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This paper presents an algorithm for the estimation of the direction of arrival (DOA) in underdetermined situations, that is, there is
more sources than sensors. The algorithm performs the estimation in an iterative manner, each iteration consists of two-steps: first
estimation of the DOA of a dominant source via the Independent Component Analysis and then removal of the detected source
from the mixture via time-frequency masking. Experiments, performed using speech signals mixed in real environment when only
two microphones are used but three and four sources are present, demonstrate that the proposed algorithm can estimate the DOAs
more accurately than two previously used underdetermined DOA algorithms.

1. Introduction

The estimation of the direction of arrivals (DOAs) of
sources using a microphone array is an important prob-
lem in multichannel speech signal processing with many
applications, for instance, in teleconference systems. The
DOA estimation is usually performed in the time-frequency
domain. When the number of sources is less than the
number of sensors, the DOA can be estimated by employing
the subspace approach. An example of this is the MUSIC
(MUltiple SIgnal Classification) algorithm [1]. Algorithms
in the subspace approach identify the noise subspace by
using eigenvector decomposition and then estimates the
DOA based on searching the vectors orthogonal to the noise
subspace.

Recently, a DOA estimation algorithm employing the
Independent Component Analysis (ICA) was proposed in
[2]. In this algorithm the DOA is estimated from the ICA
matrices. Unlike the MUSIC algorithm, which exploits only
the second-order statistics, the ICA-based DOA estimation
exploits also higher-order statistics. This algorithm can be
employed when the number of sources is less than or equal to
the number of sensors. However, in practical applications it is
often the case that the number of sources is greater than the
number of sensors due to the presence of various ambient

sounds and limited number of sensors on a device. This is
referred to as the underdetermined situation.

Algorithms for DOA estimation proposed for the under-
determined situations are typically based on the W-disjoint
orthogonality (W-DO) assumption [3] of speech signals in
time-frequency domain, that is, only one source is active
at a time-frequency point. Based on this assumption, the
DOA can be estimated from a collection of time-frequency
signal features that appear to belong to each source. There
have been several algorithms proposed and these mainly
differ in two aspects: the type of signal features used
and the way to find the clusters of these features. The
normalised time-frequency samples were used as features
in [4], their amplitudes and phases were used in [5–8],
and Hermitian angle in [9]. To find the cluster centres,
histogram method was used in [5–7], the k-means clustering
in [4, 8, 9] and the Gaussian mixture model in [8]. A
combination of the use of time-frequency masking and ICA
was proposed in [10] for underdetermined blind source
separation. This algorithm first aims to convert the situation
to determined by removing a number of sources from
the mixture signals, which is performed by employing
the clustering-based DOA estimation and time-frequency
masking, and then applies the ICA to separate the remaining
sources.
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In this paper, we present an underdetermined DOA
estimation algorithm employing the ICA and time-frequency
masking. The proposed algorithm performs the DOA esti-
mation in an iterative manner; each iteration consists of
the estimation of the DOA of a dominant source via the
ICA and of the removal of the dominant source from the
signal mixtures via time-frequency masking. As a result,
the DOAs of the sources contained in the mixture will be
estimated one by one. Experiments are performed using
speech signals mixed in real environment. Evaluations are
presented for various frame-sizes and lengths of the signal.
Experimental results demonstrate that the proposed algo-
rithm can estimate the DOAs for three and four sources using
only two microphones with a better accuracy than the above
mentioned clustering-based and combined time-frequency
masking & ICA algorithms.

2. The Mixing Model and Independent
Component Analysis

2.1. Mixing Model. In real-world environments, the micro-
phones capture not only the original sources but also their
delays due to the reverberation. Considering there are N
sources and M microphones, this scenario can be written
using the convolutive mixing model as

xm(t) =
N∑

n=1

L∑

l=0

hmn(l)sn(t − l), (1)

where m = 1, . . . ,M, sn is the signal from the source n,
xm is the mixture signal captured by the microphone m,
and hmn is the impulse response from the source n to the
microphone m with L being the maximum time delay due
to the reverberation.

The DOA estimation is usually performed in the time-
frequency domain, which is obtained by splitting the entire
signal into short segments (frames) and taking the short-
time Fourier transform of each frame. In this domain, the
convolutive mixtures can be approximated as instantaneous
mixtures and the mixing model can then be written in matrix
notation as

X
(
f , l
) = H

(
f
)

S
(
f , l
)
, (2)

where f is the frequency index and l is the frame-time index.
H( f ) is M by N mixing matrix corresponding to the impulse
response hmn, and X( f , l) = [X1( f , l), . . . ,XM( f , l)]T and
S( f , l) = [S1( f , l), . . . , SN ( f , l)]T denote the vectors of the
short-time Fourier transform of the mixture signals at all
the microphones and of the source signals, respectively, at
frequency f and frame-time l.

2.2. Independent Component Analysis. The Independent
Component Analysis (ICA) can be used to separate the
observed mixture signals and as such also to estimate the
DOAs of the sources when the number of sources N is less or
equal to the number of microphones M. As such, we employ
ICA by considering that the number of independent source

signals is equal to M. The ICA technique is used for each
frequency bin f to separate the mixture signals X( f , l) by
means of

Y
(
f , l
) = W

(
f
)

X
(
f , l
)
, (3)

where the index l goes over all frames, Y( f , l) = [Y1( f , l),
. . . ,YM( f , l)]T is the vector of the estimated separated
signals. The W( f ) is the M × M ICA unmixing matrix
which is obtained by applying an ICA algorithm on a
collection (over all frames l) of X( f , l). There are several ICA
algorithms, each derived based on a different criteria. One of
the most widely used is the negentropy-based FastICA [11],
which we also employed in this paper.

3. The Proposed Underdetermined
DOA Estimation via ICA and
Time-Frequency Masking

The proposed algorithm aims to estimate the DOA of N
source signals which are observed by M microphones in
underdetermined situations, that is, M < N . The ICA
itself cannot be used to estimate the DOA of the sources
directly in underdetermined situations. However, since the
ICA aims to estimate independent source components, the
estimated signals Y1( f , l), . . . ,YM−1( f , l) should correspond
to any (M − 1) out of N of the source signals and the
YM( f , l) will be then a mixture of the remaining N − (M −
1) sources. Based on this, it should be possible to use the
ICA for estimation of the DOA of up to M − 1 sources
from M mixture signals. This principle was exploited in [12]
where it was employed for separation of dominant sources
in underdetermined situations, but the number of dominant
sources did not exceed the number of microphones. Here
we employ this principle for the DOA estimation of all the
sources, number of which is greater than the number of
microphones.

Considering the above principle of the ICA and the
sparseness of speech in the time-frequency domain, we
propose a scheme in which the ICA is employed iteratively
to estimate the DOAs of the sources. Each iteration of
the proposed algorithm consists of two steps: (i) the ICA-
based estimation of the DOA of a dominant source and
(ii) the removal of the current dominant source via time-
frequency masking. By iteratively applying the above two
steps, one can obtain the DOA estimates of all sources. The
iterative process can be stopped based on the number of
sources being reached, when this information is available,
or otherwise based on the energy of the remaining mixture
spectrum falling below a given threshold value. These two
steps of the iterative process are described in details in the
following. Note that for clarity the algorithm is demonstrated
considering two microphones, however, the same procedure
applies in a case of more microphones.

3.1. The ICA-Based DOA Estimation of a Dominant Source.
The application of an ICA algorithm as described in
Section 2.2 provides the ICA unmixing matrix W( f ) for
each frequency bin f . The DOA can be estimated by using
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Figure 1: The masking function employed in the proposed
algorithm.

the inverse of W( f ) or by searching for a minimum in the
directivity pattern [2]. The former method was employed
here. Denoting the inverse of W( f ) by A( f ), the DOA can be
calculated using the elements of each column n of the matrix
A( f ) as

θn
(
f
) = cos−1

(
angle

(
A2n
(
f
)
/A1n

(
f
))

2π f c−1d

)
, (4)

where d denotes the distance of the microphones and c is the
speed of sound. The term angle(A2n( f )/A1n( f )) denotes the
phase difference between the two elements of the nth column
vector of A( f ). The obtained DOAs θn( f ) for n = 1 and n =
2 are both used.

After the above ICA-based DOA estimation procedure
is performed for each frequency bin f , a histogram of the
obtained DOAs collected over all frequency bins (and each
column n) is constructed and the DOA of the dominant
source in the current iteration, denoted by θ∗, is obtained
by finding the highest peak of the histogram. Note that if the
current DOA estimate is close to a DOA estimate obtained
in previous iterations, they are considered belonging to the
same source and thus the source DOA is updated by their
average.

3.2. Removing of the Source by Time-Frequency Masking. In
this step, the current dominant source is removed from the
mixture spectra. Such modified mixture spectra are then
used in the following iteration to estimate the DOA of
another source.

As demonstrated in [3], a large percentage of speech
energy is carried by a small percentage of time-frequency
samples, and as such the W-DO assumption is approximately
satisfied. Therefore, the current dominant source can be
removed from the mixture by employing time-frequency
masking. This is performed by multiplying the mixture
spectrum at the microphone m with a masking function F
at each time-frequency point as

Xm
(
f , l
) = F

(
θ
(
f , l
)
, θ∗

)
Xm
(
f , l
)
, (5)

where θ( f , l) is the DOA of a source at the time-frequency
point ( f , l), which is calculated based on the phase differ-
ence of the time-frequency points of microphone mixture
signals in X( f , l), that is, θ( f , l) is calculated using (4)
but replacing the term angle(A2n( f )/A1n( f )) by the term
angle(X2( f , l)/X1( f , l)). The θ∗ in (5) denotes the DOA,
from the set of DOAs estimated so far in Section 3.1. The
masking function F is designed to deweight the signal from
the dominant source DOA θ∗ in the mixture, that is, it will
have a value close to zero when θ( f , l) is close to θ∗. The F
is defined as

F
(
θ
(
f , l
)
, θ∗

) = 1
1 + e−β(|θ( f ,l)−θ∗|−Δ) , (6)

where parameters β and Δ determine the slope and the
centre-offset of the curve, respectively. In our experiments,
setting β = 50 and Δ = 20◦ provided good performance. The
masking function with these parameters when θ∗ = 90◦ is
depicted in Figure 1.

4. Experimental Results

Experiments were performed using speech signals mixed in
real environment, which are available from [13]. These are
English speech utterances of about 7.3 s duration, sampled
at 8 kHz. The sources were 1.2 m away from a linear
microphone array containing four microphones at 4 cm of
each other—note that only two adjacent microphones were
used at a time for experiments. The DOAs of the four sources
are 30◦, 70◦, 110◦, and 150◦ in front of the microphone
array. The configuration of the sources and microphones is
shown in Figure 2. In the experiments, the entire mixture
signals of 7.3 s duration were split into 10 segments of a
specified length, each segment shifted by the corresponding
number of samples in order to cover the entire 7.3 s signal.
A given segment of the mixture signals was split into frames
of a specified length, with 128 samples shift between frames,
and DFT was applied. Experiments were performed using
various lengths of the segment and frame. The negentropy-
based complex FastICA algorithm [11] was employed for
estimation of the ICA unmixing matrix. Experimental results
are presented in terms of the mean absolute error of the
estimated DOAs to the true DOAs. The results for each
source are obtained as the average over the DOA errors
from the 10 experimental runs (corresponding to the signal
segments) for a given microphone combination and over
all the two adjacent microphone combinations. The overall
DOA error is obtained as the average over the DOA errors of
all sources.

Since the proposed algorithm employs ICA to provide
the DOA estimate of a dominant source in the mixture,
we first analyse how much/often a source in the mixture is
dominant. As the ICA exploits the second- and higher-order
statistics, this analysis is performed in terms of the variances
and kurtoses of the sources for each frequency bin. Note that
the variances and kurtoses are normalised such as to sum
to 1 over all the sources. As we are using two microphones,
we assess the difference between the variance/kurtosis of
the dominant (i.e., strongest) and the third strongest source
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Figure 2: Configuration of the sources and microphones (repro-
duced based on [13]).

(in both cases of three and four sources) in the mixture. If
the difference is large, the DOA estimate of the dominant
source will be affected little by the third strongest source
(and therefore also by the fourth in the case of four sources).
The histograms of the differences in variances and kurtoses
in the case of three and four source signals in the mixture
are depicted in Figure 3. It can be seen that the means of
the histograms are located at around 0.4-0.5 in the case
of three sources and at around 0.2-0.3 in the case of four
sources. The histograms indicate that in the case of three
sources, the difference of the normalised variance/kurtosis
between the dominant and the third strongest source signal
was larger than 0.2 in 91%/86% of the frequency bins.
The corresponding results for the case of four sources were
75%/67%. These results indicate that there is a large amount
of frequency bins when one source has considerably larger
value of variance and kurtosis. Corresponding to these
results, it was found that the estimated DOA of a source
was within 10◦ range of the true DOA in 86% and 81%
of the frequency bins in the case of three and four sources,
respectively.

Next, we present the evaluation of the proposed algo-
rithm with regard to the automatic estimation of the
number of sources in the mixture. The iterative process of
the proposed algorithm was stopped automatically based
on the remaining energy in the signal and the difference
between the remaining energies in the current and previous
iterations. There were in total 210 experimental runs of the
algorithm, using three and four sources and various segment
lengths of the signal. Out of these 210 runs, the number
of sources was estimated incorrectly in 9 cases, which gives
approximately 4.3% error in the estimation of the number
of sources. In Figure 4 are shown examples of histograms of
the DOAs estimated over all frequency bins obtained from
our experiments when three sources at 30◦, 70◦, and 110◦

were present. It can be seen that the DOA of the source at
110◦ was estimated first, then the source at 70◦ and finally
source at 30◦. After these three iterations of the algorithm,
over 95% of the signal energy was removed and the algorithm
was considered as converged. All the experimental results of
the proposed algorithm presented below were obtained by
using the automatic estimation of the number of sources.

Here, we present evaluations of the proposed algorithm
in order to find the effect of the frame length (used to split
the signal) on the DOA estimation accuracy. Experiments
were performed with the frame length set to 256, 512, 1024,
and 2048 samples, respectively. The presented results are
obtained as the average over ten runs with signal segments of
4 s length. The obtained overall DOA errors are presented in
Figure 5. It can be seen that the frame length of 1024 samples,
which corresponds to 128 ms, provided the best performance
and this is used in all of the following experiments. These
results show that the proposed ICA-based DOA estimation
achieves better accuracy with longer frame length than the
20–30 ms which is typically used in speech processing. The
obtained results reflect the use of similar long frame length
by others, for example, [12].

Next, we performed experiments to demonstrate the
performance as a function of the length of the signal used
for the DOA estimation. The segment length was set to a
value from 2 s to 7 s, in 1 s steps. The obtained results are
presented in Figure 6. It can be seen that as the length
of the signal decreases, the DOA error increases, however,
the increase is only mild. This indicates that even a short
length of the signal, such as 2 s, can provide acceptable DOA
accuracy, which may be important in situations with fast
moving sources.

Finally, we present experimental results obtained by the
proposed algorithm and compare them to two previously
used algorithms. These experiments were performed for
the cases of three and four sources when two microphones
are used, using the signal segment length of 7 s. The first
algorithm included for comparison, denoted as “Algorithm
1”, was a conventional algorithm presented in [4], which per-
forms k-means clustering of the normalised time-frequency
points. The second algorithm included for comparison,
denoted as “Algorithm 2”, was based on the work presented
in [10]. Although the task in [10] was the source separation
and only for the case of three sources and two microphones,
we implemented the part of the algorithm corresponding
to the DOA estimation as follows. First, the conventional
clustering-based DOA estimation, as described above, was
performed to provide three and four DOA estimates for
the case of three and four sources, respectively. Then, in
the case of three sources, the source corresponding to the
estimated DOA with the largest number of assigned time-
frequency points was removed from the mixture signals.
Correspondingly, in the case of four sources, two sources
were removed from the mixture signals. This led to a
determined situation and as such the ICA was employed
to estimate the DOAs of the remaining two sources. Both
of the algorithms included for comparison considered the
number of sources being known and the frame length
was set to 512 samples as this obtained the best results.
The results are presented in Table 1. Comparing the two
previous algorithms, it can be seen that the “Algorithm 2”
obtained better results than the “Algorithm 1”, which can be
attributed to the use of higher-order statistics by employing
the ICA for estimation of the DOAs of the two remaining
sources. It can be seen that the proposed algorithm obtained
significantly lower DOA estimation error than both of the
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Figure 3: Histogram of the differences between the variances (left) and kurtoses (right) of the dominant and the weakest source (for the
case of three sources) (a) and of the dominant and the second weakest source (for the case of four sources) (b).

Table 1: Mean absolute error in estimated DOAs (in degrees) obtained by the proposed algorithm and the previous algorithms when two
microphones are used and three/four sources are present.

Algorithm Mean absolute error in estimated DOAs (◦)

3 sources 4 sources

s1(30◦) s2(70◦) s3(110◦) s1(30◦) s2(70◦) s3(110◦) s4(150◦)

Algorithm 1 9.6 11.6 11.8 20.4 16.4 11.6 15.9

Algorithm 2 8.4 6.5 8.5 11.5 13.0 12.3 13.3

Proposed 6.1 4.2 3.6 8.7 5.3 4.4 6.5

previous algorithms for both cases of three and four sources
present.

5. Conclusion

In this paper, we presented an underdetermined DOA
estimation algorithm based on the combination of the ICA
and time-frequency masking. The algorithm performed the
estimation in an iterative manner, each iteration consists
of the estimation of the DOA of a dominant source via

ICA and then the removal of this source via time-frequency
masking. Experiments were performed using speech signals
mixed in real environment. Evaluations of the proposed algo-
rithm were presented for various lengths of the frame and
various lengths of the signal. Comparisons were provided
with two previously used underdetermined DOA estimation
algorithms. Experimental results demonstrated that the
proposed algorithm can provide more accurate DOAs than
the previous algorithms when only two microphones are
used and three or four sources are present.
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Figure 4: Histogram of the estimated DOAs via ICA from the original mixtures (a), from mixtures after the source from θ1 was masked (b),
and from mixtures after the sources from both θ1 and θ2 were masked (c).
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Figure 5: Overall mean absolute error in estimated DOAs (in
degrees) obtained by the proposed algorithm as a function of the
frame length when two microphones are used and three sources are
present. The signal length of 4 s was used.
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Journal of Electrical and Computer Engineering 7

Acknowledgment

This paper was supported by UK EPSRC Grant EP/F036132/
1.

References

[1] R. O. Schmidt, “Multiple emitter location and signal param-
eter estimation,” IEEE Transactions on Antennas and Propaga-
tion, vol. 34, no. 3, pp. 276–280, 1986.

[2] H. Sawada, R. Mukai, and S. Makino, “Direction of arrival
estimation for multiple source signals using independent com-
ponent analysis,” in Proceedings of the International Symposium
on Signal Processing and Its Applications, vol. 2, pp. 411–414,
2003.
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