 2.2358𝐸 − 4 0.52

Table 5:The comparison of the modified ABC, ABC, and GA (𝑢
0
=

0.09, ℎ
0
= 1.75).

Modified ABC ABC GA
𝑥
1

0.327 0.319 0.311
𝑥
2

0.050 0.050 0.061
𝑥
3

0.090 0.132 0.158
𝑥
4

0.060 0.060 0.060
𝑥
5

0.303 0.269 0.240
𝑥
6

0.050 0.050 0.050
𝑥
7

0.060 0.060 0.060
𝑥
8

0.060 0.060 0.060
Risk 2.203𝐸 − 4 2.234𝐸 − 4 2.270𝐸 − 4

To solve the proposed model (25) by the modified ABC
algorithm, we let the number of food sources 𝑆𝑁 = 20,
the dimension of the problem 𝐷 = 8, maximum cycle
number MCN = 1000, and the control parameter limit =
100. Moreover, in this section, a total of 10 runs for each
experimental setting are conducted and the average results
are given. The values of 𝜔max and 𝜔min are fixed to 1 and 0.2,
respectively.
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Figure 1: Comparison results under different diversification
degrees.

Suppose that the minimum entropy level ℎ
0
= 1.8 and

the efficient portfolios under different expected returns are
shown in Table 2. If the investor is not satisfied with any of
the portfolios obtained, more portfolios can be obtained by
varying the value of 𝜇. FromTable 2, we can see that the larger
the return of portfolio is, the larger the risk of portfolio is.
There is a tradeoff between the return and the risk. Moreover,
for the different expected return 𝜇, the optimal portfolios are
also different.

Next, to demonstrate that the transaction costs have effect
on the optimal portfolio selection, given ℎ

0
= 1.7 and 𝜇 =

0.08, the efficient portfolios under different transaction costs
are given in Table 3. It should be noted that, for simplicity,
we only vary the transaction cost of security 5. We can see
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Figure 2: The performance of the ABC algorithm under different bound constraints.

that although the proportions of securities 2, 4, and 6–8
are the same, the holdings of other securities are different.
Simultaneously, we also see that the total transaction cost also
increases.

Figure 1 gives comparison results of the optimal portfolio
strategies under different diversification degrees; that is, ℎ

0
=

1.7, ℎ
0
= 1.8, ℎ

0
= 1.9, and ℎ

0
= 2.0. The result indicates

that, as the diversification degree of the portfolio changes, the
investors adopt different investment strategies.

Figure 2 presents the performance of the ABC algorithm
with respect to the choice of the lower and upper bounds.
Moreover, to show the robustness of the proposed algorithm,
we use relative error as the index; that is, (maximum −

actual value)/maximum × 100%, where the maximum is the
maximal value of all the objective values calculated. The
detailed results are shown in Table 4. Obviously, the relative
errors do not exceed 1%. That is, the proposed algorithm is
robust to set parameters.

Table 5 presents a comparison of the modified ABC,
ABC, and GA. From Table 5, it can be observed that, for
the 𝑢

0
= 0.09 and ℎ

0
= 1.75, the investment strategy

obtained by modified ABC algorithm outperforms those
produced by standard ABC algorithm and GA, because the
global optimal value obtained by modified ABC algorithm
is minimal. In addition, Figure 3 shows the convergence
characteristic of modified ABC, ABC, and GA. Generally
speaking, the modified ABC algorithm converges within 200
iterations, while ABC and GA algorithms converge within
400 and 430 iterations, respectively. All these results show
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Figure 3: Convergence characteristics of the modified ABC, ABC,
and GA (𝑢

0
= 0.08, ℎ

0
= 1.8).

that the modified ABC algorithm has a better performance
and is efficient in finding optimal portfolios.
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6. Conclusion

Since the security market is so complex, sometimes security
returns have to be predicted mainly by experts’ evaluations
rather than historical data. This paper discusses a portfolio
selection problem with returns given by experts’ evaluations.
By taking the security returns as uncertain variables, this
paper makes use of the uncertain expected value and uncer-
tain variance tomeasure the return and risk of securities. Fur-
thermore, we propose an uncertain mean-variance-entropy
model for portfolio selection with transaction costs. After
that, a modified ABC algorithm is developed to solve the
proposed problem. Finally, a numerical example is presented
to illustrate this modeling concept and to demonstrate the
effectiveness of the proposed algorithm.The results show that
the proposed method is applicable and effective for solving
the portfolio selection problem.
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