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In some practical problems, for instance in the control of mechanical systems using accelerometers
as sensors, it is easier to obtain the state-derivative signals than the state signals. This paper shows
that (i) linear time-invariant plants given by the state-space model matrices {A,B,C,D} with
output equal to the state-derivative vector are not observable and can not be stabilizable by using
an output feedback if det(A) = 0 and (ii) the rejection of a constant disturbance added to the input
of the aforementioned plants, considering det(A)/= 0, and a static output feedback controller is not
possible. The proposed results can be useful in the analysis and design of control systems with
state-derivative feedback.

1. Introduction

There exist many results in the literature on the feedback control of systems described
through state variables [1]. State feedback or output feedback is usually used, but in some
cases the state-derivative feedback can be very useful to achieve a desired performance
[2].

In the last years, the state-derivative feedback of linear systems has been studied
by some researchers. In [3], the authors proposed a formula similar to the Ackermann
formula, for the pole-placement design with a state-derivative feedback gain. In [4, 5], a
linear quadratic regulator (LQR) controller design scheme for standard state-space systems
was presented. The procedure described in [6] allows the design of state-derivative feedback
control systems using state feedback design methods. Other results about the pole placement
of multivariable system, with state-derivative feedback, can be found in [7–13].
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There exist some practical problems where the state-derivative signals are easier to
obtain than the state signals, for instance, in the control of mechanical systems for the
suppression of vibration, where the main sensors are accelerometers. In this case, from
the signals of the accelerometers it is possible to reconstruct the velocities with a good
precision but not the displacements [3]. Defining the velocities and displacements as the state
variables, one has available feedback for the state-derivative signals. Because of their low cost,
accelerometers have been used in the industry, for instance, in the following applications:
suppression of vibration in mechanical systems [3, 14, 15], control of car wheel suspension
systems [16], aeronautical engineering [5, 15], and civil engineering [4]. Recently, new LMI-
based state-derivative feedback design methods have been presented [17, 18]. These design
methods allow new specifications and also the consideration of a broader class of plants than
the related results available in the literature [3, 4, 7, 16–19].

This paper investigates the observability, stabilizability, and disturbance rejection
of linear time-invariant plants given by the state-space model matrices {A,B,C,D}, with
output equal to the state-derivative vector. Section 2 shows that if det(A) = 0, then the
aforementioned plants are not observable, are unstable (because they have at least one
pole equal to zero), and cannot be stabilizable by using output feedback. The assumption
det(A)/= 0 has been considered in the linear state-derivative designs [3, 6, 7, 17–20]. The
proposed results in Section 2 elucidate and give more details about the condition det(A) = 0.
The necessity of the condition det(A)/= 0, considering the state-derivative feedback, is a new
result offered in this paper. Section 3 shows that if det(A)/= 0, then the plants {A,B,C,D}
cited above present at least one transmission zero equal to zero. Furthermore, due to this fact,
as described in Section 3, the disturbance rejection of a constant disturbance added to the
plant input is not possible, by using a static state-derivative feedback. This conclusion does
not invalidate the application of the state-derivative feedback controllers, because the main
use of these controllers is in the suppression of vibrations, where the disturbances usually
have a mean value equal to zero. This paper is an expanded and updated version of [21].
Other results about the stabilizability and stability robustness of state-derivative feedback,
including the fragility, can be found in [22].

2. Observability and Stabilizability of Systems with
State-Derivative Feedback

In the control of linear time-invariant systems, represented by the state-space model matrices
{A,B,C,D}, the design of state-derivative feedback usually supposes that det(A)/= 0 [3,
6, 7, 17–19]. In this paper this condition is investigated with details and related with the
observability and stability of this system. The main idea in this study was the representation
of the state-derivative vector ẋ(t) as the output of this system, y(t).

Lemma 2.1. Consider the linear time-invariant system, with input u(t) and output y(t) described by

ẋ(t) = Ax(t) + Bu(t),

y(t) = ẋ(t) = Ax(t) + Bu(t) = Cx(t) +Du(t),
(2.1)

where A ∈ R
n×n, B ∈ R

n×m, and x(t) ∈ R
n×1.

Then, this system is observable if and only if det(A)/= 0.
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Proof. Note that the matrices of the system (2.1) are the following: {A,B,C,D} = {A,B,A, B}.
The observability matrix of the system (2.1) is given by [23]

O =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

CA

CA2

...

CAn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

A2

A3

...

An

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In

A

A2

...

An−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A. (2.2)

Then, from (2.2), it follows from the Sylvester inequality [23] that

rank(O) = rank

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In

A

A2

...

An−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= rank(A) = n (2.3)

if and only if det(A)/= 0. Thus, the system (2.1) is observable if and only if det(A)/= 0.

The next lemma presents results about the poles of the system (2.1), when det(A) = 0.

Lemma 2.2. Suppose that det(A) = 0 and rank(A) = q < n. Then, the system (2.1) can
be decomposed, by an equivalent transformation, into observable and unobservable parts, and the
unobservable part has n − q poles at s = 0.

Proof. Since det(A) = 0 and rank(A) = q < n, the matrix A can be represented as follows:

A = RA0, (2.4)

where R ∈ R
n×q, A0 ∈ R

q×n, and rank(A0) = q. Define A01 ∈ R
n−q×n, rank(A01) = n − q, and

A0A
T
01 = 0. Then, performing the linear transformation

z = Tx,

T =

⎡
⎣ A01
[
A0A

T
0

]−1
A0

⎤
⎦,

(2.5)

the system (2.1) can be transformed into

ż =
(
TAT−1

)
z + TBu,

y =
(
AT−1

)
z + Bu,

(2.6)
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where

T−1 =
[
AT

01

[
A01A

T
01

]−1
AT

0

]
. (2.7)

From (2.4)–(2.7) note that

AT−1 = RA0

[
AT

01

[
A01A

T
01

]−1
AT

0

]
=

[
0 RA0A

T
0

]
. (2.8)

Thus, from (2.6)–(2.8) and defining zT = [zTaz
T
b
], za ∈ R

n−q, and zb ∈ R
q, one has

y = AT−1z + Bu = RA0A
T
0zb + Bu. (2.9)

Now, from (2.4)–(2.7) note that

ż =

[
ża

żb

]

=

⎡
⎣ A01
[
A0A

T
0

]−1
A0

⎤
⎦RA0

⎡
⎣ A01
[
A0A

T
0

]−1
A0

⎤
⎦
T[
za

zb

]
+

⎡
⎣ A01
[
A0A

T
0

]−1
A0

⎤
⎦Bu

=

⎡
⎣0 A01RA0A

T
0

0
[
A0A

T
0

]−1
A0RA0A

T
0

⎤
⎦
[
za

zb

]
+

⎡
⎣ A01B
[
A0A

T
0

]−1
A0B

⎤
⎦u.

(2.10)

Hence, observe that za cannot be detected from the output y, because za is not connected to y
in (2.9) and also to żb in (2.10). Therefore the subsystem with state vector za is not observable.
Now, from (2.10) it follows that

ża = A01RA0A
T
0zb +A01Bu, (2.11)

and this system has n − q poles at s = 0. This completes the proof of Lemma 2.2.

The next lemma addresses the stabilization of system (2.1).

Lemma 2.3. If det(A) = 0, the system (2.1) cannot be stabilizable by using an output feedback.

Proof. From Lemma 2.2, if det(A) = 0 and rank(A) = q < n, then the system (2.1) is
unobservable and the unobservable part has n − q poles in s = 0. Thus, the unobservable part
is not connected to the output and it is not possible to change its poles by using an output
feedback. Therefore, the stabilization with an arbitrary output feedback is not possible. The
lemma is proved.
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3. Disturbances Rejection with State-Derivative Feedback

Results on the rejection of constant disturbances, added to the input of the plant (2.1),
considering the state-derivative feedback are presented. Initially, the next lemma shows that
plant (2.1) has at least one transmission zero at s = 0 if det(A)/= 0.

Lemma 3.1. If det(A)/= 0, then the system (2.1) has at least one transmission zero at s = 0.

Proof. Consider the system (2.1), given by

ẋ(t) = Ax(t) + Bu(t),

y(t) = ẋ(t).
(3.1)

Applying the Laplace transform and considering the initial conditions equal to zero, then

sX(s) = AX(s) + BU(s),

sX(s) −AX(s) = BU(s),

(sI −A)X(s) = BU(s),

X(s) = (sI −A)−1BU(s),

Y (s) = sX(s).

(3.2)

From (3.2) it follows that

Y (s) = s(sI −A)−1BU(s). (3.3)

Thus, supposing that det(A)/= 0, then A−1 can be calculated and

s(sI −A)−1B
∣∣∣
s=0

= −sA−1B
∣∣∣
s=0

= 0. (3.4)

This completes the proof of the existence of transmission zeros at s = 0.

The existence of transmission zeros at s = 0, as demonstrated in Lemma 3.1, is a
problem in the rejection of constant disturbances added to the plant input with a state-
derivative feedback controller. Lemma 3.2 illustrates this fact.
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Lemma 3.2. Consider the plant, with input u and output y,

ẋ(t) = Ax(t) + B(u(t) + ξ),

y(t) = ẋ(t) = Ax(t) + B(u(t) + ξ),
(3.5)

where x(t) ∈ R
n, u(t) and ξ ∈ R

m, ξ is an unknown but constant disturbance, and the state-
derivative controller

u(t) = −Kẋ(t), det(I + BK)/= 0. (3.6)

Suppose that det(A)/= 0 and the equilibrium point xe = −A−1Bξ of the controlled system (3.5) and
(3.6) is globally asymptotically stable. Then, x(∞) is independent of the controller gainK and is given
by

x(∞) = lim
t→∞

x(t) = −A−1Bξ. (3.7)

Proof. From (3.5) and (3.6) note that

ẋ(t) = Ax(t) + B(−Kẋ(t) + ξ),

(I + BK)ẋ(t) = Ax(t) + Bξ,

ẋ(t) = (I + BK)−1Ax(t) + (I + BK)−1Bξ.

(3.8)

Applying the Laplace transform in (3.8), observe that

sX(s) − x(0) = (I + BK)−1AX(s) + (I + BK)−1Bξs−1,

X(s) =
(
sI − (I + BK)−1A

)−1(
(I + BK)−1Bξs−1 + x(0)

)
.

(3.9)

Thus, considering that the equilibrium point xe of (3.5) and (3.6) is globally asymptotically
stable, from the final value theorem in [1] it follows that

x(∞) = lim
s→ 0

sX(s) = lim
s→ 0

s
(
sI − (I + BK)−1A

)−1
(I + BK)−1Bξs−1

= −A−1(I + BK)(I + BK)−1Bξ = −A−1Bξ.

(3.10)

This establishes the lemma.

Lemma 3.2 shows that x(∞) given in (3.7) is independent of the state-derivative
matrix K defined in (3.6). This fact illustrates the difficulty to attenuate the influence of ξ
in x(∞) in controlled systems with state-derivative feedback, for instance, given by (3.5) and
(3.6).

Fortunately, the main application of derivative feedback is in control of vibrations in
mechanical systems, where in general the disturbances have a mean value equal to zero.
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m2 y2

u2 ξ2

Figure 1: Multivariable (MI) mass-spring system with damping.

4. Example

Consider the mass-spring system with damping studied in [24] and shown in Figure 1. In
this example, the idea was to illustrate the proposed results in Lemma 3.2. This system is a
simple model of a controlled vibration absorber, in the sense of reducing the oscillations of
the masses m1 and m2. The coefficients of elasticity of the springs are k1 and k2 and b1 is the
damping coefficient. In this case, the model contains two control inputs, u1(t) and u2(t), and
two unknown but constant disturbances, ξ1 and ξ2. This system is described by the following
equations [6]:

m1ÿ1(t) + b1
(
ẏ1(t) − ẏ2(t)

)
+ k1y1(t) = u1(t) + ξ1,

m2ÿ2(t) + b1
(
ẏ2(t) − ẏ1(t)

)
+ k2y2(t) = u2(t) + ξ2.

(4.1)

The state-space form of the mechanical system in Figure 1 can be represented by (3.5),
considering as state variables x(t) = [x1(t) x2(t) x3(t) x4(t)]

T , where x1(t) = y1(t), x2(t) =
ẏ1(t), x3(t) = y2(t), x4(t) = ẏ2(t), u(t) = [u1(t)u2(t)]

T , ξ = [ξ1ξ2]
T ,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−k1

m1

−b1

m1
0

b1

m1

0 0 0 1

0
b1

m2

−k2

m2

−b1

m2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1
m1

0

0 0

0
1
m2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.2)

Consider the state-derivative feedback control law (3.6). Then, the controlled system (3.5),
(3.6), and (4.2) can be described by (3.8).
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For the design of a suitable gainK using the results from Theorem 1 in [24], first define
the following matrices:

An = A−1, Bn = −A−1B. (4.3)

Then, from (4.2), (4.3) and m1 = 10 kg, m2 = 30 kg, k1 = 2.5 kN/m, k2 = 1.5 kN/m, and
b1 = 30 Ns/m, one has

An =

⎡
⎢⎢⎢⎢⎢⎣

−0.0120 −0.0040 0.0120 0

1.0000 0 0 0

0.0200 0 −0.0200 −0.0200

0 0 1.0000 0

⎤
⎥⎥⎥⎥⎥⎦
,

Bn =

⎡
⎢⎢⎢⎢⎢⎣

0.4000 × 10−3 0

0 0

0 0.6667 × 10−3

0 0

⎤
⎥⎥⎥⎥⎥⎦
.

(4.4)

Note that (An, Bn) is controllable.
The idea of Theorem 1 in [24] was the design of state-derivative feedback gains, using

a designed state feedback gain.
Thus, consider the pole placement as design technique and the following closed-loop

poles for the controlled system (3.8):

λ1 = −10, λ2 = −15, λ3,4 = −2 ± 10i. (4.5)

Now, the following closed-loop system is defined [24]:

ẋn(t) = Anx(t) + Bnun(t),

un(t) = −Kxn(t).
(4.6)

From (4.6) it follows that

ẋn(t) = (An − BnK)xn(t). (4.7)

Then, design the gain K such that the system (4.7) has poles equal to λ−1
1 , λ−1

2 , λ−1
3 , and λ−1

4
[24].
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Table 1: Disturbances and controller gains of the simulated system.

Time (s) ξ1 [N] ξ2 [N] K xe = −A−1B[ξ1 ξ2]
T

0 � 20 0 0 K0 [0 0 0 0]T

20 � 40 300 0 K0 [0.12 0 0 0]T

40 � 60 0 −300 K0 [0 0 − 0.2 0]T

60 � 80 300 0 0 [0.12 0 0 0]T

80 � 100 0 −300 0 [0 0 − 0.2 0]T

100 � 120 0 0 0 [0 0 0 0]T

Now, from (4.3) and λi /= 0, i = 1, 2, 3, 4, note that

(An − BnK)−1 =
(
A−1 +A−1BK

)−1
=
(
A−1(I + BK)

)−1
= (I + BK)−1A, (4.8)

and from (4.7) and Lemma 1 in [24], λ1, λ2, λ3, and λ4 are the eigenvalues of (I + BK)−1A.
Therefore, λ1, λ2, λ3, and λ4 are also the poles of the controlled system (3.5), (3.6), and (4.2),
described in (3.8).

From Theorem 1 in [24], the poles for the new closed-loop system with state feedback
(4.7), with An and Bn given in (4.4), are the following:

λ−1
1 = −0.1000, λ−1

2 = −0.0667, λ−1
3,4 = −0.0192 ± 0.0962i. (4.9)

Thus, with these parameters, one can easily obtain, through the command place of MATLAB,
the feedback gain matrix K0 below:

K0 =

⎡
⎣

178.9532 −6.4647 323.3542 19.8478

−79.6370 −11.4321 152.3204 −26.1863

⎤
⎦, (4.10)

such that, for K = K0, the poles of (4.7) are equal to λ−1
1 , λ−1

2 , λ−1
3 , and λ−1

4 .
Note that, for K = 0, the poles of the system given in (3.8) are equal to

λ1,2 = −0.14962 ± 15.6198i, λ3,4 = −0.5038 ± 7.1074i. (4.11)

Table 1 above shows the values of ξ1, ξ2, and K in the time intervals, adopted in a digital
simulation of the controlled system (3.8) and (4.2).
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Figure 2: Transient response of the controlled system (3.8) and (4.2), with x(0) = [0.1 0 0.1 0]T , distur-
bances and gains given in Table 1.
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Figure 3: Control inputs of the controlled system (3.8) and (4.2), with x(0) = [0.1 0 0.1 0]T , disturbances
and gains given in Table 1.

Figures 2 and 3 display the simulation results of the controlled system (3.5), (3.6), and
(4.2), which can be given by (3.8), with the initial condition

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1

0

0.1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.12)

and the conditions described in Table 1.
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For ξ = [ξ1 ξ2]
T = [300 0]T , at t ∈ [20, 40) and t ∈ [60, 80), from Lemma 3.2, (3.7), and

(4.2), one has

x(∞) = lim
t→∞

x(t) = −A−1Bξ =

⎡
⎢⎢⎢⎢⎢⎣

0.12

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

(4.13)

and for ξ = [ξ1 ξ2]
T = [0 − 300]T , at t ∈ [40, 60) and t ∈ [80, 100) then from Lemma 3.2, (3.7)

and (4.2) one has

x(∞) = lim
t→∞

x(t) = −A−1Bξ =

⎡
⎢⎢⎢⎢⎢⎣

0

0

−0.2

0

⎤
⎥⎥⎥⎥⎥⎦
. (4.14)

Note that Figure 2 illustrates these results.

5. Conclusions

The paper presented some conclusive results about the observability, stabilizability, and
disturbance rejection of linear time-invariant plants with output equal to the state-derivative
vector. There exist many results in the literature about these subjects, for multivariable linear
time-invariant systems [23]. However, the authors did not find results for the special case
where the plant output is the state-derivative vector. Thus, these results can be useful in the
analysis and design of control systems with state-derivative feedback. Future researches in
this subject include the analysis and control design of nonlinear state-derivative feedback.
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