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The notions of union-soft semigroups, union-soft l-ideals, and union-soft r-ideals are introduced, and related properties are
investigated. Characterizations of a union-soft semigroup, a union-soft l-ideal, and a union-soft r-ideal are provided.The concepts
of union-soft products and union-soft semiprime soft sets are introduced, and their properties related to union-soft l-ideals and
union-soft r-ideals are investigated. Using the notions of union-soft l-ideals and union-soft r-ideals, conditions for an ordered
semigroup to be regular are considered.The concepts of concave soft sets and critical soft points are introduced, and their properties
are discussed.

1. Introduction

The uncertainty which has appeared in economics, engi-
neering, environmental science, medical science and social
science, and so forth is too complicated to be captured within
a traditional mathematical framework. Molodtsov’s soft set
theory [1] is a kind of new mathematical model for coping
with uncertainty from a parameterization point of view.
In soft set theory, the problem of setting the membership
function does not arise, whichmakes the theory easily applied
to many different fields. At present, works on the soft set
theorywith algebraic applications are progressing rapidly (see
[2–5]). Mainly, Kehayopulu et al. studied ordered semigroups
(see [6–10]). Feng et al. discussed soft relations in semigroups
(see [11]) and explored decomposition of fuzzy soft sets with
finite value spaces (see [12]). Also, Feng and Li [13] considered
soft product operations. Jun et al. [14] applied the concept
of soft set theory to ordered semigroups. They applied the
notion of soft sets by Molodtsov to ordered semigroups
and introduced the notions of (trivial, whole) soft ordered
semigroups, soft ordered subsemigroups, soft 𝑙-ideals, soft
𝑟-ideals, and 𝑙-idealistic and 𝑟-idealistic soft ordered semi-
groups. They investigated various related properties.

The aim of this paper is to lay a foundation for providing
a soft algebraic tool (in ordered semigroups) in considering
many problems that contain uncertainties. We introduce
the notions of union-soft semigroups, union-soft 𝑙-ideals,
and union-soft 𝑟-ideals and investigate their properties.
We consider characterizations of a union-soft semigroup, a
union-soft 𝑙-ideal, and a union-soft 𝑟-ideal. We introduce the
concepts of union-soft products and union-soft semiprime
soft sets and investigate their properties related to union-soft
𝑙-ideals and union-soft 𝑟-ideals. Using the notions of union-
soft 𝑙-ideals and union-soft 𝑟-ideals, we provide conditions
for an ordered semigroup to be regular. We also introduce
the concepts of concave soft sets and critical soft points and
discuss their properties.

2. Preliminaries

2.1. Basic Results on Ordered Semigroups. An ordered semi-
group (or, po-semigroup) is an ordered set (𝑆, ≤) which is a
semigroup such that

(∀𝑎, 𝑏, 𝑥 ∈ 𝑆) (𝑎 ≤ 𝑏 󳨐⇒ 𝑥𝑎 ≤ 𝑥𝑏, 𝑎𝑥 ≤ 𝑏𝑥) . (1)
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For 𝐴 ⊆ 𝑆, we denote

(𝐴] := {𝑡 ∈ 𝑆 | 𝑡 ≤ ℎ for some ℎ ∈ 𝐴} . (2)

For any 𝑎 ∈ 𝑆, denote by 𝑅(𝑎) (resp., 𝐿(𝑎)) the right (resp.,
left) ideal of 𝑆 generated by 𝑎. Note that 𝑅(𝑎) = (𝑎 ∪ 𝑎𝑆] and
𝐿(𝑎) = (𝑎 ∪ 𝑆𝑎].

An ordered semigroup 𝑆 is said to be
(i) left (resp., right) regular if it satisfies

(∀𝑎 ∈ 𝑆) (∃𝑥 ∈ 𝑆) (𝑎 ≤ 𝑥𝑎
2
) (resp. 𝑎 ≤ 𝑎

2
𝑥) ; (3)

(ii) regular if it satisfies

(∀𝑎 ∈ 𝑆) (∃𝑥 ∈ 𝑆) (𝑎 ≤ 𝑎𝑥𝑎) ; (4)

(iii) intraregular if it satisfies

(∀𝑎 ∈ 𝑆) (∃𝑥, 𝑦 ∈ 𝑆) (𝑎 ≤ 𝑥𝑎
2
𝑦) . (5)

Lemma 1 (see [9]). An ordered semigroup 𝑆 is regular if and
only if

(∀𝑎 ∈ 𝑆) (𝑅 (𝑎) ∩ 𝐿 (𝑎) ⊆ (𝑅 (𝑎) 𝐿 (𝑎)]) . (6)

A nonempty subset 𝐼 of an ordered semigroup 𝑆 is called
a left (resp., right) ideal of 𝑆 if

𝑆𝐼 ⊆ 𝐼 (resp. 𝐼𝑆 ⊆ 𝐼) .

(∀𝑎, 𝑏 ∈ 𝑆) (𝑎 ∈ 𝐼, 𝑏 ≤ 𝑎 󳨐⇒ 𝑏 ∈ 𝐼) .

(7)

2.2. Basic Results on Soft Sets. A soft set theory is introduced
by Molodtsov [1], and Çağman and Enginoğlu [15] provided
new definitions and various results on soft set theory.

In what follows, let𝑈 be an initial universe set and 𝐸 be a
set of parameters. Let P(𝑈) denotes the power set of 𝑈 and
𝐼, 𝐽, . . . ⊆ 𝐸.

Definition 2 (see [1, 15]). A soft set (F, 𝐼) over𝑈 is defined to
be the set of ordered pairs

(F, 𝐼) := {(𝑥,F (𝑥)) : 𝑥 ∈ 𝐸, F (𝑥) ∈ P (𝑈)} , (8)

whereF : 𝐸 → P(𝑈) such thatF(𝑥) = 0 if 𝑥 ∉ 𝐼.

For a soft set (F, 𝐼) over 𝑈 and a subset 𝛿 of 𝑈, the 𝛿-
exclusive set of (F, 𝐼), denoted by 𝑒

𝐼
(F; 𝛿), is defined to be

the set

𝑒
𝐼
(F; 𝛿) := {𝑥 ∈ 𝐼 | 𝛿 ⊇ F (𝑥)} . (9)

For any soft sets (F, 𝐸) and (G, 𝐸) over 𝑈, we define

(F, 𝐸) ⊆̃ (G, 𝐸) if F (𝑥) ⊆ G (𝑥) ∀𝑥 ∈ 𝐸. (10)

The soft union, denoted by (F, 𝐸) ∪̃ (G, 𝐸), of (F, 𝐸) and
(G, 𝐸) is defined to be the soft set (F ∪̃G, 𝐸) over𝑈 in which
F ∪̃G is defined by

(F ∪̃G) (𝑥) = F (𝑥) ∪G (𝑥) ∀𝑥 ∈ 𝐸. (11)

The soft intersection, denoted by (F, 𝐸) ∩̃ (G, 𝐸), of (F, 𝐸)

and (G, 𝐸) is defined to be the soft set (F ∩̃G, 𝐸) over 𝑈 in
whichF ∩̃G is defined by

(F ∩̃G) (𝑥) = F (𝑥) ∩G (𝑥) ∀𝑥 ∈ 𝐸. (12)

3. Union-Soft Ideals

In what follows, we take 𝐸 = 𝑆 as a set of parameters, which
is an ordered semigroup unless otherwise specified.

Definition 3. A soft set (F, 𝑆) over 𝑈 is called a union-soft
semigroup over 𝑈 if it satisfies

(∀𝑥, 𝑦 ∈ 𝑆) (F (𝑥𝑦) ⊆ F (𝑥) ∪F (𝑦)) . (13)

Theorem 4. A soft set (F, 𝑆) over𝑈 is a union-soft semigroup
over𝑈 if and only if the nonempty 𝛿-exclusive set of (F, 𝑆) is a
subsemigroup of 𝑆 for all 𝛿 ⊆ 𝑈.

Proof. Assume that (F, 𝑆) over 𝑈 is a union-soft semigroup
over 𝑈. Let 𝛿 ⊆ 𝑈 be such that 𝑒

𝑆
(F; 𝛿) ̸= 0. Let 𝑥, 𝑦 ∈

𝑒
𝑆
(F; 𝛿). ThenF(𝑥) ⊆ 𝛿 andF(𝑦) ⊆ 𝛿. It follows from (13)

that

F (𝑥𝑦) ⊆ F (𝑥) ∪F (𝑦) ⊆ 𝛿, (14)

so that 𝑥𝑦 ∈ 𝑒
𝑆
(F; 𝛿). Thus 𝑒

𝑆
(F; 𝛿) is a subsemigroup of 𝑆.

Conversely, suppose that the nonempty 𝛿-exclusive set of
(F, 𝑆) is a subsemigroup of 𝑆 for all 𝛿 ⊆ 𝑈. Let 𝑥, 𝑦 ∈ 𝑆 be
such that F(𝑥) = 𝛿

𝑥
and F(𝑦) = 𝛿

𝑦
. Taking 𝛿 = 𝛿

𝑥
∪ 𝛿
𝑦

implies that 𝑥, 𝑦 ∈ 𝑒
𝑆
(F; 𝛿). Hence 𝑥𝑦 ∈ 𝑒

𝑆
(F; 𝛿), and so

F(𝑥𝑦) ⊆ 𝛿 = 𝛿
𝑥
∪ 𝛿
𝑦
= F(𝑥) ∪ F(𝑦). Therefore (F, 𝑆) is a

union-soft semigroup over 𝑈.

Definition 5. For a left ideal 𝐴 of 𝑆, a soft set (F, 𝐴) over𝑈 is
called a union-soft 𝑙-ideal over 𝑈 related to 𝐴 if it satisfies

(∀𝑥 ∈ 𝑆) (∀𝑎 ∈ 𝐴) (F (𝑥𝑎) ⊆ F (𝑎)) , (15)

(∀𝑥, 𝑦 ∈ 𝐴) (𝑥 ≤ 𝑦 ⇒ F (𝑥) ⊆ F (𝑦)) . (16)

Definition 6. For a right ideal 𝐴 of 𝑆, a soft set (F, 𝑆) over 𝑈
is called a union-soft 𝑟-ideal over 𝑈 related to 𝐴 if it satisfies
(16) and

(∀𝑥 ∈ 𝑆) (∀𝑎 ∈ 𝐴) (F (𝑎𝑥) ⊆ F (𝑎)) . (17)

A union-soft 𝑙-ideal (resp., union-soft 𝑟-ideal) over 𝑈

related to 𝐴 = 𝑆 is called a union-soft 𝑙-ideal (resp., union-
soft 𝑟-ideal) over 𝑈.

If a soft set (F, 𝑆) over 𝑈 is both a union-soft 𝑙-ideal and
a union-soft 𝑟-ideal over𝑈, we say that (F, 𝑆) is a union-soft
ideal over 𝑈.

Example 7. Let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} be an ordered semigroup
with the following Cayley table and order (see [10]):

⋅ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 𝑎 𝑎 𝑎 𝑑 𝑎 𝑎

𝑏 𝑎 𝑏 𝑏 𝑑 𝑏 𝑏

𝑐 𝑎 𝑏 𝑐 𝑑 𝑒 𝑒

𝑑 𝑎 𝑎 𝑑 𝑑 𝑑 𝑑

𝑒 𝑎 𝑏 𝑐 𝑑 𝑒 𝑒

𝑓 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

≤:= {(𝑎, 𝑎) , (𝑏, 𝑏) , (𝑐, 𝑐) , (𝑑, 𝑑) , (𝑒, 𝑒) , (𝑓, 𝑒) , (𝑓, 𝑓)} .

(18)
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(1) Let (F, 𝑆) be a soft set over 𝑈 = {1, 2, 3, 4, 5, 6, 7, 8,
9, 10} in whichF is given as follows:

F : 𝑆 󳨀→ P (𝑈) ,

𝑥 󳨃󳨀→

{{{

{{{

{

{1, 3, 5} , if 𝑥 ∈ {𝑎, 𝑑} ,

{1, 2, 3, 5, 6} , if 𝑥 = 𝑏,

{1, 2, 3, 5, 6, 8} , if 𝑥 ∈ {𝑐, 𝑒, 𝑓} .

(19)

Routine calculations show that (F, 𝑆) is a union-soft
ideal over 𝑈.

(2) Let (G, 𝑆) be a soft set over 𝑈 = {1, 2, 3, 4, 5, 6, 7, 8,
9, 10} in whichG is given as follows:

G : 𝑆 󳨀→ P (𝑈) ,

𝑥 󳨃󳨀→

{{{{{{{{

{{{{{{{{

{

{1, 3} , if 𝑥 = 𝑎,

{2, 8} , if 𝑥 = 𝑑,

{1, 2, 3, 8} , if 𝑥 = 𝑏,

{1, 2, 3, 8, 9} , if 𝑥 = 𝑐,

{1, 2, 3, 5, 8} , if 𝑥 ∈ {𝑒, 𝑓} .

(20)

Then (G, 𝑆) is a union-soft 𝑙-ideal over𝑈. But it is not a union-
soft 𝑟-ideal over 𝑈 since G(𝑐𝑒) = G(𝑒) = {1, 2, 3, 5, 8} ̸⊆

{1, 2, 3, 8, 9} = G(𝑐).

Example 8. Let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} be an ordered semigroup
with Cayley table and Hasse diagramas shown in Figure 1. In
Figure 1, (F, 𝑆) is a soft set over𝑈 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

in whichF is given as follows:

F : 𝑆 󳨀→ P (𝑈) ,

𝑥 󳨃󳨀→

{{{{{

{{{{{

{

{3, 5} , if 𝑥 = 𝑎,

{1, 3, 5, 6, 9} , if 𝑥 ∈ {𝑏, 𝑑} ,

{1, 3, 5, 6} , if 𝑥 ∈ {𝑒, 𝑓} ,

{2, 4, 6, 8} , if 𝑥 = 𝑐.

(21)

Routine calculations show that (F, 𝑆) is a union-soft 𝑟-ideal
over𝑈. But it is not a union-soft 𝑙-ideal over𝑈 sinceF(𝑐𝑒) =

F(𝑐) = {2, 4, 6, 8} ̸⊆ {1, 3, 5, 6} = F(𝑒).

For a nonempty subset 𝐼 of 𝑆, the characteristic soft set is
defined to be the soft set (𝜒

𝐼
, 𝑆) over𝑈 in which 𝜒

𝐼
is given as

follows:
𝜒
𝐼
: 𝑆 󳨀→ P (𝑈) ,

𝑥 󳨃󳨀→ {
𝑈, if 𝑥 ∈ 𝐼,

0, otherwise.

(22)

The soft set (𝑈
𝑆
, 𝑆), where 𝑈

𝑆
(𝑥) = 𝑈 for all 𝑥 ∈ 𝑆, is called

the identity soft set over𝑈. For the characteristic soft set (𝜒
𝐼
, 𝑆)

over 𝑈, the soft set (𝜒𝑐
𝐼
, 𝑆) over 𝑈 is given as follows:

𝜒
𝑐

𝐼
: 𝑆 󳨀→ P (𝑈) ,

𝑥 󳨃󳨀→ {
0, if 𝑥 ∈ 𝐼,

𝑈, otherwise.

(23)
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Theorem 9. For any nonempty subset 𝐼 of 𝑆, the following are
equivalent.

(1) 𝐼 is a left (resp., right) ideal of 𝑆.
(2) The soft set (𝜒𝑐

𝐼
, 𝑆) over 𝑈 is a union-soft 𝑙-ideal (resp.,

union-soft 𝑟-ideal) over 𝑈.

Proof. Assume that 𝐼 is a left ideal of 𝑆. Let 𝑥, 𝑦 ∈ 𝑆 be such
that𝑥 ≤ 𝑦. If𝑦 ∉ 𝐼, then𝜒𝑐

𝐼
(𝑦) = 𝑈 and so𝜒𝑐

𝐼
(𝑥) ⊆ 𝑈 = 𝜒

𝑐

𝐼
(𝑦).

If 𝑦 ∈ 𝐼, then 𝜒
𝑐

𝐼
(𝑦) = 0. Since 𝑥 ≤ 𝑦 and 𝐼 is a left ideal of 𝑆,

we have 𝑥 ∈ 𝐼 and thus 𝜒𝑐
𝐼
(𝑥) = 0 = 𝜒

𝑐

𝐼
(𝑦). For any 𝑥, 𝑦 ∈ 𝑆, if

𝑦 ∉ 𝐼 then 𝜒
𝑐

𝐼
(𝑥𝑦) ⊆ 𝑈 = 𝜒

𝑐

𝐼
(𝑦). If 𝑦 ∈ 𝐼, then 𝑥𝑦 ∈ 𝐼 since 𝐼 is

a left ideal of 𝑆. Hence 𝜒𝑐
𝐼
(𝑥𝑦) = 0 = 𝜒

𝑐

𝐼
(𝑦). Therefore (𝜒𝑐

𝐼
, 𝑆)

is a union-soft 𝑙-ideal over𝑈. Similarly, (𝜒𝑐
𝐼
, 𝑆) is a union-soft

𝑟-ideal over 𝑈 when 𝐼 is a right ideal of 𝑆.
Conversely suppose that (𝜒𝑐

𝐼
, 𝑆) is a union-soft 𝑙-ideal over

𝑈. Let 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝐼. Then 𝜒
𝑐

𝐼
(𝑦) = 0, and so 𝜒

𝑐

𝐼
(𝑥𝑦) ⊆

𝜒
𝑐

𝐼
(𝑦) = 0; that is, 𝜒𝑐

𝐼
(𝑥𝑦) = 0. Thus 𝑥𝑦 ∈ 𝐼. Let 𝑥 ∈ 𝑆 and

𝑦 ∈ 𝐼 be such that 𝑥 ≤ 𝑦. Then 𝜒
𝑐

𝐼
(𝑥) ⊆ 𝜒

𝑐

𝐼
(𝑦) = 0, and thus

𝑥 ∈ 𝐼. Therefore 𝐼 is a left ideal of 𝑆. Similarly, we can show
that if (𝜒𝑐

𝐼
, 𝑆) is a union-soft 𝑟-ideal over 𝑈, then 𝐼 is a right

ideal of 𝑆.

Corollary 10. For any nonempty subset 𝐼 of 𝑆, the following
are equivalent.

(1) 𝐼 is an ideal of 𝑆.
(2) The soft set (𝜒𝑐

𝐼
, 𝑆) over 𝑈 is a union-soft ideal over 𝑈.

Theorem 11. If a soft set (F, 𝑆) over 𝑈 is a union-soft 𝑙-
ideal (resp., union-soft 𝑟-ideal) over 𝑈, then the nonempty 𝛿-
exclusive set of (F, 𝑆) is a left (resp., right) ideal of 𝑆 for all
𝛿 ⊆ 𝑈.

Proof. Assume that (F, 𝑆) is a union-soft 𝑙-ideal over 𝑈. Let
𝛿 ⊆ 𝑈 be such that 𝑒

𝑆
(F; 𝛿) ̸= 𝑈. Let 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑒

𝑆
(F; 𝛿).

ThenF(𝑦) ⊆ 𝛿, and thusF(𝑥𝑦) ⊆ F(𝑦) ⊆ 𝛿 by (15). Hence
𝑥𝑦 ∈ 𝑒

𝑆
(F; 𝛿). Let 𝑥 ∈ 𝑒

𝑆
(F; 𝛿) and 𝑦 ∈ 𝑆 be such that 𝑦 ≤ 𝑥.

Using (16), we have F(𝑦) ⊆ F(𝑥) ⊆ 𝛿. Thus 𝑦 ∈ 𝑒
𝑆
(F; 𝛿).

Therefore 𝑒
𝑆
(F; 𝛿) is a left ideal of 𝑆. The right case can be

seen in a similar way.
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Corollary 12. If a soft set (F, 𝑆) over 𝑈 is a union-soft 𝑙-ideal
(resp., union-soft 𝑟-ideal) over 𝑈, then the set

𝐼
𝑎
:= {𝑏 ∈ 𝑆 | F (𝑏) ⊆ F (𝑎)} (24)

is a left (resp., right) ideal of 𝑆 for every 𝑎 ∈ 𝑆.

Theorem13. Let (F, 𝑆) be a soft set over𝑈 inwhich (Im(F), ⊆

) is a chain. If the nonempty 𝛿-exclusive set of (F, 𝑆) is a left
(resp., right) ideal of 𝑆 for all 𝛿 ⊆ 𝑈, then (F, 𝑆) is a union-soft
𝑙-ideal (resp., union-soft 𝑟-ideal) over 𝑈.

Proof. Let 𝑥, 𝑦 ∈ 𝑆 be such that 𝑥 ≤ 𝑦. If F(𝑥) ⊋ F(𝑦),
then 𝑦 ∈ 𝑒

𝑆
(F; 𝜏) and 𝑥 ∉ 𝑒

𝑆
(F; 𝜏) by taking 𝜏 = F(𝑦).

This is a contradiction, and so F(𝑥) ⊆ F(𝑦). Assume that
F(𝑥𝑦) ⊋ F(𝑦) for some 𝑥, 𝑦 ∈ 𝑆. Then 𝑦 ∈ 𝑒

𝑆
(F; 𝜏) and

𝑥𝑦 ∉ 𝑒
𝑆
(F; 𝜏) by taking 𝜏 = F(𝑦). This is a contradiction,

and thus F(𝑥𝑦) ⊆ F(𝑦) for all 𝑥, 𝑦 ∈ 𝑆. Therefore (F, 𝑆) is
a union-soft 𝑙-ideal over 𝑈. The right case can be seen in a
similar way.

Question. In Theorem 13, can we delete the condition
“(Im(F), ⊆) is a chain”?

For any soft sets (F, 𝑆) and (G, 𝑆) over 𝑈, the union-soft
product, denoted by (F, 𝑆) ⊙̃ (G, 𝑆), of (F, 𝑆) and (G, 𝑆) is
defined to be the soft set (F ⊙̃G, 𝑆) over𝑈 in whichF ⊙̃G is
a mapping from 𝑆 toP(𝑈) given by

(F ⊙̃G) (𝑥) =
{

{

{

⋂

(𝑦,𝑧)∈𝐴
𝑥

{F (𝑦) ∪G (𝑧)} , if 𝐴
𝑥

̸= 0,

𝑈, if 𝐴
𝑥
= 0,

(25)

where 𝐴
𝑥
= {(𝑦, 𝑧) ∈ 𝑆 × 𝑆 | 𝑥 ≤ 𝑦𝑧}.

Proposition 14. Let (𝜒
𝑐

𝐼
, 𝑆) and (𝜒

𝑐

𝐽
, 𝑆) be soft sets over 𝑈

where 𝐼 and 𝐽 are nonempty subsets of 𝑆. Then the following
properties hold:

(1) (𝜒𝑐
𝐼
, 𝑆) ∪̃ (𝜒

𝑐

𝐽
, 𝑆) = (𝜒

𝑐

𝐼∪𝐽
, 𝑆).

(2) (𝜒𝑐
𝐼
, 𝑆) ⊙̃ (𝜒

𝑐

𝐽
, 𝑆) = (𝜒

𝑐

(𝐼𝐽]
, 𝑆).

Proof. (1) Let 𝑥 ∈ 𝑆. If 𝑥 ∈ 𝐼 ∪ 𝐽, then 𝑥 ∈ 𝐼 or 𝑥 ∈ 𝐽. Thus we
have

(𝜒
𝑐

𝐼
∪̃ 𝜒
𝑐

𝐽
) (𝑥) = 𝜒

𝑐

𝐼
(𝑥) ∪ 𝜒

𝑐

𝐽
(𝑥) = 0 = 𝜒

𝑐

𝐼∪𝐽
(𝑥) . (26)

If 𝑥 ∉ 𝐼 ∪ 𝐽, then 𝑥 ∉ 𝐼 and 𝑥 ∉ 𝐽. Hence we have

(𝜒
𝑐

𝐼
∪̃ 𝜒
𝑐

𝐽
) (𝑥) = 𝜒

𝑐

𝐼
(𝑥) ∪ 𝜒

𝑐

𝐽
(𝑥) = 𝑈 = 𝜒

𝑐

𝐼∪𝐽
(𝑥) . (27)

Therefore (𝜒𝑐
𝐼
, 𝑆) ∪̃ (𝜒

𝑐

𝐽
, 𝑆) = (𝜒

𝑐

𝐼∪𝐽
, 𝑆).

(2) For any 𝑥 ∈ 𝑆, suppose 𝑥 ∈ (𝐼𝐽].Then 𝑥 ≤ 𝑎𝑏 for some
𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐽, and so (𝑎, 𝑏) ∈ 𝐴

𝑥
. Thus we have

(𝜒
𝑐

𝐼
⊙̃ 𝜒
𝑐

𝐽
) (𝑥) = ⋂

(𝑦,𝑧)∈𝐴
𝑥

{𝜒
𝑐

𝐼
(𝑦) ∪ 𝜒

𝑐

𝐽
(𝑧)}

⊆ 𝜒
𝑐

𝐼
(𝑎) ∪ 𝜒

𝑐

𝐽
(𝑏) = 0,

(28)

and so (𝜒
𝑐

𝐼
⊙̃ 𝜒
𝑐

𝐽
)(𝑥) = 0. Since 𝑥 ∈ (𝐼𝐽], we get 𝜒𝑐

(𝐼𝐽]
(𝑥) = 0.

Suppose 𝑥 ∉ (𝐼𝐽]. Then 𝜒
𝑐

(𝐼𝐽]
(𝑥) = 𝑈. If 𝐴

𝑥
= 0, then

(𝜒
𝑐

𝐼
⊙̃ 𝜒
𝑐

𝐽
)(𝑥) = 𝑈 and (𝜒

𝑐

𝐼
⊙̃ 𝜒
𝑐

𝐽
)(𝑥) = 𝜒

𝑐

(𝐼𝐽]
(𝑥). Assume that

𝐴
𝑥

̸= 0. Then

(𝜒
𝑐

𝐼
⊙̃ 𝜒
𝑐

𝐽
) (𝑥) = ⋂

(𝑦,𝑧)∈𝐴
𝑥

{𝜒
𝑐

𝐼
(𝑦) ∪ 𝜒

𝑐

𝐽
(𝑧)} . (29)

We now prove that 𝜒𝑐
𝐼
(𝑦) ∪ 𝜒

𝑐

𝐽
(𝑧) = 𝑈 for all (𝑦, 𝑧) ∈ 𝐴

𝑥
. Let

(𝑦, 𝑧) ∈ 𝐴
𝑥
. Then 𝑥 ≤ 𝑦𝑧. If 𝑦 ∈ 𝐼 and 𝑧 ∈ 𝐽, then 𝑦𝑧 ∈ 𝐼𝐽

and so 𝑥 ∈ (𝐼𝐽]. This is impossible. Thus we have 𝑦 ∉ 𝐼 or
𝑧 ∉ 𝐽. If 𝑦 ∉ 𝐼, then 𝜒

𝑐

𝐼
(𝑦) = 𝑈 and so 𝜒

𝑐

𝐼
(𝑦) ∪ 𝜒

𝑐

𝐽
(𝑧) = 𝑈.

Similarly, if 𝑧 ∉ 𝐽 then 𝜒
𝑐

𝐼
(𝑦)∪𝜒

𝑐

𝐽
(𝑧) = 𝑈. In any case, we have

(𝜒
𝑐

𝐼
, 𝑆) ⊙̃ (𝜒

𝑐

𝐽
, 𝑆) = (𝜒

𝑐

(𝐼𝐽]
, 𝑆).

Proposition 15. Let (F
1
, 𝑆), (F

2
, 𝑆), (G

1
, 𝑆), and (G

2
, 𝑆) be

soft sets over𝑈. If (F
1
, 𝑆) ⊆̃ (G

1
, 𝑆) and (F

2
, 𝑆) ⊆̃ (G

2
, 𝑆), then

(F
1
, 𝑆) ⊙̃ (F

2
, 𝑆) ⊆̃ (G

1
, 𝑆) ⊙̃ (G

2
, 𝑆) . (30)

Proof. For any 𝑥 ∈ 𝑆, if 𝐴
𝑥
= 0 then clearly (F

1
, 𝑆) ⊙̃ (F

2
,

𝑆) ⊆̃ (G
1
, 𝑆) ⊙̃ (G

2
, 𝑆). Assume that 𝐴

𝑥
̸= 0. Then

(F
1
⊙̃F
2
) (𝑥) = ⋂

(𝑦,𝑧)∈𝐴
𝑥

{F
1
(𝑦) ∪F

2
(𝑧)}

⊆ ⋂

(𝑦,𝑧)∈𝐴
𝑥

{G
1
(𝑦) ∪G

2
(𝑧)}

= (G
1
⊙̃G
2
) (𝑥) ,

(31)

and so (F
1
, 𝑆) ⊙̃ (F

2
, 𝑆) ⊆̃ (G

1
, 𝑆) ⊙̃ (G

2
, 𝑆).

Proposition 16. Let (F, 𝑆) and (G, 𝑆) be a union-soft 𝑟-ideal
and a union-soft 𝑙-ideal over 𝑈, respectively. Then

(F, 𝑆) ∪̃ (G, 𝑆) ⊆̃ (F, 𝑆) ⊙̃ (G, 𝑆) . (32)

Proof. Let 𝑥 ∈ 𝑆. If 𝐴
𝑥

= 0, then (F ⊙̃G)(𝑥) = 𝑈 ⊇

(F ∪̃G)(𝑥). Suppose that 𝐴
𝑥

̸= 0. Then (F ⊙̃G)(𝑥) =

⋂
(𝑦,𝑧)∈𝐴

𝑥

{F(𝑦)∪G(𝑧)}. Let 𝑦, 𝑧 ∈ 𝑆 be such that (𝑦, 𝑧) ∈ 𝐴
𝑥
.

Then 𝑥 ≤ 𝑦𝑧. Since (F, 𝑆) is a union-soft 𝑟-ideal over 𝑈, it
follows thatF(𝑥) ⊆ F(𝑦𝑧) ⊆ F(𝑦). Since (G, 𝑆) is a union-
soft 𝑙-ideal over 𝑈, we have G(𝑥) ⊆ G(𝑦𝑧) ⊆ G(𝑧). Hence
F(𝑥) ∪G(𝑥) ⊆ F(𝑦) ∪G(𝑧) for all (𝑦, 𝑧) ∈ 𝐴

𝑥
, and so

(F ⊙̃G) (𝑥) = ⋂

(𝑦,𝑧)∈𝐴
𝑥

{F (𝑦) ∪G (𝑧)}

⊇ F (𝑥) ∪G (𝑥) = (F ∪̃G) (𝑥) .

(33)

Therefore (F, 𝑆) ⊙̃ (G, 𝑆) ⊇̃ (F, 𝑆) ∪̃ (G, 𝑆).

Proposition 17. Let (F, 𝑆) and (G, 𝑆) be soft sets over 𝑈. If 𝑆
is regular and (F, 𝑆) is a union-soft 𝑟-ideal over 𝑈, then

(F, 𝑆) ∪̃ (G, 𝑆) ⊇̃ (F, 𝑆) ⊙̃ (G, 𝑆) . (34)

Proof. Let (F, 𝑆) be a union-soft 𝑟-ideal over 𝑈. Let 𝑎 ∈ 𝑆.
Then there exists 𝑥 ∈ 𝑆 such that 𝑎 ≤ (𝑎𝑥)𝑎 since 𝑆 is regular.
Thus (𝑎𝑥, 𝑎) ∈ 𝐴

𝑎
; that is, 𝐴

𝑎
̸= 0, and so

(F ⊙̃G) (𝑎) = ⋂

(𝑦,𝑧)∈𝐴
𝑎

{F (𝑦) ∪G (𝑧)} . (35)
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On the other hand, since (F, 𝑆) is a union-soft 𝑟-ideal over
𝑈, we have

F (𝑎𝑥) ⊆ F (𝑎) . (36)

Hence (F ∪̃G)(𝑎) = F(𝑎) ∪ G(𝑎) ⊇ F(𝑎𝑥) ∪ G(𝑎). Since
(𝑎𝑥, 𝑎) ∈ 𝐴

𝑎
, it follows that

(F ∪̃G) (𝑎) ⊇ F (𝑎𝑥) ∪G (𝑎)

⊇ ⋂

(𝑦,𝑧)∈𝐴
𝑎

{F (𝑦) ∪G (𝑧)}

= (F ⊙̃G) (𝑎) .

(37)

Therefore (F, 𝑆) ∪̃ (G, 𝑆) ⊇̃ (F, 𝑆) ⊙̃ (G, 𝑆).

In a similar way we prove the following.

Proposition 18. Let (F, 𝑆) and (G, 𝑆) be soft sets over 𝑈. If 𝑆
is regular and (G, 𝑆) is a union-soft 𝑙-ideal over𝑈, then the soft
inclusion (34) is valid.

Corollary 19. Let (F, 𝑆) and (G, 𝑆) be a union-soft 𝑟-ideal
and a union-soft 𝑙-ideal over𝑈, respectively. If 𝑆 is regular, then

(F, 𝑆) ⊙̃ (G, 𝑆) = (F, 𝑆) ∪̃ (G, 𝑆) . (38)

We now provide a characterization of a regular ordered
semigroup.

Theorem 20. An ordered semigroup 𝑆 is regular if and only if
the soft inclusion (34) is valid for every union-soft 𝑟-ideal (F, 𝑆)

and every union-soft 𝑙-ideal (G, 𝑆) over 𝑈.

Proof. Assume that 𝑆 is regular. Proposition 17 (or Proposi-
tion 18) implies that the soft inclusion (34) is valid.

Conversely, assume that the soft inclusion (34) is valid for
every union-soft 𝑟-ideal (F, 𝑆) and every union-soft 𝑙-ideal
(G, 𝑆) over 𝑈. Let 𝑎 ∈ 𝑆 and 𝑏 ∈ 𝑅(𝑎) ∩ 𝐿(𝑎). Since 𝑅(𝑎)

(resp., 𝐿(𝑎)) is a right (resp., left) ideal of 𝑆, it follows from
Theorem 9 that (𝜒𝑐

𝑅(𝑎)
, 𝑆) (resp., (𝜒𝑐

𝐿(𝑎)
, 𝑆)) is a union-soft 𝑟-

ideal (resp., union-soft 𝑙-ideal) over 𝑈. Using (34), we have

(𝜒
𝑐

𝑅(𝑎)
, 𝑆) ∪̃ (𝜒

𝑐

𝐿(𝑎)
, 𝑆) ⊇̃ (𝜒

𝑐

𝑅(𝑎)
, 𝑆) ⊙̃ (𝜒

𝑐

𝐿(𝑎)
, 𝑆) . (39)

Since 𝑏 ∈ 𝑅(𝑎) ∩ 𝐿(𝑎), we have 𝜒𝑐
𝑅(𝑎)

(𝑏) = 0 = 𝜒
𝑐

𝐿(𝑎)
(𝑏). Hence

0 = 𝜒
𝑐

𝑅(𝑎)
(𝑏) ∪ 𝜒

𝑐

𝐿(𝑎)
(𝑏)

= (𝜒
𝑐

𝑅(𝑎)
∪̃ 𝜒
𝑐

𝐿(𝑎)
) (𝑏)

⊇ (𝜒
𝑐

𝑅(𝑎)
⊙̃ 𝜒
𝑐

𝐿(𝑎)
) (𝑏) ,

(40)

and so (𝜒
𝑐

𝑅(𝑎)
⊙̃ 𝜒
𝑐

𝐿(𝑎)
)(𝑏) = 0. Therefore 𝐴

𝑏
̸= 0. Let 𝑦, 𝑧 ∈ 𝑆

be such that (𝑦, 𝑧) ∈ 𝐴
𝑏
. Suppose that 𝑦 ∉ 𝑅(𝑎) or 𝑧 ∉ 𝐿(𝑎).

Then 𝜒
𝑐

𝑅(𝑎)
(𝑦) ∪ 𝜒

𝑐

𝐿(𝑎)
(𝑧) = 𝑈, and so

(𝜒
𝑐

𝑅(𝑎)
⊙̃ 𝜒
𝑐

𝐿(𝑎)
) (𝑏) = ⋂

(𝑦,𝑧)∈𝐴
𝑏

{𝜒
𝑐

𝑅(𝑎)
(𝑦) ∪ 𝜒

𝑐

𝐿(𝑎)
(𝑧)} = 𝑈.

(41)

This is a contradiction, and thus 𝑦 ∈ 𝑅(𝑎) and 𝑧 ∈ 𝐿(𝑎).
Therefore 𝑏 ≤ 𝑦𝑧 ∈ 𝑅(𝑎)𝐿(𝑎), which implies that 𝑏 ∈

(𝑅(𝑎)𝐿(𝑎)]. Hence

𝑅 (𝑎) ∩ 𝐿 (𝑎) ⊆ (𝑅 (𝑎) 𝐿 (𝑎)] . (42)

Using Lemma 1, we know that 𝑆 is regular.

Theorem 21. For a union-soft 𝑙-ideal (G, 𝑆) over𝑈, the follow-
ing assertion is valid

(0
𝑆
, 𝑆) ⊙̃ (G, 𝑆) ⊇̃ (G, 𝑆) , (43)

where 0
𝑆
is an empty soft set over 𝑈; that is, 0

𝑆
(𝑥) = 0 for all

𝑥 ∈ 𝑆.

Proof. Suppose that (G, 𝑆) is a union-soft 𝑙-ideal over 𝑈. Let
𝑥 ∈ 𝑆. If 𝐴

𝑥
̸= 0, then

(0
𝑆
⊙̃G) (𝑥) = ⋂

(𝑦,𝑧)∈𝐴
𝑥

{0
𝑆
(𝑦) ∪G (𝑧)}

⊇ ⋂

(𝑦,𝑧)∈𝐴
𝑥

{0 ∪G (𝑦𝑧)} ⊇ G (𝑥) .

(44)

Assume that 𝐴
𝑥
= 0. Then (0

𝑆
⊙̃G)(𝑥) = 𝑈 ⊇ G(𝑥). This

completes the proof.

Theorem22. Let (0
𝑆
, 𝑆) be the empty soft set over𝑈 and (G, 𝑆)

be a soft set over 𝑈. If (G, 𝑆) satisfies the conditions (43) and
(16), then (G, 𝑆) is a union-soft 𝑙-ideal over 𝑈.

Proof. For any 𝑥, 𝑦 ∈ 𝑆, we have

G (𝑥𝑦) ⊆ (0
𝑆
⊙̃G) (𝑥𝑦)

= ⋂

(𝑥,𝑦)∈𝐴
𝑥𝑦

{0
𝑆
(𝑥) ∪G (𝑦)}

⊆ 0
𝑆
(𝑥) ∪G (𝑦) = 0 ∪G (𝑦) = G (𝑦) .

(45)

Hence (G, 𝑆) is a union-soft 𝑙-ideal over 𝑈.

Similarly, we have the following theorem.

Theorem 23. For the empty soft set (0
𝑆
, 𝑆) over 𝑈 and a soft

set (G, 𝑆) over 𝑈, the following assertions are equivalent:

(1) (G, 𝑆) is a union-soft 𝑟-ideal over 𝑈.
(2) (G, 𝑆) satisfies the conditions (16) and

(G, 𝑆) ⊙̃ (0
𝑆
, 𝑆) ⊇̃ (G, 𝑆) . (46)

Corollary 24. For the empty soft set (0
𝑆
, 𝑆) over 𝑈 and a soft

set (G, 𝑆) over 𝑈, the following assertions are equivalent:

(1) (G, 𝑆) is a union-soft ideal over 𝑈.
(2) (G, 𝑆) satisfies the conditions (16) and

(0
𝑆
, 𝑆) ⊙̃ (G, 𝑆) ⊇̃ (G, 𝑆) , (G, 𝑆) ⊙̃ (0

𝑆
, 𝑆) ⊇̃ (G, 𝑆) .

(47)
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Lemma 25. If (F, 𝑆) (resp., (G, 𝑆)) is a union-soft 𝑟-ideal
(resp., union-soft 𝑙-ideal) over 𝑈, then

(1) (F, 𝑆) ⊙̃ (0
𝑆
, 𝑆) ⊇̃ (F, 𝑆) (resp., (0

𝑆
, 𝑆) ⊙̃ (G, 𝑆) ⊇̃ (G, 𝑆)).

(2) (F, 𝑆) ⊙̃ (F, 𝑆) ⊇̃ (F, 𝑆) (resp., (G, 𝑆) ⊙̃ (G, 𝑆) ⊇̃ (G, 𝑆)).

Proof. (1) Assume that (F, 𝑆) is a union-soft 𝑟-ideal over 𝑈
and let 𝑥 ∈ 𝑆. If 𝐴

𝑥
= 0, then (F ⊙̃ 0

𝑆
)(𝑥) = 𝑈 ⊇ F(𝑥).

Assume that 𝐴
𝑥

̸= 0 and let 𝑦, 𝑧 ∈ 𝑆 be such that (𝑦, 𝑧) ∈ 𝐴
𝑥
.

Then 𝑥 ≤ 𝑦𝑧, and so F(𝑥) ⊆ F(𝑦𝑧) ⊆ F(𝑦) by (16) and
(17). HenceF(𝑦) ∪ 0

𝑆
(𝑧) = F(𝑦) ∪ 0 = F(𝑦) ⊇ F(𝑥) for all

(𝑦, 𝑧) ∈ 𝐴
𝑥
. Therefore

(F ⊙̃ 0
𝑆
) (𝑥) = ⋂

(𝑦,𝑧)∈𝐴
𝑥

{F (𝑦) ∪ 0
𝑆
(𝑧)} ⊇ F (𝑥) . (48)

Consequently, (F, 𝑆) ⊙̃ (0
𝑆
, 𝑆) ⊇̃ (F, 𝑆). Similarly, (0

𝑆
, 𝑆) ⊙̃ (G,

𝑆) ⊇̃ (G, 𝑆) for each union-soft 𝑙-ideal (G, 𝑆) over 𝑈.
(2) Note that (F, 𝑆) ⊇̃ (0

𝑆
, 𝑆) and (F, 𝑆) ⊆̃ (F, 𝑆). Using

Proposition 15 and (1), we have (F, 𝑆) ⊙̃ (F, 𝑆) ⊇̃ (F, 𝑆) ⊙̃ (0
𝑆
,

𝑆) ⊇̃ (F, 𝑆). In a similar way, we obtain

(G, 𝑆) ⊙̃ (G, 𝑆) ⊇̃ (G, 𝑆) (49)

for each union-soft 𝑙-ideal (G, 𝑆) over 𝑈.

Proposition 26. Let 𝑆 be a regular ordered semigroup. If
(F, 𝑆) (resp., (G, 𝑆)) is a union-soft 𝑟-ideal (resp., union-soft
𝑙-ideal) over 𝑈, then

(F, 𝑆) ⊇̃ (F, 𝑆) ⊙̃ (F, 𝑆) (𝑟𝑒𝑠𝑝. (G, 𝑆) ⊇̃ (G, 𝑆) ⊙̃ (G, 𝑆)) .

(50)

Proof. Let (F, 𝑆) be a union-soft 𝑟-ideal over𝑈 and let 𝑎 ∈ 𝑆.
Then there exists 𝑥 ∈ 𝑆 such that 𝑎 ≤ 𝑎𝑥𝑎. Hence 𝐴

𝑎
̸= 0

since (𝑎𝑥, 𝑎) ∈ 𝐴
𝑎
. Thus

(F ⊙̃F) (𝑎) = ⋂

(𝑦,𝑧)∈𝐴
𝑎

{F (𝑦) ∪F (𝑧)}

⊆ F (𝑎𝑥) ∪F (𝑎) = F (𝑎)

(51)

since F(𝑎) ⊆ F((𝑎𝑥)𝑎) ⊆ F(𝑎𝑥) ⊆ F(𝑎). Therefore
(F, 𝑆) ⊇̃ (F, 𝑆) ⊙̃ (F, 𝑆). Similarly we have (G, 𝑆) ⊇̃ (G, 𝑆) ⊙̃

(G, 𝑆) for each union-soft 𝑙-ideal (G, 𝑆) over 𝑈.

We say that a soft set (F, 𝑆) over 𝑈 is soft idempotent if
(F, 𝑆) ⊙̃ (F, 𝑆) = (F, 𝑆).

By Lemma 25(2) and Proposition 26 we have the follow-
ing result.

Proposition 27. If 𝑆 is a regular ordered semigroup, then
every union-soft 𝑟-ideal (resp., union-soft 𝑙-ideal) over𝑈 is soft
idempotent.

Definition 28. A soft set (F, 𝑆) over𝑈 is said to be union-soft
semiprime if it satisfies

(∀𝑥 ∈ 𝑆) (F (𝑥) ⊆ F (𝑥
2
)) . (52)

Theorem 29. If 𝑆 is left regular, then every union-soft 𝑙-ideal
is a union-soft semiprime.

Proof. Let (F, 𝑆) be a union-soft 𝑙-ideal over 𝑈 and let 𝑎 ∈ 𝑆.
Then 𝑎 ≤ 𝑥𝑎

2 for some 𝑥 ∈ 𝑆 since 𝑆 is left regular. It follows
from (16) and (15) that

F (𝑎) ⊆ F (𝑥𝑎
2
) ⊆ F (𝑎

2
) . (53)

Hence (F, 𝑆) is union-soft semiprime.

In a similar way, we have the following theorem.

Theorem 30. If 𝑆 is right regular, then every union-soft 𝑟-ideal
is union-soft semiprime.

Theorem 31. If 𝑆 is intraregular, then every union-soft ideal is
union-soft semiprime.

Proof. Let (F, 𝑆) be a union-soft ideal over 𝑈 and let 𝑎 ∈ 𝑆.
Then 𝑎 ≤ 𝑥𝑎

2
𝑦 for some 𝑥, 𝑦 ∈ 𝑆 since 𝑆 is intraregular. It

follows from (16), (15), and (17) that

F (𝑎) ⊆ F (𝑥𝑎
2
𝑦) ⊆ F (𝑎

2
𝑦) ⊆ F (𝑎

2
) . (54)

Hence (F, 𝑆) is union-soft semiprime.

Corollary 32. If 𝑆 is intraregular, then every union-soft ideal
(F, 𝑆) over 𝑈 satisfies the following equality:

(∀𝑥, 𝑦 ∈ 𝑆) (F (𝑥𝑦) = F (𝑦𝑥)) . (55)

Proof. UsingTheorem 31, we have

F (𝑥𝑦) ⊆ F ((𝑥𝑦)
2

) = F (𝑥 (𝑦𝑥) 𝑦) ⊆ F (𝑦𝑥) ,

F (𝑦𝑥) ⊆ F ((𝑦𝑥)
2

) = F (𝑦 (𝑥𝑦) 𝑥) ⊆ F (𝑥𝑦)

(56)

for all 𝑥, 𝑦 ∈ 𝑆. This completes the proof.

4. Concave Soft Sets and Critical Soft Points

For any soft set (F, 𝑆) over 𝑈, consider a soft set ([[F]], 𝑆)

over 𝑈 where

[[F]] : 𝑆 󳨀→ P (𝑈) , 𝑥 󳨃󳨀→ ⋂

𝑥≤𝑦

F (𝑦) . (57)

Since 𝑥 ≤ 𝑥 for all 𝑥 ∈ 𝑆, we have

[[F]] (𝑥) = ⋂

𝑥≤𝑦

F (𝑦) ⊆ F (𝑥) (58)

for all 𝑥 ∈ 𝑆. Hence (F, 𝑆) ⊇̃ ([[F]], 𝑆).
A soft set (F, 𝑆) over 𝑈 is said to be concave if ([[F]],

𝑆) ⊇̃ (F, 𝑆), and hence (F, 𝑆) = ([[F]], 𝑆).

Theorem 33. For a soft set (F, 𝑆) over 𝑈, the following are
equivalent:

(1) (F, 𝑆) is concave.
(2) (∀𝑥, 𝑦 ∈ 𝑆) (𝑥 ≤ 𝑦 ⇒ F(𝑥) ⊆ F(𝑦)).
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Proof. Assume that (F, 𝑆) is concave. Let 𝑥, 𝑦 ∈ 𝑆 be such
that 𝑥 ≤ 𝑦. Then

F (𝑥) = [[F]] (𝑥) = ⋂

𝑥≤𝑤

F (𝑤) ⊆ F (𝑦) . (59)

Conversely, if (2) is valid, then [[F]](𝑥) = ⋂
𝑥≤𝑦

F(𝑦) ⊇

F(𝑥) for all 𝑥 ∈ 𝑆. Hence ([[F]], 𝑆) ⊇̃ (F, 𝑆); that is, (F, 𝑆) is
concave.

Proposition 34. For any soft sets (F, 𝑆), (G, 𝑆), and (H, 𝑆)

over 𝑈, we have

(1) if (F, 𝑆) ⊆̃ (G, 𝑆), then ([[F]], 𝑆) ⊆̃ ([[G]], 𝑆).
(2) ([[F]], 𝑆) ⊙̃ ([[G]], 𝑆) ⊇̃ ([[F ⊙̃G]], 𝑆).
(3) ([[F]], 𝑆) is concave.

Proof. (1) If (F, 𝑆) ⊆̃ (G, 𝑆), then F(𝑥) ⊆ G(𝑥) for all 𝑥 ∈ 𝑆.
Thus

[[F]] (𝑥) = ⋂

𝑥≤𝑦

F (𝑦) ⊆ ⋂

𝑥≤𝑦

G (𝑦) = [[G]] (𝑥) (60)

for all 𝑥 ∈ 𝑆. Therefore ([[F]], 𝑆) ⊆̃ ([[G]], 𝑆).
(2) Let 𝑥 ∈ 𝑆. If 𝐴

𝑥
= 0, then ([[F]] ⊙̃ [[G]])(𝑥) = 𝑈 ⊇

[[F ⊙̃G]](𝑥). If 𝐴
𝑥

̸= 0, then 𝑥 ≤ 𝑦𝑧 for some 𝑦, 𝑧 ∈ 𝑆. Thus

([[F]] ⊙̃ [[G]]) (𝑥) = ⋂

(𝑦,𝑧)∈𝐴
𝑥

{[[F]] (𝑦) ∪ [[G]] (𝑧)}

= ⋂

(𝑦,𝑧)∈𝐴
𝑥

{(⋂

𝑦≤𝑠

F (𝑠)) ∪ (⋂

𝑧≤𝑡

G (𝑡))}

= ⋂

(𝑦,𝑧)∈𝐴
𝑥

{ ⋂

𝑦≤𝑠,𝑧≤𝑡

{F (𝑠) ∪G (𝑡)}}

⊇ ⋂

(𝑦,𝑧)∈𝐴
𝑥

{ ⋂

𝑦𝑧≤𝑠𝑡

{F (𝑠) ∪G (𝑡)}}

= ⋂

𝑥≤𝑦𝑧

(F ⊙̃G) (𝑦𝑧)

= [[F ⊙̃G]] (𝑥) .

(61)

Therefore ([[F]], 𝑆) ⊙̃ ([[G]], 𝑆) ⊇̃ ([[F ⊙̃G]], 𝑆).
(3) Let 𝑥, 𝑦 ∈ 𝑆 be such that 𝑥 ≤ 𝑦. Then

[[F]] (𝑦) = ⋂

𝑦≤𝑧

F (𝑧) ⊇ ⋂

𝑥≤𝑧

F (𝑧) = [[F]] (𝑥) . (62)

It follows fromTheorem 33 that ([[F]], 𝑆) is concave.

Let (F, 𝑆) be a soft set over 𝑈. For any 𝑎 ∈ 𝑆 and any
proper subset 𝜆 of𝑈, a critical soft point, denoted by ((𝑎]

𝜆
, 𝑆),

over 𝑈 is defined to be a soft set over 𝑈 where

(𝑎]𝜆 : 𝑆 󳨀→ P (𝑈) , 𝑥 󳨃󳨀→ {
𝜆, if 𝑥 ∈ (𝑎] ,

𝑈, otherwise.
(63)

Proposition 35. For any proper subsets 𝜆 and 𝛿 of 𝑈, if
((𝑎]
𝜆
, 𝑆) and ((𝑏]

𝛿
, 𝑆) are critical soft points over 𝑈, then

((𝑎]
𝜆
⊙̃ (𝑏]
𝛿
, 𝑆) = ((𝑎𝑏]

𝜆∪𝛿
, 𝑆).

Proof. Let 𝑥 ∈ 𝑆. If 𝑥 ∈ (𝑎𝑏], then 𝐴
𝑥

̸= 0 and so

((𝑎]𝜆 ⊙̃ (𝑏]𝛿) (𝑥)

= ⋂

(𝑦,𝑧)∈𝐴
𝑥

{(𝑎]𝜆 (𝑦) ∪ (𝑏]𝛿 (𝑧)}

⊆ (𝑎]𝜆 (𝑎) ∪ (𝑏]𝛿 (𝑏) = 𝜆 ∪ 𝛿.

(64)

Note that (𝑎]
𝜆
(𝑦) ∪ (𝑏]

𝛿
(𝑧) ⊇ 𝜆 ∪ 𝛿 for all 𝑦, 𝑧 ∈ 𝑆. Hence

((𝑎]
𝜆
⊙̃ (𝑏]
𝛿
)(𝑥) ⊇ 𝜆 ∪ 𝛿. It follows that

((𝑎]𝜆 ⊙̃ (𝑏]𝛿) (𝑥) = 𝜆 ∪ 𝛿 = (𝑎𝑏]𝜆∪𝛿 (𝑥) . (65)

For 𝑥 ∉ (𝑎𝑏], assume that ((𝑎]
𝜆
⊙̃ (𝑏]
𝛿
)(𝑥) ̸= 𝑈. Then

((𝑎]𝜆 ⊙̃ (𝑏]𝛿) (𝑥) = ⋂

(𝑦,𝑧)∈𝐴
𝑥

{(𝑎]𝜆 (𝑦) ∪ (𝑏]𝛿 (𝑧)} ̸= 𝑈, (66)

and so (𝑎]
𝜆
(𝑦
0
) ∪ (𝑏]

𝛿
(𝑧
0
) ̸= 𝑈 for some 𝑦

0
, 𝑧
0
∈ 𝑆 with 𝑥 ≤

𝑦
0
𝑧
0
. Thus (𝑎]

𝜆
(𝑦
0
) = 𝜆 and (𝑏]

𝛿
(𝑧
0
) = 𝛿; that is, 𝑦

0
∈ (𝑎]

and 𝑧
0
∈ (𝑏]. It follows that 𝑦

0
𝑧
0
⊆ (𝑎](𝑏] ⊆ (𝑎𝑏] and that

𝑥 ∈ (𝑎𝑏]. This is a contradiction. Therefore ((𝑎]
𝜆
⊙̃ (𝑏]
𝛿
)(𝑥) =

𝑈 = (𝑎𝑏]
𝜆∪𝛿

(𝑥). Consequently, we know that

((𝑎]
𝜆
⊙̃ (𝑏]
𝛿
) (𝑥) = (𝑎𝑏]

𝜆∪𝛿
(𝑥) (67)

for all 𝑥 ∈ 𝑆; that is, ((𝑎]
𝜆
⊙̃ (𝑏]
𝛿
, 𝑆) = ((𝑎𝑏]

𝜆∪𝛿
, 𝑆).

Corollary 36. For any proper subsets 𝜆 and 𝛿 of𝑈, if ((𝑎]
𝜆
, 𝑆)

and ((𝑏]
𝛿
, 𝑆) are critical soft points over 𝑈, then

((𝑎]𝜆 ⊙̃ (𝑏]𝛿, 𝑆) = ((𝑏]𝛿 ⊙̃ (𝑎]𝜆, 𝑆) ⇐⇒ 𝑎𝑏 = 𝑏𝑎. (68)

Proof. It is straightforward.

Proposition 37. If (F, 𝑆) is a concave soft set over 𝑈, then

(F, 𝑆) = (

∼

⋂

(F,𝑆) ⊆̃ ((𝑎]
𝜆
,𝑆)

(𝑎]𝜆, 𝑆) (69)

for any 𝑎 ∈ 𝑆 and a proper subset 𝜆 of 𝑈.

Proof. Let ((𝑎]
𝜆
, 𝑆) be a critical soft point over 𝑈 such that

(F, 𝑆) ⊆̃ ((𝑎]
𝜆
, 𝑆). Then (𝑎]

𝜆
(𝑥) ⊇ F(𝑥) for all 𝑥 ∈ 𝑆, and so

(

∼

⋂

(F,𝑆) ⊆̃ ((𝑎]
𝜆
,𝑆)

(𝑎]𝜆)(𝑥) = ⋂

(F,𝑆) ⊆̃ ((𝑎]
𝜆
,𝑆)

(𝑎]𝜆 (𝑥)

⊇ ⋂

(F,𝑆) ⊆̃ ((𝑎]
𝜆
,𝑆)

F (𝑥) = F (𝑥)

(70)

for all 𝑥 ∈ 𝑆. Hence

(

∼

⋂

(F,𝑆) ⊆̃ ((𝑎]
𝜆
,𝑆)

(𝑎]𝜆, 𝑆) ⊇̃ (F, 𝑆) . (71)
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On the other hand, letF(𝑥) = 𝜆 for 𝑥 ∈ 𝑆. Then (F, 𝑆) ⊆̃ (𝑥
𝜆
,

𝑆). In fact, if 𝑦 ∉ (𝑥] then 𝑥
𝜆
(𝑦) = 𝑈 ⊇ F(𝑦). If 𝑦 ∈ (𝑥],

then 𝑦 ≤ 𝑥 and 𝑥
𝜆
(𝑦) = 𝜆. Since (F, 𝑆) is concave, it follows

fromTheorem 33 thatF(𝑦) ⊆ F(𝑥) = 𝜆 = 𝑥
𝜆
(𝑦). Therefore

(𝑥
𝜆
, 𝑆) ⊇̃ (F, 𝑆), and so

F (𝑥) = 𝜆 = 𝑥
𝜆
(𝑥) ⊇ ( ⋂

(F,𝑆) ⊆̃ ((𝑎]
𝜆
,𝑆)

(𝑎]
𝜆
)(𝑥) . (72)

Hence

(F, 𝑆) ⊇̃ (

∼

⋂

(F,𝑆) ⊆̃ ((𝑎]
𝜆
,𝑆)

(𝑎]𝜆, 𝑆) . (73)

Theorem 38. For any soft sets (F, 𝑆), (G, 𝑆), and (H, 𝑆) over
𝑈, the following items are valid:

(1) if (F, 𝑆) is a union-soft ideal over𝑈, then it is concave;
that is, (F, 𝑆) = ([[F]], 𝑆);

(2) if (F, 𝑆) and (G, 𝑆) are union-soft 𝑙-ideals (resp., union-
soft 𝑟-ideals) over 𝑈, then so are (F ⊙̃G, 𝑆) and
(F ∩̃G, 𝑆).

Proof. (1) Since every union-soft ideal (F, 𝑆) over 𝑈 satisfies
the condition (16), it follows fromTheorem 33.

(2) Assume that (F, 𝑆) and (G, 𝑆) are union-soft 𝑙-ideals
over 𝑈. For any 𝑥, 𝑦 ∈ 𝑆 with 𝑥 ≤ 𝑦, we have

(F ⊙̃G) (𝑥) = ⋂

(𝑎,𝑏)∈𝐴
𝑥

{F (𝑎) ∪G (𝑏)}

⊆ ⋂

(𝑎,𝑏)∈𝐴
𝑦

{F (𝑎) ∪G (𝑏)} = (F ⊙̃G) (𝑦) .

(74)

Theorem 21 implies that

(0
𝑆
, 𝑆) ⊙̃ ((F, 𝑆) ⊙̃ (G, 𝑆))

= ((0
𝑆
, 𝑆) ⊙̃ (F, 𝑆)) ⊙̃ (G, 𝑆)

⊇̃ (F, 𝑆) ⊙̃ (G, 𝑆) .

(75)

It follows from Theorem 22 that (F ⊙̃G, 𝑆) is a union-soft 𝑙-
ideal over 𝑈.

It is easy to verify that (0
𝑆
, 𝑆) ⊙̃ ((F, 𝑆) ∩̃ (G, 𝑆)) ⊇̃ (F, 𝑆) ∩̃

(G, 𝑆). Let 𝑥, 𝑦 ∈ 𝑆 be such that 𝑥 ≤ 𝑦. Then F(𝑥) ⊆ F(𝑦)

andG(𝑥) ⊆ G(𝑦). Hence

(F ∩̃G) (𝑥) = F (𝑥) ∩G (𝑥)

⊆ F (𝑦) ∩G (𝑦) = (F ∩̃G) (𝑦) .

(76)

Therefore (F ∩̃G, 𝑆) is a union-soft 𝑙-ideal over 𝑈 by
Theorem 22. Similarly, one can prove that (F ⊙̃G, 𝑆) and
(F ∩̃G, 𝑆) are union-soft 𝑟-ideals over 𝑈 when (F, 𝑆) and
(G, 𝑆) are union-soft 𝑟-ideals over 𝑈.

Theorem 39. For any critical soft point ((𝑎]
𝜆
, 𝑆) over 𝑈, let

(F
𝑙
((𝑎]
𝜆
), 𝑆) be a soft set over 𝑈 in whichF

𝑙
((𝑎]
𝜆
) is given as

follows:

F
𝑙
((𝑎]𝜆) : 𝑆 󳨀→ P (𝑈) ,

𝑥 󳨃󳨀→ {
𝜆, 𝑖𝑓 𝑥 ∈ 𝐿 (𝑎) ,

𝑈, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(77)

Then (F
𝑙
((𝑎]
𝜆
), 𝑆) is the greatest union-soft 𝑙-ideal over 𝑈

which is contained in the critical soft point ((𝑎]
𝜆
, 𝑆).

Proof. Let 𝑥, 𝑦 ∈ 𝑆. If F
𝑙
((𝑎]
𝜆
)(𝑦) = 𝑈, then it is clear

that F
𝑙
((𝑎]
𝜆
)(𝑥𝑦) ⊆ F

𝑙
((𝑎]
𝜆
)(𝑦). If F

𝑙
((𝑎]
𝜆
)(𝑦) ̸= 𝑈, then

F
𝑙
((𝑎]
𝜆
)(𝑦) = 𝜆 and 𝑦 ∈ (𝑆

1
𝑎]. Thus 𝑦 ≤ 𝑏𝑎 for some

𝑏 ∈ 𝑆
1, and so 𝑥𝑦 ≤ (𝑥𝑏)𝑎. Hence 𝑥𝑦 ∈ 𝐿(𝑎), and thus

F
𝑙
((𝑎]
𝜆
)(𝑥𝑦) = 𝜆 ⊆ F

𝑙
((𝑎]
𝜆
)(𝑦). Assume that 𝑥 ≤ 𝑦. If 𝑦 ∉

𝐿(𝑎) then F
𝑙
((𝑎]
𝜆
)(𝑦) = 𝑈 ⊇ F

𝑙
((𝑎]
𝜆
)(𝑥). If 𝑦 ∈ 𝐿(𝑎) then

𝑥 ∈ 𝐿(𝑎) since 𝑥 ≤ 𝑦. Thus F
𝑙
((𝑎]
𝜆
)(𝑥) = 𝜆 ⊆ F

𝑙
((𝑎]
𝜆
)(𝑦).

Consequently, (F
𝑙
((𝑎]
𝜆
), 𝑆) is a union-soft 𝑙-ideal over𝑈. For

each 𝑥 ∈ 𝑆, if 𝑥 ∈ (𝑎] then 𝑥 ∈ 𝐿(𝑎) and so (𝑎]
𝜆
(𝑥) = 𝜆 =

F
𝑙
((𝑎]
𝜆
)(𝑥). If 𝑥 ∉ (𝑎] then (𝑎]

𝜆
(𝑥) = 𝑈 ⊇ F

𝑙
((𝑎]
𝜆
)(𝑥).

Therefore ((𝑎]
𝜆
, 𝑆) ⊇̃ (F

𝑙
((𝑎]
𝜆
), 𝑆). Let (G, 𝑆) be a union-soft

𝑙-ideal over 𝑈 such that ((𝑎]
𝜆
, 𝑆) ⊇̃ (G, 𝑆). If 𝑥 ∈ 𝐿(𝑎), then

there exists 𝑏 ∈ 𝑆
1 such that 𝑥 ≤ 𝑏𝑎. Hence

F
𝑙
((𝑎]
𝜆
) (𝑥) = 𝜆 = (𝑎]

𝜆
(𝑎) ⊇ G (𝑎) ⊇ G (𝑏𝑎) ⊇ G (𝑥) .

(78)

If 𝑥 ∉ 𝐿(𝑎), then G(𝑥) ⊆ 𝑈 = F
𝑙
((𝑎]
𝜆
)(𝑥). Therefore

(G, 𝑆) ⊆̃ (F
𝑙
((𝑎]
𝜆
), 𝑆). This completes the proof.

Similarly, we have the following theorem.

Theorem 40. For any critical soft point ((𝑎]
𝜆
, 𝑆) over 𝑈, let

(F
𝑟
((𝑎]
𝜆
), 𝑆) be a soft set over𝑈 in whichF

𝑟
((𝑎]
𝜆
) is given as

follows:

F
𝑟
((𝑎]𝜆) : 𝑆 󳨀→ P (𝑈) ,

𝑥 󳨃󳨀→ {
𝜆, 𝑖𝑓 𝑥 ∈ 𝑅 (𝑎) ,

𝑈, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(79)

Then (F
𝑟
((𝑎]
𝜆
), 𝑆) is the greatest union-soft 𝑟-ideal over 𝑈

which is contained in the critical soft point ((𝑎]
𝜆
, 𝑆).

Theorem 41. Let ((𝑎]
𝜆
, 𝑆) be a critical soft points over𝑈. Then

(0
𝑆
, 𝑆) ⊙̃ ((𝑎]

𝜆
, 𝑆) ⊙̃ (0

𝑆
, 𝑆) is a union-soft ideal over 𝑈, and

(0
𝑆
⊙̃ (𝑎]𝜆 ⊙̃ 0

𝑆
) (𝑥) = {

𝜆, 𝑖𝑓 𝑥 ∈ (𝑆𝑎𝑆] ,

𝑈, 𝑖𝑓 𝑥 ∉ (𝑆𝑎𝑆] ,
(80)

for all 𝑥 ∈ 𝑆.
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Proof. Let 𝑥 ∈ 𝑆. If 𝑥 ∈ (𝑆𝑎𝑆], then there exist 𝑦, 𝑧 ∈ 𝑆 such
that 𝑥 ≤ 𝑦𝑎𝑧. Hence

(0
𝑆
⊙̃ (𝑎]𝜆 ⊙̃ 0

𝑆
) (𝑥)

= ⋂

𝑥≤𝑥
1
𝑥
2
𝑥
3

{0
𝑆
(𝑥
1
) ∪ (𝑎]𝜆 (𝑥2) ∪ 0

𝑆
(𝑥
3
)}

⊆ 0
𝑆
(𝑦) ∪ (𝑎]𝜆 (𝑎) ∪ 0

𝑆
(𝑧)

= 0 ∪ 𝜆 ∪ 0 = 𝜆.

(81)

On the other hand, 0
𝑆
(𝑥
1
) ∪ (𝑎]

𝜆
(𝑥
2
) ∪ 0
𝑆
(𝑥
3
) = (𝑎]

𝜆
(𝑥
2
) ⊇ 𝜆

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝑆, and so

(0
𝑆
⊙̃ (𝑎]𝜆 ⊙̃ 0

𝑆
) (𝑥)

= ⋂

𝑥≤𝑥
1
𝑥
2
𝑥
3

{0
𝑆
(𝑥
1
) ∪ (𝑎]𝜆 (𝑥2) ∪ 0

𝑆
(𝑥
3
)} ⊇ 𝜆

(82)

for all 𝑥 ∈ 𝑆. It follows that (0
𝑆
⊙̃ (𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑥) = 𝜆 for all

𝑥 ∈ (𝑆𝑎𝑆]. Assume that 𝑥 ∉ (𝑆𝑎𝑆]. If there exist 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝑆

such that 𝑥 ≤ 𝑥
1
𝑥
2
𝑥
3
, then

(0
𝑆
⊙̃ (𝑎]𝜆 ⊙̃ 0

𝑆
) (𝑥)

= ⋂

𝑥≤𝑥
1
𝑥
2
𝑥
3

{0
𝑆
(𝑥
1
) ∪ (𝑎]𝜆 (𝑥2) ∪ 0

𝑆
(𝑥
3
)}

= ⋂

𝑥≤𝑥
1
𝑥
2
𝑥
3

(𝑎]𝜆 (𝑥2) .

(83)

If (0
𝑆
⊙̃ (𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑥) ̸= 𝑈, then there exist 𝑎, 𝑏, 𝑐 ∈ 𝑆 such

that 𝑥 ≤ 𝑎𝑏𝑐 and 𝑏 ∈ (𝑎]. Thus 𝑥 ∈ (𝑆𝑎𝑆] which leads
a contradiction. Therefore (0

𝑆
⊙̃ (𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑥) = 𝑈. If there

does not exist 𝑥
1
, 𝑥
2
, 𝑥
3

∈ 𝑆 such that 𝑥 ≤ 𝑥
1
𝑥
2
𝑥
3
, then

(0
𝑆
⊙̃ (𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑥) = 𝑈. Now, it is easy to verify that

(0
𝑆
, 𝑆) ⊙̃ (0

𝑆
⊙̃ (𝑎]𝜆 ⊙̃ 0

𝑆
, 𝑆) ⊇̃ (0

𝑆
⊙̃ (𝑎]𝜆 ⊙̃ 0

𝑆
, 𝑆) ,

(0
𝑆
⊙̃ (𝑎]𝜆 ⊙̃ 0

𝑆
, 𝑆) ⊙̃ (0

𝑆
, 𝑆) ⊇̃ (0

𝑆
⊙̃ (𝑎]𝜆 ⊙̃ 0

𝑆
, 𝑆) .

(84)

Let 𝑥, 𝑦 ∈ 𝑆 be such that 𝑥 ≤ 𝑦. Obviously, (0
𝑆
⊙̃ (𝑎]
𝜆
⊙̃

0
𝑆
)(𝑥) ⊇ 𝜆 for all 𝑥 ∈ 𝑆. If 𝑥 ∈ (𝑆𝑎𝑆], then (0

𝑆
⊙̃ (𝑎]
𝜆
⊙̃

0
𝑆
)(𝑥) = 𝜆 ⊆ (0

𝑆
⊙̃ (𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑦). If 𝑥 ∉ (𝑆𝑎𝑆], then 𝑦 ∉ (𝑆𝑎𝑆]

and so (0
𝑆
⊙̃ (𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑥) = 𝑈 = (0

𝑆
⊙̃ (𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑦). There-

fore (0
𝑆
, 𝑆) ⊙̃ ((𝑎]

𝜆
, 𝑆) ⊙̃ (0

𝑆
, 𝑆) is a union-soft ideal over 𝑈 by

Theorems 22 and 23.

Similarly, we have the following theorems.

Theorem42. Let ((𝑎]
𝜆
, 𝑆) be a critical soft points over𝑈.Then

(0
𝑆
, 𝑆) ⊙̃ ((𝑎]

𝜆
, 𝑆) is a union-soft 𝑙-ideal over 𝑈, and

(0
𝑆
⊙̃ (𝑎]𝜆) (𝑥) = {

𝜆, 𝑖𝑓 𝑥 ∈ (𝑆𝑎] ,

𝑈, 𝑖𝑓 𝑥 ∉ (𝑆𝑎] ,
(85)

for all 𝑥 ∈ 𝑆.

Theorem 43. Let ((𝑎]
𝜆
, 𝑆) be critical soft points over 𝑈. Then

((𝑎]
𝜆
, 𝑆) ⊙̃ (0

𝑆
, 𝑆) is a union-soft 𝑟-ideal over 𝑈, and

((𝑎]𝜆 ⊙̃ 0
𝑆
) (𝑥) = {

𝜆, 𝑖𝑓 𝑥 ∈ (𝑎𝑆] ,

𝑈, 𝑖𝑓 𝑥 ∉ (𝑎𝑆] ,
(86)

for all 𝑥 ∈ 𝑆.

Proposition 44. For any critical soft points ((𝑎]
𝜆
, 𝑆) and

((𝑏]
𝛿
, 𝑆) over 𝑈, we have

(0
𝑆
, 𝑆) ⊙̃ ((𝑎]𝜆, 𝑆) ⊙̃ (0

𝑆
, 𝑆) ⊆̃ ((𝑏]𝛿, 𝑆) ⇐⇒ 𝑏 ∈ (𝑆𝑎𝑆] ,

𝛿 ⊆ 𝜆.

(87)

Proof. If (0
𝑆
, 𝑆) ⊙̃ ((𝑎]

𝜆
, 𝑆) ⊙̃ (0

𝑆
, 𝑆) ⊆̃ ((𝑏]

𝛿
, 𝑆), then (0

𝑆
⊙̃

(𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑏) ⊆ (𝑏]

𝛿
(𝑏) = 𝛿 ̸= 𝑈. Hence

(0
𝑆
⊙̃ (𝑎]𝜆 ⊙̃ 0

𝑆
) (𝑏) = 𝜆 ⊇ 𝛿, 𝑏 ∈ (𝑆𝑎𝑆] (88)

byTheorem 41.
Conversely, assume that 𝑏 ∈ (𝑆𝑎𝑆] and 𝛿 ⊆ 𝜆. For any

𝑥 ∈ 𝑆, if 𝑥 ∈ (𝑏] then 𝑥 ∈ (𝑏] ⊆ ((𝑆𝑎𝑆]] = (𝑆𝑎𝑆]. It follows
from Theorem 41 that (0

𝑆
⊙̃ (𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑥) = 𝜆 ⊇ 𝛿 = (𝑏]

𝛿
(𝑥).

If 𝑥 ∉ (𝑏], then (𝑏]
𝛿
(𝑥) = 𝑈 ⊇ (0

𝑆
⊙̃ (𝑎]
𝜆
⊙̃ 0
𝑆
)(𝑥). Therefore

(0
𝑆
, 𝑆) ⊙̃ ((𝑎]𝜆, 𝑆) ⊙̃ (0

𝑆
, 𝑆) ⊆̃ ((𝑏]𝛿, 𝑆) . (89)

This completes the proof.

For any subset 𝐷 of 𝑆 and a proper subset 𝜆 of 𝑈, let
(F
𝐷
, 𝑆) and ((𝜆F)

𝐷
, 𝑆) be soft sets over 𝑈 given as follows:

F
𝐷
: 𝑆 󳨀→ P (𝑈) ,

𝑥 󳨃󳨀→ {
0, if 𝑥 ∈ 𝐷,

𝑈, otherwise,

(𝜆F)
𝐷
: 𝑆 󳨀→ P (𝑈) ,

𝑥 󳨃󳨀→ {
𝜆, if 𝑥 ∈ 𝐷,

𝑈, otherwise,

(90)

respectively. Obviously, if𝐷 = (𝑎] then (𝜆F)
𝐷
= (𝑎]
𝜆
.

Proposition 45. For any nonempty subsets 𝐷 and 𝐸 of 𝑆 and
any proper subset 𝜆 of 𝑈, we have the following assertions.

(1) ((𝜆F)
𝐷
⊙̃ (𝜆F)

𝐸
, 𝑆) = ((𝜆F)

(𝐷𝐸]
, 𝑆).

(2) ((𝜆F)
𝐷
∪̃ (𝜆F)

𝐸
, 𝑆) = ((𝜆F)

𝐷∩𝐸
, 𝑆).

(3) ((𝜆F)
𝐷
∩̃ (𝜆F)

𝐸
, 𝑆) = ((𝜆F)

𝐷∪𝐸
, 𝑆).

(4)

((𝜆F)
(𝐷]

, 𝑆) = (

∼

⋂

𝑎∈𝐷

(𝑎]𝜆, 𝑆) . (91)

Proof. (1) If 𝑥 ∈ (𝐷𝐸] thenF
(𝐷𝐸]

(𝑥) = 0 and 𝑥 ≤ 𝑎𝑏 for some
𝑎 ∈ 𝐷 and 𝑏 ∈ 𝐸. Hence (𝑎, 𝑏) ∈ 𝐴

𝑥
; that is, 𝐴

𝑥
̸= 0, and thus

((𝜆F)
𝐷
⊙̃ (𝜆F)

𝐸
) (𝑥)

= ⋂

(𝑦,𝑧)∈𝐴
𝑥

{(𝜆F)
𝐷
(𝑦) ∪ (𝜆F)

𝐸
(𝑧)}

⊆ (𝜆F)
𝐷
(𝑎) ∪ (𝜆F)

𝐸
(𝑏)

= 𝜆 ∪ 𝜆 = 𝜆.

(92)
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Since (𝜆F)
𝐷
(𝑦) ⊇ 𝜆 and (𝜆F)

𝐸
(𝑧) ⊇ 𝜆 for all 𝑦, 𝑧 ∈ 𝑆, we get

((𝜆F)
𝐷
⊙̃ (𝜆F)

𝐸
)(𝑥) ⊇ 𝜆. Therefore ((𝜆F)

𝐷
⊙̃ (𝜆F)

𝐸
)(𝑥) =

𝜆 = (𝜆F)
(𝐷𝐸]

(𝑥).
If 𝑥 ∉ (𝐷𝐸] then (𝜆F)

(𝐷𝐸]
(𝑥) = 𝑈. For the case 𝐴

𝑥
= 0,

we have

((𝜆F)
𝐷
⊙̃ (𝜆F)

𝐸
) (𝑥) = 𝑈 = (𝜆F)

(𝐷𝐸]
(𝑥) . (93)

The case 𝐴
𝑥

̸= 0 implies that 𝑥 ≤ 𝑦𝑧 for all (𝑦, 𝑧) ∈ 𝐴
𝑥
. If

𝑦 ∈ 𝐷 and 𝑧 ∈ 𝐸, then 𝑦𝑧 ∈ 𝐷𝐸 and so 𝑥 ∈ (𝐷𝐸]. This is
impossible, and thus 𝑦 ∉ 𝐷 or 𝑧 ∉ 𝐸. If 𝑦 ∉ 𝐷, then
(𝜆F)
𝐷
(𝑦) = 𝑈 and thus (𝜆F)

𝐷
(𝑦)∪(𝜆F)

𝐸
(𝑧) = 𝑈. Similarly,

if 𝑧 ∉ 𝐸 then (𝜆F)
𝐷
(𝑦) ∪ (𝜆F)

𝐸
(𝑧) = 𝑈. Therefore

((𝜆F)
𝐷
⊙̃ (𝜆F)

𝐸
) (𝑥)

= ⋂

(𝑦,𝑧)∈𝐴𝑥

{(𝜆F)
𝐷
(𝑦) ∪ (𝜆F)

𝐸
(𝑧)} = 𝑈.

(94)

Consequently, (1) is true.
(2) Let 𝑥 ∈ 𝑆. If 𝑥 ∈ 𝐷 ∩ 𝐸, then 𝑥 ∈ 𝐷 and 𝑥 ∈ 𝐸, and so

(𝜆F)
𝐷∩𝐸

(𝑥) = 𝜆 = 𝜆 ∪ 𝜆

= (𝜆F)
𝐷
(𝑥) ∪ (𝜆F)

𝐸
(𝑥)

= ((𝜆F)
𝐷
∪̃ (𝜆F)

𝐸
) (𝑥) .

(95)

Assume that 𝑥 ∉ 𝐷 ∩ 𝐸. Then (𝜆F)
𝐷∩𝐸

(𝑥) = 𝑈. If 𝑥 ∉ 𝐷,
then (𝜆F)

𝐷
(𝑥) = 𝑈 and so

((𝜆F)
𝐷
∪̃ (𝜆F)

𝐸
) (𝑥)

= (𝜆F)
𝐷
(𝑥) ∪ (𝜆F)

𝐸
(𝑥)

= 𝑈 = (𝜆F)
𝐷∩𝐸

(𝑥) .

(96)

Similarly, if 𝑥 ∉ 𝐸 then ((𝜆F)
𝐷
∪̃ (𝜆F)

𝐸
)(𝑥) = (𝜆F)

𝐷∩𝐸
(𝑥).

Therefore

((𝜆F)
𝐷
∪̃ (𝜆F)

𝐸
, 𝑆) = ((𝜆F)

𝐷∩𝐸
, 𝑆) . (97)

(3) Let 𝑥 ∈ 𝑆. If 𝑥 ∈ 𝐷 ∪ 𝐸, then 𝑥 ∈ 𝐷 or 𝑥 ∈ 𝐸, which
implies that (𝜆F)

𝐷
(𝑥) = 𝜆 or (𝜆F)

𝐸
(𝑥) = 𝜆. Hence

(𝜆F)
𝐷∪𝐸

(𝑥) = 𝜆 = 𝜆 ∩ 𝜆

= (𝜆F)
𝐷
(𝑥) ∩ (𝜆F)

𝐸
(𝑥)

= ((𝜆F)
𝐷
∩̃ (𝜆F)

𝐸
) (𝑥) .

(98)

Suppose that 𝑥 ∉ 𝐷 ∪ 𝐸. Then 𝑥 ∉ 𝐷 and 𝑥 ∉ 𝐸. It follows
that

((𝜆F)
𝐷
∩̃ (𝜆F)

𝐸
) (𝑥)

= (𝜆F)
𝐷
(𝑥) ∩ (𝜆F)

𝐸
(𝑥)

= 𝑈 = (𝜆F)
𝐷∪𝐸

(𝑥) .

(99)

Therefore ((𝜆F)
𝐷
∩̃ (𝜆F)

𝐸
, 𝑆) = ((𝜆F)

𝐷∪𝐸
, 𝑆).

(4) Let 𝑥 ∈ 𝑆. If 𝑥 ∈ (𝐷], then 𝑥 ≤ 𝑏 for some 𝑏 ∈ 𝐷.
Hence

(

∼

⋂

𝑎∈𝐷

(𝑎]𝜆) (𝑥) = ⋂

𝑎∈𝐷

(𝑎]𝜆 (𝑥) ⊆ 𝑏
𝜆
(𝑥) = 𝜆. (100)

Note that (𝑎]
𝜆
(𝑥) ⊇ 𝜆 for any critical soft point (𝑎]

𝜆
over 𝑈.

Thus

(

∼

⋂

𝑎∈𝐷

(𝑎]𝜆) (𝑥) = ⋂

𝑎∈𝐷

(𝑎]𝜆 (𝑥) ⊇ 𝜆. (101)

Conditions (100) and (101) induce

(

∼

⋂

𝑎∈𝐷

(𝑎]𝜆) (𝑥) = 𝜆 = (𝜆F)
(𝐷]

(𝑥) . (102)

If 𝑥 ∉ (𝐷], then

(i) (𝜆F)
(𝐷]

(𝑥) = 𝑈 and
(ii) 𝑥 ∉ (𝑎] for all 𝑎 ∈ 𝐷, and so (𝑎]

𝜆
(𝑥) = 𝑈 for all 𝑎 ∈ 𝐷.

It follows that

(

∼

⋂

𝑎∈𝐷

(𝑎]
𝜆
) (𝑥) = ⋂

𝑎∈𝐷

(𝑎]
𝜆
(𝑥) = 𝑈 = (𝜆F)

(𝐷]
(𝑥) . (103)

Therefore

((𝜆F)
(𝐷]

, 𝑆) = (

∼

⋂

𝑎∈𝐷

(𝑎]𝜆, 𝑆) . (104)

Theorem 46. If 𝐷 is a left ideal of 𝑆, then ((𝜆F)
𝐷
, 𝑆) is a

union-soft 𝑙-ideal over 𝑈.

Proof. Suppose that𝐷 is a left ideal of 𝑆. Let 𝑥, 𝑦 ∈ 𝑆. If 𝑦 ∈ 𝐷,
then 𝑥𝑦 ∈ 𝐷 and so (𝜆F)

𝐷
(𝑥𝑦) = 𝜆 = (𝜆F)

𝐷
(𝑦). If 𝑦 ∉ 𝐷,

then (𝜆F)
𝐷
(𝑦) = 𝑈 ⊇ (𝜆F)

𝐷
(𝑥𝑦). Assume that 𝑥 ≤ 𝑦. If 𝑦 ∈

𝐷, then 𝑥 ∈ 𝐷 and thus (𝜆F)
𝐷
(𝑥) = 𝜆 = (𝜆F)

𝐷
(𝑦). If 𝑦 ∉ 𝐷,

then (𝜆F)
𝐷
(𝑦) = 𝑈 ⊇ (𝜆F)

𝐷
(𝑥). Therefore ((𝜆F)

𝐷
, 𝑆) is a

union-soft 𝑙-ideal over 𝑈.

In the same way, we can verify the following result.

Theorem 47. If 𝐷 is a right ideal of 𝑆, then ((𝜆F)
𝐷
, 𝑆) is a

union-soft 𝑟-ideal over 𝑈.
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